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Based on experiences from an autonomous mobile robot
project called MOBOT-III, we found hard realtime-con-
straints for the operating-system-design. ALBATROSS is
“A flexible multi-tasking and realtime network-operating-
system-kernel”, not limited to mobile-robot-projects only,
but which might be useful also wherever you have to guar-
antee a high reliability of a realtime-system. The focus in
this article is on a communication-scheme fulfilling the
demanded (hard realtime-) assurances although not
implying time-delays or jitters on the critical information-
channels.
The central chapters discuss a locking-free shared buffer
management, without the need for interrupts and a way to
arrange the communication architecture in order to pro-
duce minimal protocol-overhead and short cycle-times.
Most of the remaining communication-capacity (if there is
any) is used for redundant transfers, increasing the relia-
bility of the whole system.
ALBATROSS is actually implemented on a multi-processor
VMEbus-system.

 

1. Motivation & Introduction

 

Why are realtime-aspects so important for our group?
Before trying to find an answer to this question, we would
like to give a really short survey of the goals in our auton-
omous mobile robot project called “MOBOT-III” in the
form of a definition

 

1

 

.

An autonomous mobile robot (AMR) is a system which
perceives information about its environment in order to
use this information for solving a given task. It has to be
equipped with an onboard computer-system to do all com-
putations independently and without external intervention.
It must be able to explore unknown environments while
building maps (of various kinds). Based on these maps the

 

1. for further information about the MOBOT-III project see 
[Edlinger 6/91], [Hoppen 4/90], [Knieriemen 3/91].

 

AMR navigates to specified goals while avoiding colli-
sions with fixed or moving obstacles and performs local
tasks like identifying and manipulating objects.

From the domain of realtime-problems in this area we
will shortly discuss two as a motivation for our following
strategies.

 

a.

 

Guarantee for actual information

 

 - Most of the deci-
sions have to be based on actual data. This implies the
two classical realtime-demands. First, the information-
packets have to reach their destination at all (

 

☞

 

 “Relia-
bility”) and second they have to reach their destination
within a certain time-limit (

 

☞

 

 “Timeliness”). In our
project any violation of these two demands would lead
to a robot acting in a “world before our time”.

 

b.

 

Graceful degradation

 

 - In lots of situations the break-
down of one component makes life too risky for the ro-
bot and the only answer will be an immediate stop of all
motors. But on the other hand it is not the best idea to
stop the robot because one part, e.g. of the object-recog-
nition-component is beginning to hallucinate. In this
kind of degradation, the other parts must be able to de-
cide that the output of this component does not make
sense any longer and (very important) the crashed part
must be isolated, in order to be not able to disturb the
whole system. So we have to demand modularity as
well as loose and secure coupling between the modules.

The above points should be enough to show our motiva-
tion to build a realtime-system fulfilling some hard real-
time-constraints.

 

2. Assurances for each task

 

In this proceeding it is assumed that the underlying hard-
ware is a distributed system with several processors, each
of them used by a single task. Each of these tasks has to
fulfil a constraint, which is simple to formulate but quite
hard to assure: The job must be finished in time! There are
a lot of different techniques to construct tasks in order to
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predict (to a certain degree) their timing behaviour - but
these techniques are beyond the scope of this article. The
interesting point here is: What are the basic requirements
for the environment to enable the task to meet a certain
time-limit. Seen from the perspective of a single task com-
municating with the whole (complex) system, what will be
the necessary assurances a realtime-system has to give to
this task?

 

a.

 

Full CPU-power

 

 - All the CPU-time (which is known in
advance and constant) is exclusively reserved for the lo-
cal task. This sounds easy but there are two problems
raised by this restriction:

 

a-1

 

No system -interrupts - 

 

The OS has access to the
CPU only if the local task is explicitly calling the
OS. There must not be any background operations
at all (e.g. interrupts for the system time, etc. pp.)!

