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The problem to be discussed in this paper may
be characterized in short by the question: “Are
these two surface fragments belonging togeth-
er (i.e. belonging to the same surface)?”. The
presented techniques try to benefit from some
predefined knowledge as well as from the pos-
sibility to refine and adapt this knowledge ac-
cording to a (changing) real environment,
resulting in a combination of fuzzy-decision
systems and neural networks. The results are
encouraging (fast convergence speed, high ac-
curacy), and the model might be used for a
wide range of applications. The general frame
surrounding the work in this paper is the
SPIN-project, where emphasis is on sub-sym-
bolic abstractions, based on a 3-d scanned en-
vironment.

 

1. Motivation

 

At the actual state of research, the project SPIN

 

(from 

 

S

 

patial 

 

P

 

erception to 

 

I

 

dentification with

 

N

 

eural networks) is based on the data of a 3-d
scanning device and designed to reach a stage of
abstraction where convex clusters of surfaces
are generalized, completed and classified [3].

 

1-1. The application

 

As a part of the SPIN-project introduced above,
the concrete problem that is going to be dis-
cussed here may be stated as follows: “Given
the representation of two surface fragments, de-
cide whether they originally belong together
(i.e. form one surface) or not?”.

 

The representation of the surfaces, the decision
process is based on, includes all the curvature
values at the borders (see also [3] for details)
and the relative position as well as the relative
orientation of both surface fragments. From this
information, a group of potentially relevant fea-
tures is extracted. We have chosen more features
for this group than might be necessary, but we
would like to discriminate important from un-
important features by learning. The tested
group of features includes several curvature dif-
ferences, distances between extrapolations and
angle differences (see [1] for details).

 

1-2.

 

Learning 

 

as well as

 

preset knowledge

 

The initial motivation for the method presented
here, is the lack of complete a-priori-knowledge
for the stated problem. The correctness of the
decisions depends largely on the occurring sur-
faces in the real environment and the correct-
ness might alter with time. On the other hand it
is quite easy to formulate a simple rule base,
which is able to find “acceptable” decisions
from scratch on. The combination of a preset
rule-base together with a possibility to alter this
rules (and something more) according to the

figure 1 : The surface fragmentation problem
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real environment, may speed up the learning
process and may result in a good performance
at a very early state.
The supervisor for the learning phase is the fol-
lowing processing stage in the pipeline: surface-
extraction (where the method discussed here is

 

a component of this stage) 

 

➠

 

 surface-comple-
tion 

 

➠

 

 surface-classification, i.e. there is a “de-
gree-of-recognition” signal interpreted as the
error-feedback.

 

2. Definitions

 

Fuzzy sets and set theoretic operations

 

• (Def 1): 

 

A 

 

fuzzy set F

 

 in a universe of discourse
U is characterized by a 

 

membership function

 

M

 

F

 

: U 

 

→

 

 [0,1]. A fuzzy set F in U may be repre-
sented as a set of ordered pairs of a generic ele-
ment u and its grade of membership: 

 

F = {[u, M

 

F

 

(u)] | u 

 

∈

 

 U}. (1)

 

• (Def 2): 

 

A 

 

fuzzy number

 

 in a continuous uni-
verse U is a fuzzy set F in U which is 

 

normal

 

 and

 

convex

 

:

max {M

 

F

 

(u), u 

 

∈

 

 U} = 1 (normal) (2)

M

 

F

 

 (

 

λ

 

u

 

1

 

 + (1 - 

 

λ

 

)u

 

2

 

) 

 

≥

 

 min {M

 

F

 

 (u

 

1

 

), M

 

F

 

 (u

 

2

 

)} 

 

∀

 

 u

 

1

 

,u

 

2

 

 

 

∈

 

 U; 0 

 

≤

 

 

 

λ

 

 

 

≤

 

 1 (convex) (3)

 

• (Def 3): 

 

The 

 

support of a fuzzy set

 

 F is the set
of all u 

 

∈

 

 U such that M

 

F

 

(u) > 0. 

