
 
Real-Time Magazine

Diepenbeemd 5 - 1650 Beersel - Belgium
Vol. 5 nr. 3 91/3, ISSN 1018-0303 

 

ALBATROSS
An Operating-System under hard Realtime-Constraints

 

Ewald von Puttkamer & Uwe R. Zimmer

 

University of Kaiserslautern - Computer Science Department - Research Group Prof. E. v. Puttkamer
P.O. Box 3049 - W6750 Kaiserslautern - Germany

Phone: 49 631 205 2624 - Fax: 49 631 205 2803 - Telex: 04-5627 unikl d
e-mail: uzimmer@informatik.uni-kl.de

 

Based on the experiences from an autonomous mobile
robot project called MOBOT-III, we found hard real-
time-constraints for the operating-system-design.
ALBATROSS is “A flexible multi-tasking and real-
time network-operating-system-kernel”. The focus
in this article is on a communication-scheme fulfill-
ing the previous demanded assurances. The central
chapters discuss the shared buffer management and
the way to design the communication architecture.
Some further aspects beside the strict realtime-re-
quirements like the possibilities to control and watch
a running system, are mentioned.

ALBATROSS is actually implemented on a multi-
processor VMEbus-system.

 

1. Motivation & Introduction

 

Why are realtime-aspects so important for our group? Be-
fore trying to find an answer to this question, we would
like to give a really short overview of the goals in our au-
tonomous mobile robot project called “MOBOT-III” in the
form of a definition

 

1

 

.

An autonomous mobile robot (AMR) is a system which
perceives information about its environment in order to
use this information for solving a given task. It has to be
equipped with an onboard computer-system to do all com-
putations independently and without external interven-
tion. It must be able to explore unknown environments
while building maps (of various kinds). Based on these
maps the AMR navigates to specified goals while avoiding
collisions with fixed or moving obstacles and performs lo-
cal tasks like identifying and manipulating objects.
From the pool of realtime-problems in this area we will
highlight three.

 

a.

 

Guarantee for actual data

 

Most of the decisions have to be based on actual data.
For example you might think of reflective navigation

 

1. for further information about MOBOT-III see the refer-
ences at the end of the article

 

around a moving obstacle. If the sensor-information (i.e.
the deduced map) for the pilot-component is older than
about 100 ms (at a speed of 1 m/s), it is impossible to
generate a smooth and really reflective track for the ve-
hicle. And of course it is a great security-risk when the
robot drives in a “world before our time”.

 

b.

 

Graceful degradation

 

In a lot of situations the breakdown of one component
makes life too risky for the robot and the only answer
will be an immediate stop of all motors. But on the other
hand it is not the best idea to stop the robot because a
part of, e.g. the object-recognition-component is begin-
ning to hallucinate. In this kind of degradation, the oth-
er parts must be able to decide that the output of this
component does not make sense any longer and (very
important) the crashed part must be isolated, so that
this component is not able to disturb the whole system.

 

c.

 

Keeping on-line in a running system

 

Testing the robot in a real environment leads directly
(usually at the first corner) to the question: “What are
the actual internal maps, this (or the next) decision is
based on?”. One attempt may be to stop the machine
from time to time and to look at the internal data. But
this is not a realtime-test and of course not the comforta-
ble way. So the optimal solution is to have an insight
into the internal data-structures while these are build
up in the running system in a way that the robot can not
even detect this access.

The above points should be enough to show our motiva-
tion to build a realtime-system fulfilling some hard real-
time-constraints.

This article will -hopefully- show a couple of significant
differences to conventional realtime operating-systems.

In the next chapter we will discuss some main require-
ments as seen from the task‘s point of view. The main part
follows in chapter 3. There the communication-scheme in
ALBATROSS is being highlighted. First as the base of all in-
formation-transfers the so called realtime-ports are dis-
cussed in detail, then some higher communication-levels
are mentioned. The question of the need for a communica-
tion-controller follows. Finally the communication-chapter
ends with an opposition of transient and cyclic transfers.



 

Chapter: Assurances for each task Page: 2

 

Chapter 4 shows some general aspects of ALBATROSS, like
the flexibility in different environments or the possibility to
keep on-line in a running system. The final conclusion lists
the central aspects of ALBATROSS and shows some rela-
tions to conventional realtime-systems.