 

a-2

 

No communication-interrupts - 

 

If any information is
arriving via the communication-system, the local
task can not be disturbed by interrupts. So the nec-
essary transports must be done by another proces-
sor. A local task may inform itself if it is interested
in new data and is not informed when new data are
arriving. 

 

b.

 

No direct connection to tasks on other processors 

 

All the tasks are synchronised implicitly via the flow of
data, i.e. a task will start (again) when it gets a new set
of input data - an explicit trigger is not necessary! The
decision to look for and to use new data depends on the
internal state of the local task. Assuming a task in the
system is crashed - so the only effect seen by other tasks
is the lack of newer data. There is no direct connection
to this crashed task. In most cases such a connection
would be disastrous.

 

c.

 

Non-blocking access to the communication-system

 

Every call for new data or for an export of new outputs
must successfully end within a fixed (and of course
short) time - even if one communication partner is bro-
ken down or in any other possible constellation.

 

d.

 

Guaranteed actuality of all received information

 

This implies guaranteed transfer times. Because loss of
data happens in the reality of a moving system, this re-
striction may only be approximated by redundant trans-
fers.

Three and a half out of these four assurances refer to the
communication-system. So it looks like the communica-
tion-scheme is playing an important role in the design
process of a realtime-system. All the constraints above are
fulfilled in ALBATROSS even if they are not mentioned
again in the rest of the proceeding.

 

3. Communication-Scheme

 

When trying to satisfy all of the assurances above, there
are two (apparently) contradictory directions of the way to
design the communication. Each of the two dispositions
leads to standard solutions, when trying to fulfil them iso-
lated. Before discussing the combined solution, there are
the two conventional paths.

 

a.

 

Couple two processes as loosely as possible

 

Seen from the viewpoint of one processor for one task,
this assumption guarantees in a natural manner a kind of
graceful degradation. The typical implementations of
this philosophy cover the whole bandwidth of message-
passing-systems.

 

b.

 

Assure restrictive transfer times - 

 

The closer two proc-
esses are coupled (the fewer communication-layers are
between them), the better are the time-assurances for
the communication-accesses. So if you like to get short
transfer times, you will fit the two processes close to-
gether. Further (if this is still too slow) you will intro-
duce restrictions in the communication-phases (e.g. no
interrupts are allowed while reading in a communica-
tion-buffer).

It is obvious that solving the two requirements individu-
ally will not lead to the optimum. Up to here the proceed-
ing contains only problem-descriptions, so it is time to
show some solutions in the following chapters.

 

3.1 Realtime Ports

 

Before talking about protocols, we have to define the hard-
ware-environment. There are two independent processors
connected via a dual-ported-RAM, i.e. the memory-
domains of the processors overlay. What is the definition
of a dual-ported-RAM in this context? Both processors
may access the same memory-area 

 

simultaneously

 

. A con-
flict at the level of a byte-access has to be solved with
some special hardware, in a way that neither side is being
blocked and a byte will stay an indivisible element.

The realtime-transfer in ALBATROSS follows a real-
time-philosophy which can be described by three short
demands:

 

a.

 

Consistency - 

 

Information may only be transferred in
consistent units. 

 

b.

 

Actuality - 

 

Newer information has priority over an older
one. This is a contradiction to the usual demand of
keeping order, because you have to destroy old informa-
tion at the level of the communication-system, if there is
a newer one (of the same class) available. 

 

c.

 

Availability - 

 

Information must be available at any time.



 

Following these demands we have designed a simple
implementation of the buffer-access as seen from the oper-
ating-system. The common base of collision-free and
locking-free access with two asynchronous partners is the
three-buffer structure. In figure 1 the connection between
two processors at the hardware-level and the location of
the buffers for the communication are shown. 

In figure 2, figure 3 and figure 4 the implementation
fragments (in a Pascal-like syntax) for reading from and
writing to the communication-area are shown. The critical
accesses to the variables “ReadLocked” and “Actual” are
marked (

 

Bold

 

 for a critical writing; 

 

italic

 

 for a critical
reading).