 

• (Def 4): 

 

A 

 

fuzzy singleton

 

 is a fuzzy set whose
support is a single u 

 

∈

 

 U with M

 

F

 

(u) = 1.
A, B are two fuzzy sets in U, and A

 

1

 

, …, A

 

n

 

 are
fuzzy sets in U

 

1

 

, …, U

 

n

 

 in the following.

 

• (Def 5): 

 

The 

 

union A 

 

∪

 

 B

 

 is characterized by

 

the membership function M

 

A 

 

∪

 

 B

 

 with:

M

 

A 

 

∪

 

 B

 

 (u) = max {M

 

A

 

 (u), M

 

 B

 

 (u)}, 

 

∀

 

 u 

 

∈

 

 U(4)

 

• (Def 6): 

 

The 

 

intersection A 

 

∩

 

 B

 

 is characterized
by the membership function M

 

A 

 

∩

 

 B

 

 with:

M

 

A 

 

∩

 

 B

 

 (u) = min {M

 

A

 

 (u), M

 

 B

 

 (u)} or (5)

M

 

A 

 

∩

 

 B

 

 (u) = M

 

A

 

 (u) 

 

⋅

 

 M

 

 B

 

 (u), 

 

∀

 

 u 

 

∈

 

 U (6)

 

• (Def 7): 

 

The 

 

cartesian product

 

 A

 

1

 

 

 

×

 

 … 

 

×

 

 A

 

n

 

 in
the product space U

 

1

 

 

 

×

 

 … 

 

×

 

 U

 

n 

 

is characterized
by the membership function 
with:

 (u

 

1

 

, …, u

 

n

 

)

= min {  (u

 

1

 

), …, (u

 

n

 

)} or (7)

MA1 … A1n××

MA1 … A1n××

MA1
MAn

 

=  (u

 

1

 

) 

 

⋅

 

 … 

 

⋅

 

 (u

 

n

 

),

 

∀

 

 (u

 

1

 

, …, u

 

n

 

) 

 

∈

 

 U

 

1

 

 

 

×

 

 … 

 

×

 

 U

 

n 

 

(8)

 

• (Def 8): 

 

An 

 

n-ary fuzzy relation

 

 R is a fuzzy set
in U

 

1

 

 

 

×

 

 … 

 

×

 

 U

 

n

 

 and is expressed as:

 = {[(u

 

1

 

, …, u

 

n

 

), M

 

R

 

 (u

 

1

 

, …u

 

n

 

)] | 

(u

 

1

 

, …, u

 

n

 

) 

 

∈

 

 U

 

1

 

 

 

×

 

 … 

 

×

 

 U

 

n

 

} (9)

Let R be a fuzzy relation in U  

 

×

 

 V and S a fuzzy
relation in V  

 

×

 

 W.

 

• (Def 9): 

 

A 

 

sup-star composition

 

 of R and S is a
fuzzy relation denoted by R

 

°

 

S with:

R

 

°

 

S =
{[(u, w),  {M

 

R

 

 (u, v) * M

 

S

 

 (v, w)}] 

| u

 

 ∈

 

 U, w

 

 ∈

 

 W} (10)

where * can be any operator in the class of trian-
gular norms.

 

Approximate reasoning

 

• (Def 10): 

 

A 

 

linguistic variable

 

 is characterized
by a quadruple (X, T(X), U, M(X)) in which X is
the 

 

name of the variable

 

; T(X) = { , …, } is
the 

 

term set

 

 of X, that is the set of 

 

linguistic val-
ues

 

 of X with each linguistic value correspond-
ing to a fuzzy number defined on U; M = { ,
…, } is the set of membership functions char-
acterising these fuzzy numbers.