 

2. Assurances for each task

 

In this article it is assumed that the underlying hardware is
a distributed system with several processors, each of them
is used by a single task. Seen from the perspective of a sin-
gle task communicating with the whole (complex) system,
what will be the necessary assurances a realtime-system
has to give to this task.

 

a.

 

Full CPU-power

 

All the CPU-time is exclusively reserved for the local
task. This sounds easy but there are two main problems
deduced by this restriction:

 

a-1

 

No system-interrupts

 

The OS has only access to the CPU if the local task is
explicitly calling the OS. There can not be any back-
ground operation at all (e.g. interrupts for the sys-
tem time, etc. pp.)!

 

a-2

 

No communication-interrupts

 

If any information is arriving via the communica-
tion-system, the local task can not be disturbed by
interrupts. So the necessary transport-actions must
be done by an other processor and the local task will
be informed when the task is interested in the new
data, not when the new data is arriving.

Why is this restriction so important in a realtime-sys-
tem? Every task has to fulfil a couple of operations in an
exactly specified maximal time. Unfortunately there is
not a practical way to find out the maximal duration of
a task under all conditions. But for sure this problem
will not become easier when there is an other unknown
variable you have to deal with: the really available
CPU-time. So the simplest way to determine the real
CPU-time for the task is to give all the CPU-time to that
task!
But this is not the whole truth. Some tasks have to use
interrupts to access the local hardware - what about
them? In such a case the local task is not only responsi-
ble for the run-time of the task itself, but also for the in-
terrupt handlers, installed by it. The OS must assure a
maximal (and of course short) time-lack between the
stop of the task and the beginning of the interrupt-han-
dler. The task has to control (or to know) the interrupt
frequency in order to prevent overflows.

 

b.

 

No direct connection to tasks on other processors

 

All the tasks are synchronised implicitly via the flow of
data, i.e. a task will start (over) when it gets some newer
input data - an explicit trigger is not necessary! The de-
cision to look for and to use new data depends on the
internal state of the local task.
Assuming a task in the system is crashed - so the only
effect seen by other tasks is the lack of newer data. 

 

They

 

may decide what is to do in this situation (how impor-

 

tant the missing information is) but there is no direct
connection to this crashed task. In most cases such a
connection would be disastrous.

 

c.

 

Non-blocking access to the communication-system

 

Every call for new data or for an export of new outputs
must successfully end within a fixed (and of course
short) time - even if the communication partner is bro-
ken down or in any other possible constellation.

 

d.

 

Guaranteed actuality of all received information

 

This implies guaranteed transfer times but because loss
of data is a real thing in a moving system, this restric-
tion may only be approximated by redundant transfers.
And so the communication-system has to be able to
transfer a new block of data more than once, without
blocking any other packet.

Three and a half out of four assurances refer to the commu-
nication-system. So it looks like the communication-
scheme is playing an important role in the design process
of a realtime-system. All of the above constraints are ful-
filled in ALBATROSS even if they are not mentioned again
in the rest of the article. In the following chapter we will
discuss some of the main communication-aspects of AL-
BATROSS.

 

3. Communication in ALBATROSS

 

When trying to satisfy all of the above assurances, there
will be two (apparently) contradictory directions of the
way to design the communication. Each of the two dispo-
sitions leads to standard solutions, when trying to fulfil
them isolated. Before discussing the combined solution, we
will show the two conventional paths.

 

a.

 

Couple two processes as loosely as possible

 

Regarded from the viewpoint of one processor for one
task, this assumption guarantees in a natural manner a
kind of graceful degradation. The typical implementa-
tions of this philosophy cover the whole bandwidth of
message-passing-systems.

 

b.

 

Assure restrictive transfer times

 

The closer two processes are coupled (the fewer com-
munication-layers are between them), the better are the
time-assurances for the communication-accesses. So if
you like to get a quick transfer, you will fit the two proc-
esses close together. Further (if this is still too slow) you
will introduce restrictions in the communication-phases
(e.g. no interrupts are allowed while reading in a com-
munication-buffer).