Variables not under local control may change their val-
ues at 

 

any

 

 time. This fact seems to make any formal proof
of the correctness quite hard. Fortunately there is only a

figure 1: memory domains

ReadLocked

Actual

Buffer #1

Buffer #2

Buffer #3

Task Operating-System

Operating-System Task

dual ported RAM

producer - memory domain

consumer - memory domain

Type BufferIndex = (Buffer1, Buffer2, Buffer3);

Var Actual, {may only be written by the producer}
ReadLocked {may only be written by the consumer}

: BufferIndex;

{ Both variables have to be one byte long and }
{ are located in the dual-ported-RAM area. }
{ The initial value of both variables }
{ should be “Buffer1”. }

figure 2: common data-structures

 

small number of values, the critical variables may change
to. So you are able to proof all the possible cases step by
step.

To assure the correctness of the whole realtime-transfer
you have to proof the following four points in detail.

• Mutual exclusion

• Definite results

• Termination

• Actuality

Up to here, only the access-routines at the operating-sys-
tem level are mentioned. But how does this appear to the
task? The syntax is simple and the semantic is much like
an electric wire. There are two special functions for each
variable, so all the possibilities of range- and type-check-
ing may be used. For a consuming task the buffer access is
masked by the following interface function:

 

LookForNew<VarName> (Var <VarName>: <VarType>): Boolean;

e.g.: LookForNewRadarMap (Var RadarMap: RadarShot): Boolean;

Type Actuality = (Old, New);

Function Import (Var ImportedData: Datatype): Actuality;

Begin
Import:= Old;

{--- Phase 1: select a buffer for read-access}
While ReadLocked ≠ Actual Do

ReadLocked:= Actual;
Import:= New

EndWhile;

{--- Phase 2: read-access to the selected buffer}
ReadFrom (ReadLocked, ImportedData)

EndFunction Import;

figure 3: buffer-access for reading

Procedure Export (ExportedData: Datatype);

Var Buffer, WriteBuffer, CopyOfReadLocked: BufferIndex;

Begin
{--- Phase 1: select a buffer for write-access}

CopyOfReadLocked:= ReadLocked;
For Buffer:= Buffer1 to Buffer3 Do

If (Buffer ≠ Actual) and
(Buffer ≠ CopyOfReadLocked) Then

WriteBuffer:= Buffer
EndIf

EndFor;

{--- Phase 2: write-access to the selected buffer}
WriteTo (WriteBuffer, ExportedData);

{--- Phase 3: assign completely written buffer as actual}
Actual:= WriteBuffer

EndProcedure Export;

figure 4: buffer-access for writing



 

The boolean result signals the actuality of the read infor-
mation (Is this information ever being read before?). For a
producing task the buffer-access is hidden by the follow-
ing interface procedure:

 

Make<VarName>Available (<VarName>: <VarType>);

e.g.: MakeRadarMapAvailable (RadarMap: RadarShot);

 

As the final remark for this chapter once again we would
like to emphasize that reading or writing in this communi-
cation-scheme is free of blocking even when the commu-
nication partner has crashed in a critical phase!

 

3.2 Need for a communication-controller

 

In a real system one processor (or a small number of proc-
essors) will be implemented on one board. So one of the
communication-partners can only access the dual-ported-
RAM via some kind of communication-system (normally
a short range bus-system). This means a break in the real-
time-communication scheme shown so far, because the
communication is not symmetric at the physical level. One
processor may access the dual-ported-RAM much like the
local RAM, while the other processor has to use a commu-
nication-system to access the same dual-ported-RAM.

A new aspect appears from here on. What happens if
the access to the (far) dual-ported-RAM fails, because of a
disturbance on the communication-system? In the above
discussion a memory-access was a local transfer and there-
fore without any aspects of a failed communication.

