Mobile Aerial CO2 Sensing

Monitoring large areas to detect small CO2 leaks is challenging. Sensor networks are a common approach to deal with this problem. But the deployment of a large amount of sensor nodes can be costly with each node requiring at least a CO2 sensor, a power source and a communication module. Such expenses are only justifiable in populated areas where the safety of the people has to be ensured and part of the infrastructure is already available.

To cover large unpopulated areas and to ensure the detection of CO2 leakages in an early stage, we propose the usage of an unmanned small helicopter equipped with a high accuracy CO2 sensor, a GPS and a communication module. Depending on the aspired time interval between consecutive measurements one or multiple of these unmanned aerial vehicles (UAVs) can be deployed.

The experiments presented in this poster are part of an ongoing feasibility study trying to determine if and how rotor-craft UAVs can be used for aerial gas measurements.

The main challenge of aerial CO2 measurements is the trade-off between accuracy and coverage. For accurate readings, currently available CO2 sensors need about multiple seconds to deliver one measurement. If such a sensor is deployed on an UAV, the measurement represents the average CO2 concentration of the covered area in that time interval. If the aerial platform is moving too fast, CO2 leakages might remain undetected (CO2 spikes are averaged out). On the other hand, slower UAVs need more time to cover the same area.

To be able to reliably detect CO2 leakages, we chose a rotor-craft UAV which allows slower velocities compared to a fixed wing UAV. Our customized T-Rex 700E is driven by an electric motor and flies about 12 minutes in its current configuration. A Vaisala GMP343 CO2 sensor is used for the CO2 measurements delivering one CO2 measurement every two seconds with an accuracy of ±(3 ppm + 1 % of reading).

EXPERIMENTS AND THEIR RESULTS.

A diffuse CO2 source with a flow rate of 100 kg of fluid CO2 per day was set up in the middle of a field (Figure 1) on a calm day. The UAV was flown repeatedly over the CO2 source in about two meters height. The downwash of the main rotor mixes up the air-CO2-mixture and pushes it through the CO2 sensor mounted in the front of the UAV. The experiment was conducted to determine if this mixing denies meaningful CO2 readings in midair.

The results suggest, that a rotor-craft UAV can be used for CO2 measurements in midair.

ACKNOWLEDGEMENTS.
The authors greatly appreciate the extraordinary efforts of the following organizations which made the CO2 trial possible:

- Geoscience Australia (http://www.ga.gov.au/)
- CO2CRC (http://www.co2crc.com.au/)
- CSIRO (http://www.csiro.au/)

The Australian National University
florian.poppa, uwe.zimmer@anu.edu.au
Geoscience Australia
andrew.feitz, henry.berko@ga.gov.au

Figure 1: Experimental set-up (Photography by Ben Coughlan)

Figure 2: Measured CO2 concentration

Figure 2 shows the CO2 concentration measured by the Vaisala GMP343 during the experiment. A relative constant CO2 concentration of around 375 ppm was measured before the start of the helicopter. Spinning up the rotor blades did not negatively influence the measurements. A clear jump can be seen when the helicopter was flown over the CO2 source. The pilot was then flying back and forth over the release point which is reflected in the repeating CO2 spikes. The ongoing dilution of the air-CO2-mixture through the helicopter rotor blades resulted in each consecutive CO2 spike having a smaller CO2 concentration than the preceding one.

The results suggest, that a rotor-craft UAV can be used for CO2 measurements in midair.