It is obvious that solving the two requirements individual-
ly will not lead to the optimum. Up to here the article con-
tains only problem-descriptions, so it is time to show some
solutions in the following chapters.

 

3-1. Realtime Ports

 

Before talking about protocols, we have to define the hard-
ware-environment. The hardware-structure is simple but



 

Chapter: Communication in ALBATROSS Page: 3

 

effective. There are two independent processors connected
via a dual-ported-RAM, i.e. the memory-domains of the
processors overlay. What is the definition of a dual-ported-
RAM in this context? Both processors may access the same
memory-area 

 

simultaneously

 

. A conflict at the level of a
byte-access has to be solved with some special hardware, in
a way that neither side is being blocked and a byte will stay
an indivisible element. Access to the dual-ported-RAM-
area is only allowed in the supervisor-mode, so only the
operating-system may access this critical memory.
The realtime-transfer in ALBATROSS follows a realtime-
philosophy which can be described by three short de-
mands:

 

a.

 

Consistency

 

Information may only be transferred in consistent units,
i.e. you have to wait until a complete message is pro-
duced. If you do not consider this restriction, you have
to define an extra protocol, assuring that there is no way
to build a message with packets from different produc-
tions. 

 

b.

 

Actuality

 

Newer information has priority over the older one. This
is a contradiction to the usual demand of keeping order,
because you have to destroy old information at the level
of the communication-system, if there is a newer one (of
the same class) available. 

 

c.

 

Availability

 

Information must be available at any time. This does
not mean that you have to fulfil restrictive time-limits
for the producer. There is simply implied that an infor-
mation is only destroyed when it can be replaced by a
newer one.

ReadLocked

Actual

Buffer #1

Buffer #2

Buffer #3

Task Operating-System

Operating-System Task

dual ported RAM

producer - memory domain

consumer - memory domain

Figure 1 : memory domains

 

Following these demands we have designed a really sim-
ple implementation of the buffer-access as seen from the
operating-system. The common base of collision-free and
locking-free access with two asynchronous partners is the
three-buffer structure. Figure 1 shows the connection be-
tween two processors at the hardware-level and the loca-
tion of the buffers for the communication. 

Type BufferIndex = (Buffer1, Buffer2, Buffer3);

Var Actual, {may only be written by the producer}
ReadLocked {may only be written by the consumer}

: BufferIndex;

{ Both variables has to be one byte long and }
{ are located in the dual-ported-RAM area. }
{ The initial value of both variables }
{ should be “Buffer1”. }

Figure 2 : common data-structures

Type Actuality = (Old, New);

Function Import (Var ImportedData: Datatype): Actuality;

Begin

Import:= Old;

{--- Phase 1: select a buffer for read-access}

While ReadLocked ≠ Actual Do
ReadLocked:= Actual;
Import:= New

EndWhile;

{--- Phase 2: read-access to the selected buffer}

ReadFrom (ReadLocked, ImportedData)

EndFunction Import;

Figure 3 : buffer-access for reading

Procedure Export (ExportedData: Datatype);

Var Buffer, WriteBuffer, CopyOfReadLocked: BufferIndex;

Begin

{--- Phase 1: select a buffer for write-access}

CopyOfReadLocked:= ReadLocked;

For Buffer:= Buffer1 to Buffer3 Do
If (Buffer ≠ Actual) and

(Buffer ≠ CopyOfReadLocked) Then
WriteBuffer:= Buffer

EndIf
EndFor;

{--- Phase 2: write-access to the selected buffer}

WriteTo (WriteBuffer, ExportedData);

{--- Phase 3: assign completely written buffer as actual}

Actual:= WriteBuffer

EndProcedure Export;

Figure 4 : buffer-access for writing



 

Chapter: Communication in ALBATROSS Page: 4

 

Figure 2, 3 and 4 are the implementation fragments (in a
Pascal-like syntax) for reading from and writing to the
communication-area. The critical accesses to the variables
“ReadLocked” and “Actual” are marked (

 

Bold

 

 for a critical
writing; 

 

italic

 

 for a critical reading).