With this problem in mind we are running into a contra-
diction. On the one hand it is necessary to finish a transfer
in a short predefined time, but on the other hand a failed
access via the communication-system must be repeated.
The processor for the local task is not available any longer
after the first failed trial. So which processor will initiate
the second trial? The problem can only be solved by intro-
ducing a third processor as a host for the 

 

communication-
controller

 

 as shown in figure 5.
From the view of the tasks any buffer-access looks like

an access to the local RAM, i.e. it can be successfully done
in a well defined time. The communication-controller may
read from or write to the (far) dual-ported-RAMs several
times, without disturbing the local tasks at all.

 

3.3 Cyclic transfers

 

Cyclic transfers means that there is a pre-scheduling of the
communication-slots instead of transient transfers while
the system is running. The pre-calculated scheduling plan
is then executed in a cyclic manner. We will highlight the
aspects of this kind of transfer in the form of three ques-
tions.

 

What is the major problem with transient transfers?

 

Whenever a producer wants to distribute it‘s results (this
happens completely asynchronously) it runs through an
arbitration-phase on the communication-system. It is quite
difficult to calculate the time, the process has to spend in
this phase.

 

What is the restriction to pre-scheduling?

 

The restriction is really simple - you have to know the
maximal communication times in advance. In a realtime
system the worst case conditions must be calculated. From
the worst case conditions you have to deduce the highest
needed sampling frequency.

figure 5: the communication-controller
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What are the advantages of a cyclic-transfer-system?

 

The construction is based on worst case conditions, i.e. the
worst case may happen without any confusion. Addition-
ally it is possible to do something more, a kind of over-
sampling. If the maximal needed sampling frequency is
known, three possibilities are implied here. First the com-
munication-system is not able to transfer data with such a
frequency. So you have to look for some quicker hard-
ware, or you have to relax your realtime-constraints. Sec-
ond, the communication capacity just corresponds to this
highest frequency, so congratulations for the configuration
department. But the normal case will be, that there is some
extra capacity of the communication-medium, even in the
worst case. In this context worst case means, the con-
straints of the physical system are considered, but all the
computer hardware is assumed to be without any failure,
especially the communication-system. So why not using
this extra capacity for a number of redundant transfers? In
a physical environment this may be interpreted as over-
sampling. From the computer scientist‘s point of view this
means we are using these extra resources for redundancy.
The best we can do to avoid the risk of transient failures, is
to use all the communication-capacity for as much redun-
dant transfers as possible.

 

3.4 Transfer synchronization

 

Up to here we have introduced a communication-control-
ler and a cyclic-transfer strategy, but some problems are
still left. These problems will become obvious when we
examine the timing-behaviour of the communication-sys-
tem as seen by the local tasks. Two important points
should be listed:

• The communication-channels are served with a guar-
anteed frequency or even more often.

• The exact time of the update-event (i.e. arrival of new
information) on any communication-channel is not
explicitly known by the local task. (And the update-
event does not force any interrupt!)

Assuming this communication environment, what will be
the behaviour of a typical task? At some state the task will
look for new input-data. If there is actual (i.e. not yet proc-
essed) information already available, the task will start
calculating. Otherwise the task will do some busy-waiting
loops on the requested input-channels, until the new infor-
mation has arrived. After finishing the specified work on
this new information and having made some output-data
available for the rest of the world, the task will check the
needed input-channels and the procedure starts again. So,
there is an implicit synchronization on the input-data. An
explicit specification of the update-time is not necessary.

 

So far with the nice part, but there are some other tasks
in a realtime-system also. First, for correlation purposes,
some tasks will need a global time. For example you might
think of a module composing data from different outer
sensors to one representation. Here you have to be able to
use the sensor-information from different sources (trans-
mitted via the communication-system), sampled at the
same global time. 

Theoretically a mechanism for distributing a global
time is sufficient, but in our environment we have made
the following experience: In most of the cases the global
time is used only indirectly for correlation of some outer
incidents. The correlation is mostly done by the position in
space at which the sensor-data is sampled. (Of course, our
realtime system is moving around.)

In the following chapters we will introduce two differ-
ent strategies solving the “correlation-problem”.