Variables not under local control may change their values
at 

 

any

 

 time, i.e. before you may assign the read value (i.g.
of “Actual”) to your local parameter, the value may have
changed! This fact seems to make any formal proof of the
correctness quite hard. Fortunately there is only a small
number of values, the critical variables may have changed
to. So it is possible to proof all the combinatorial cases step
by step.

To assure the correctness of the whole realtime-transfer you
have to proof the following four points in detail.

 

a.

 

Collision-free

 

The producer has to select a buffer (in phase 1) which
can not be used from the consumer during the whole
writing-access (phase 2).

 

b.

 

Definite results

 

The producer as well as the consumer selects always ex-
actly one of the three available buffers.

 

c.

 

Termination

 

The access-routines for the producer as well as the con-
sumer have to be finished after an exact predefined
time. This fact is trivial for the producer, but for the con-
sumer a closer look is needed. The while-loop of the
consumer is at most being executed two times, with the
following exception: The consumer itself is much too
slow, i.e. phase 1 of the consumer is executed slower
than phase 1, 2 and 3 of the producer (this includes se-
lecting a buffer and writing of the whole buffer). This
limitation is tolerable, because first you are getting the
actual buffer in any case, and second if the consumer is
late for some reason (a long interrupt handler, or some-
thing like that) the extra loop does not mean a long
time-latency in relation to the time being spent in the in-
terrupt handler.

 

d.

 

Actuality

 

The consumer gets a buffer which is, at the time of se-
lecting the buffer, as actual as possible.

Up to here, only the access-routines at the operating-sys-
tem level are mentioned. But how does this appear to the
task? The syntax is really simple and the semantic is much
like an electric wire. There are two special functions for
each variable, so all the possibilities of range- and type-
checking may be used.

For a consuming task the interface is shown in the follow-
ing:

 

LookForNew<VarName> (Var <VarName>: <VarType>): Boolean;

 

as an example:

 

LookForNewRadarMap (Var RadarMap: RadarShot): Boolean;

 

The boolean result signals the actuality of the read informa-
tion (Is this information ever being read before?).

 

For a producing task the functional interface looks like this.

 

Make<VarName>Available (<VarName>: <VarType>);

 

as an example:

 

MakeRadarMapAvailable (RadarMap: RadarShot);

 

As the final remark for this chapter once again we would
like to emphasize that reading or writing in this communi-
cation-scheme is free of blocking even when the communi-
cation partner has crashed in a critical phase!

 

3-2. Higher communication levels

 

The above described realtime-transfer mechanism is well
defined and easy to use. Theoretically this scheme is suffi-
cient to construct a multiprocessor system. If you are going
to design a practical system, you would not be satisfied
with this kind of transfer. Well, actuality is a nice feature,
but what about the “conventional” transfers with flow-
control and error-reports?
So there is a need for two additional communication layers,
not replacing the realtime-ports, but adding some more
functionality in case you need it. In the rest of this chapter
we will try to give a short overview of the higher commu-
nication levels. It is not necessary to describe the protocols
in detail, most of them are well known.
The first layer is called 

 

message-ports

 

, and the main func-
tionality is flow-control, i.e. keeping order in a queue of
packets, 

 

not

 

 destroying old information. For this purpose
two realtime-ports are used (one for each direction). For the
task the message-ports are as easy to use as the realtime-
ports, but with a quite different semantic. You might con-
sider the message-ports as a kind of pipelines in a UNIX-
like world.
The second layer introduces some functionality for sending
instructions from one task to an other and for controlling
the execution. So you have flow-control 

 

and

 

 execution-con-
trol in this layer of the 

 

mission-ports

 

. Regarding this proto-
col it is useful to talk about clients and servers instead of
readers and writers. The server has to give a report at two
points in the communication-scheme. First when it gets an
new instruction, and second when the instruction is exe-
cuted (successfully or with an error-message). The transfer
and the execution of the instructions may overlay, so the
server may accept a number of instructions, before it re-
ports the first execution. A server can be used by several
clients, but the instructions stored by the server must be-
long to the same client. Before a new client appears to the
server, all the old instructions have to be completed.

 

3-3. Need for a communication-
controller

 

Theoretically one might think of a realisation of the struc-
ture from figure 1 in form of one motherboard being
equipped with both processors and the dual-ported-RAM.
But it does not seem to be the practicable version, when
you think of about one or two dozen processors in the
whole system. In a real system one processor (or a small
number of processors) will be implemented on one board.



 

Chapter: Communication in ALBATROSS Page: 5

 

So one of the communication-partners can only access the
dual-ported-RAM via some kind of communication-sys-
tem (normally a short range bus-system). This means a
break in the realtime-communication scheme shown so far,
because the communication is not symmetric at the physi-
cal level. One processor may access the dual-ported-RAM
much like the local RAM, while the other processor has to
use a communication-system to access the same dual-
ported-RAM.
A new aspect appears from here on. What happens if the
access to the (far) dual-ported-RAM fails, because of a dis-
turbance on the communication-system? In the above dis-
cussion a memory-access was a local transfer and therefore
without any aspects of a failed communication.
With this problem in mind we are running into a contradic-
tion. On the one hand it is necessary to finish a transfer in
a short predefined time, but on the other hand a failed ac-
cess via the communication-system must be repeated. The
processor for the local task is not available any longer after
the first failed trial. So which processor will initiate the sec-
ond trial?
The problem can only be solved by introducing a third
processor as a host for the communication-controller as
shown in figure 5.
From the view of the tasks any buffer-access looks like an
access to the local RAM, i.e. it can be successfully done in a
well defined time. The communication-controller may read
from or write to the (far) dual-ported-RAMs several times,
without disturbing the local tasks at all.
There is not an immediate connection between the buffer-
areas of the single tasks any longer, but the communica-
tion-controller may guarantee that the transfer from one
buffer-area to the other will be done with an adequate fre-
quency. For the useful definition of this frequency see chap-
ter 3-4 “Cyclic transfers”.
There are some additional functions a communication-con-
troller may offer. If an information is useful for a number of
consumers the communication-controller may distribute
this information in the manner of a simulated broadcast.
Notice that the pure realtime-transfer from chapter 3-1 is
not able to distribute information - it is limited to point-to-
point transfers. It should also be possible to combine the
output of several producers on one “multi-producer-chan-
nel” (of course they should produce the same kind of infor-
mation).
One of the most important arguments for a communica-
tion-controller is the fact that a common communication-
system must be arbitrated. Thinking of a really distributed
communication-scheme - i.e. there is a number of different
senders - each sender has to complete an (bus-) arbitration-
cycle before any communication may take place. The actual
duration of one arbitration phase is principally indetermi-
nable, there is only an upper limit (if the arbitration mech-
anism is “fair”). So it is quite difficult to calculate the worst
case in such a system.
If there is only one participant (the communication-con-
troller) which has to fulfil all the transfers, it may occupy
the communication-media all the time. This means there is
no arbitration at all and the communication-system shows
a deterministic behaviour.
Another aspect is the centralized functionality. Is the cen-
tralized communication-controller a security-risk for a dis-

 

tributed system, i.e. what happens if the communication-
controller fails, for some reason? In case that the dual-
ported-memory-areas are organized in a symmetric way,
each processor may play the role of the communication-
controller. Further you may reserve an extra processor-sys-
tem which may detect a breakdown of the bus-transfers
and fulfil the communication-tasks if the main communi-
cation-controller is failed. 

If you are only interested in a graceful shutdown of the sys-
tem, it is not necessary to implement an extra communica-
tion-controller, but it is enough to offer a common
emergency-interrupt.

 

3-4. Cyclic transfers

 

Cyclic transfers means that there is a pre-scheduling of the
communication-slots instead of transient transfers while
the system is running. The pre-calculated scheduling plan
is then executed in a cyclic manner. For an efficient re-
source usage it is necessary to allow only powers of two

ReadLocked

Actual

Buffer #2

Buffer #1

Buffer #3

Task Operating-System

dual ported RAM

producer - memory domain

consumer - memory domain

ReadLocked

Actual

Buffer #2

Buffer #1

Buffer #3

Task Operating-System

C
om

m
un

ic
at

io
n 

C
on

tr
ol

le
r

communication-
system

Figure 5 : the communication-controller



 

Chapter: …have a closer look at some general aspects of ALBATROSS Page: 6

 

from the highest frequency (i.e. the smallest time-slot) in
the system.
We will highlight the aspects of this kind of transfer in the
form of three questions.