 

3.4.1 Time-rigid transfers

 

The execution of the scheduling-plan (in this first model)
is only in the responsibility of the communication-control-
ler. So the only way to make a global time available is to
produce the global time by the communication-controller
itself and embed this global time as an ordinary realtime-
transfer in the scheduling-plan.

 

What are the advantages of this strategy?

 

a.

 

The communication-capacity might be used nearly opti-
mal, because the timing of the communication is done
by one processor and all the execution-times are exactly
predictable.

 

b.

 

This model implies a high reliability because of two
facts:

 

b-1

 

The implementation of the communication-control-
ler is trivial. (Here the execution-phase is addressed,

 

not

 

 the calculation of the scheduling-plan.)

 

b-2

 

The communication-controller is completely inde-
pendent from the other processors.

 

c.

 

A global time is available and completely embedded in
the whole communication-structure. The global time is
exact just in the moment of each update-event on this
global-time-channel.

But there is a price to pay when using this model:

The global time is quite inaccurate, because the distri-
bution frequency cannot be higher than the maximal fre-
quency from the scheduling-plan. In order to enlarge the
accuracy of the global time the local tasks need local tim-
ers synchronized to this global time. Because no interrupt
is triggered at the update-event on the global time channel,



 

the tasks are forced to do some busy-waiting loops on this
update-event from time to time (depending on the accu-
racy of the local timers).

The direct and easiest way to overcome this problem is
to implement an asynchronous way of making the global
time available. Either by an extra hardware or by spending
some amount of communication-capacity for this asyn-
chronous time transmission. The second version would
lead to a massive violation of the introduced communica-
tion paradigm and is not examined here any deeper, for
this reason. The hardware version is proposed by [Kopetz
9/87]. Assuming that we have not any access to a special
hardware and we do not want to use the questionable ver-
sion of asynchronous transfers in the background, we
might introduce an alternative synchronization scheme.

 

3.4.2 Position-synchronized transfers

 

Assuming that the different correlations between the sam-
pled informations in the system are either done by a global
time or by a globally available position in space (depend-
ing on the task), the above synchronization scheme
implies two main problems:

• The position-producing task must be synchronized on
the global time.

• The position information itself is subjected to an un-
predictable time jitter.

In order to overcome these problems two changes in the
synchronization-mechanism are necessary:

 

a.

 

The global time and the global position have to be pro-
duced by the same task.

 

b.

 

The whole communication system must be synchro-
nized with the combined time-position information.

When the time and the position is produced by the same
task they are correlated automatically, and in the best case
this is all done by the communication-controller itself. If
the global position cannot be produced by the communica-
tion-controller itself for some reasons (e.g. no direct con-
nection to the outer world), the communication-controller
has to be synchronized on the position-producing task and
is therefore not completely independent.

 

4. Conclusion

 

Finally we will give a short collection of the main strate-
gies used in ALBATROSS.

 

a.

 

Worst case as normal case - 

 

Calculating of the worst
case conditions, as given by the outer world. These con-
ditions deduce a highest sampling frequency needed for
the control of the physical system.

 

b.

 

Dividing the problem - 

 

Splitting the whole problem in a
number of (to a certain degree) independent tasks.

 

c.

 

No hard synchronization - 

 

The divided tasks should
only by synchronized via the flow of data, not via a
“hard” synchronization scheme.

 

d.

 

Pre-Scheduling of the communication phases

 

 - Generat-
ing a pre-calculated (i.e. not calculated at runtime)
scheduling-plan, based on the known highest sampling
frequency and the available capacity on the communica-
tion-media, using redundancy, i.e. over-sampling.

 

e.

 

Prefer correlation-critical information

 

 - Data needed
for the various correlations in a realtime-system have to
be transferred without time jitter.

Summarising the realtime-aspects as shown in this article,
the key to realtime reliability seems to be the communica-
tion-scheme. So perhaps the often mentioned interrupt
response times are not the whole truth in a realtime-world.
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