 

What is the major problem with transient transfers?

 

Whenever a producer wants to distribute it‘s results (this
happens completely asynchronously) it runs through an
arbitration-phase on the communication-system. It is quite
difficult to calculate the time, the process has to spend in
this phase. The only way to overcome this unsure timing-
knowledge is to hold out enough computational and com-
munication resources. If you are forced to guarantee some
realtime-features, this resources may become quite large.

 

What is the restriction to pre-scheduling?

 

The restriction is really simple - you have to know the max-
imal communication times in advance. In a realtime system
the worst case conditions must be calculated. This should
be possible, if you want to assure reliability of the whole
system. From the worst case conditions you have to deduce
the highest needed sampling frequency. This frequency is
the smallest time-slot on the communication-system. All
other transfers must occur as a multiple or (better) as a
power of two of this smallest time-slot.

 

What are the advantages of a cyclic-transfer-system?

 

The construction is based on worst case conditions, i.e. the
worst case may happen without any confusion. Addition-
ally it is possible to do something more, a kind of over-sam-
pling. If the maximal needed sampling frequency is
known, three possibilities are implied here. First the com-
munication-system is not able to transfer data with such a
frequency. Then you have to look for some quicker hard-
ware, or you have to relax your realtime-constraints. Sec-
ond, the communication capacity just corresponds to this
highest frequency, so congratulations for the configuration
department. But the normal case should be, that there is
some extra capacity of the communication-media, even in
the worst case. In this context worst case means, the con-
straints of the physical system are considered, but all the
computer hardware is assumed to be without any failure,
especially the communication-system. So why not using
this extra capacity for a number of redundant transfers? In
a physical environment this may be interpreted as over-
sampling. From the computer scientist‘s point of view this
means we are using these extra resources for redundancy.
The best we can do to avoid the risk of transient failures, is
to use all the communication-capacity for as much redun-
dant transfers as possible.

 

4. …have a closer look at some gen-
eral aspects of ALBATROSS

 

In this chapter we will highlight two, a little bit more gen-
eral aspects which are not necessarily or directly deduced
from realtime-constraints. These are an easy way to keep
our operating-system flexible and a construction to get an
insight into the running system. There is a much longer list
of features, but most of them are conventional implemen-

 

tations and so, outside the scope of this article.
Of course the way to handle interrupts and operating-sys-
tem-traps is a critical point in any realtime-system, but
there are only a small number of possibilities to get a quick
response. Further these conventional implementations are
extremely processor-dependant, so there can not be a gen-
eral strategy, but only concrete versions for each processor.

 

4-1. Flexibility

 

We are using a quite simple way, to keep the operating-sys-
tem able to adapt on a large range of several hardware-en-
vironments. The common hardware on all the allowed
processor-boards must be a member of the 680x0-family
and a dual-ported-RAM connected to the communication-
system (for instance via VMEbus). All other components
are declared in a special range of the ROM-area, the hard-
ware-description. Each instance of the operating-system is
carrying the whole range of drivers for all allowed control-
lers and interfaces. While starting up the system, the oper-
ating-system checks the hardware-description and installs
the associated test-routines and drivers.
For the operating-system itself there are three different
sources. It can be loaded from the local ROM (if it was be-
ing tested and tested and tested) or from the local serial-
controller or via the communication-system from another
processor-board which has already a version of the operat-
ing-system available. So the operating-system is self dis-
tributing - a nice feature in a test-environment in which the
operating-system has to be updated quite often.

 

4-2. Keeping on-line in a running 
system

 

Assuring some realtime-features for the single task, is a
necessary step in the design of a whole realtime-system,
but it is not sufficient. You have to think about a possibility
to monitor the tasks running under realtime-constraints.

 The critical point is to have a look inside the running sys-
tem without disturbing someone. It is obvious that there
can not be an explicit or implicit stop-command, when ob-
serving the system. 
Assuming that the needed information is being transferred
sometimes via the communication-system - there is a sim-
ple, but perfect solution for this problem. 
All the information on the communication-system has to
be stored temporary in the local memory domain of the
communication-controller. Assuming further that the local
memory domain is large enough and can be shared with an
other task - the supervisor. The communication-controller
may store the transferred packets in the manner of a cyclic-
connected list. The supervisor may also access the area of
this cyclic-connected lists, so it is able to read all the com-
munication packets, without any side-effect for the whole
system.

Of course, usually it is not useful to read all the transferred
information, because the user-interface is too slow to show
the data in realtime, but you might think of three modes the
supervisor can give useful information to the user.
First, when the system is running at full speed, the user



 

Chapter: Conclusion Page: 7

 

may watch a number of samples from the real information-
flow. Second, assuming that there is a fast data-logging sys-
tem attached, the supervisor may record the history of the
system for a specified time. And finally, if the system is
crashed for some reason, the actual cyclic-connected lists in
the shared memory area may be used as a post-mortem-
dump.

The supervisor would not be called “supervisor”, if there
would be only the above described functions offered. Ad-
ditionally there are some command-ports installed which
are filled up by the supervisor, i.e. by the on-line-connected
user.

 

4-3. Environment

 

First some words on the development environment. We are
actually using Apple-Macintosh workstations for the de-
velopment and testing of the operating-system itself and
the distributed tasks (with all the quite comfortable fea-
tures). ALBATROSS accepts Mac-object-code directly, so
there is no need for a second set of development tools on
the VMEbus-system. Of course there are a number of re-
strictions to downloaded codes. For instance you should
not try to produce graphical output on the VMEbus-sys-
tem, but this does not seem to be too hard.

In the actual configuration, there is a problem regarding
the processor-power for the supervisor. It must be shared
with the communication-controller. So if you are using all
the communication-capacity, the supervisor does not get
enough access to the shared processor. This is not a princi-
ple problem but it makes the user-interface quite slow. Per-
haps there should be an extra processor for the supervisor
to avoid this bottleneck.

Figure 6 : the supervisor

dual ported
RAM area

local memory domain

Communication 
Controller

Supervisor

Task 1 ••• Task n

shared
memory

user-interface

communication
system

 

5. Conclusion

 

Finally we will give a short collection of the main strategies
used in ALBATROSS.

 

a.

 

Worst case as normal case

 

Calculating of the worst case conditions, as given by the
outer world. These conditions deduce a highest sam-
pling frequency needed for the control of the physical
system.

 

b.

 

Dividing the problem

 

Splitting the whole problem in a number of (to a certain
degree) independent tasks, synchronized via the flow of
data.

 

c.

 

Pre-Scheduling of the communication phases

 

Generating a pre-calculated (i.e. not calculated at the
runtime) scheduling-plan, based on the known highest
sampling frequency and the available capacity on the
communication-media, using redundancy, i.e. over-
sampling.

The following features must be offered by the operating-
system, to assure the exact execution of the scheduling-
plan.

• Locking-free shared buffer management
• An explicit communication-controller

Summarising the realtime-aspects as shows in this article,
the key to realtime reliability seems to be the communica-
tion-scheme. So perhaps the often mentioned interrupts-re-
sponding times are not the whole truth in a realtime-world.

 

References

 

Brooks R.A.

 

A Robust Layered Control System for a Mobile Robot

 

IEEE Transactions on Robotics and Automation, Vol.
RA-2, No. 1, 1986, pp. 14-23

Peter Hoppen, Thomas Knieriemen, Ewald von Puttkamer

 

Laser-Radar based Mapping and Navigation for an
Autonomous Mobile Robot

 

IEEE International Conference on Robotics and Auto-
mation 1990, Cincinatti, Ohio 13-18 May 1990 pp. 948-
953

Thomas Knieriemen, Ewald von Puttkamer

 

Realtime Control in an Autonomous Mobile Robot

 

International Workshop - Information Processing in
Autonomous Mobile Robots - University of München,
Germany, March 6th to 8th, 1991

Kopetz H. et. al.

 

Distributed Fault Tolerant Real-Time Systems: The
Mars Approach

 

IEEE Micro Magazine, Feb. 1989, pp. 25 - 40

ALBAROSS