 

• (Def 11): 

 

A 

 

proposition

 

 (syntactical form:
“<linguistic variable> is < linguistic value>”)
has the semantic: “Instantiate the linguistic var-
iable to the fuzzy number associated with the
linguistic value”.
The fuzzy implication inference rule used here
is a form of the 

 

generalized modus ponens

 

(

 

gmp

 

):

where A, A´, B, B´ are fuzzy sets and X, Y are lin-
guistic variables. Writing the premises of the
gmp without the linguistic variables leads to (R
is a fuzzy relation in U 

 

×

 

 V)

 

• (Def 12): 

 

The 

 

sup-star compositional rule of
inference

 

 asserts that the fuzzy set B´ in V is giv-
en by

B´ = A´ 

 

°

 

 R (11)

 

premise 1: X is A´
premise 2: if X is A then Y is B
consequence: Y is B´

premise 1: {[u, M

 

A´

 

(u)] | u

 

 ∈

 

 U}
premise 2: {[(u, v), M

 

R

 

(u, v)] |u

 

 ∈

 

 U, v

 

 ∈

 

 V}

MA1
MAn

RU1 … Un××

supv V∈

TX
1 TX

k

MX
1

MX
k
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so the consequence may be written as

If the star represents the min-operator, then this
definition reduces to Zadeh´s compositional
rule of inference.

 

3. Some existing Neural Fuzzy

 

Decision Systems

 

Due to lack of space, this chapter lists only the
negative aspects of the following models, which
make them inadequate for our application. For a
complete discussion of the several models see
the following references or [1].
The 

 

NARA

 

-system introduced by Hideyuki
Takagi in his paper [5] depends largely on the
selection of the neural sub-net architectures,
which has to be done on the base of intuition.
The 

 

ANFIS

 

-model proposed by Jyh-Shing in [2]
is restricted to linear consequence functions be-
cause of the employed Kalman filters. The most
useful aspect of 

 

BPFS

 

 (by Li-Xin Wang and J. M.
Mendel [6]) is, in the opinion of the authors, the
proof for universal approximation, but the price
paid is the huge number of terms in each varia-
ble. Finally, the 

 

NNFDCS

 

-model by Chin-Teng
Lin and C.S. George Lee [4] is the most similar
one to our system (i.e. a lot of ideas presented
here are inspired by this model). The only open
problems we found in 

 

NNFDCS

 

 are the suspi-
cious gradients of the min-functions. 

 

4. SPIN-NFDS

 

According to the general model of a 

 

fuzzy-deci-
sion-system

 

 (

 

fds

 

), we will first discuss all the
needed components (figure 2) in order to define

 

conseq.: {[v,  {M

 

A´ 

 

(u) * M

 

R 

 

(u, v)}] 
|v

 

 ∈

 

 V} 
supu U∈

interface
fuzzyfication

interface
defuzzyfication

knowledge base
membership functions

rule base

inference engine

fuzzy

fuzzy

outputinput

figure 2 : Fuzzy decision system (structure)

 

a mapping on a neural net structure in the fol-
lowing, and finally we will make some short re-
marks to the learning techniques.

 

4-1. Rule-base

 

The rule-base in SPIN-NFDS consists of linguis-
tic rules which obey the following syntax:

 

<lrule> ::= if <antec> then <conseq> [else <lrule>]

<antec> ::= <propos> [and <antec>] | anything

<conseq> ::= <propos> [and <antec>] 

<propos> ::= <variable name> is <term name>

 

where <term name> denotes a linguistic value
of the linguistic variable <variable name>. The
“anything” antecedent is used to define conse-
quences as unconditioned “facts” in the rule-
base.

 

4-2. Membership functions

 

Membership functions are used according to the
definition of linguistic variables, to define the
linguistic values of the associated term set. We
restrict membership functions to the following
basic types.

•Sigmoid function:

(12)

In the following, a sigmoid function with

 

σ

 

 > 0 is called a 

 

rsigmoid function

 

 and with

 

σ

 

 < 0 a 

 

lsigmoid function

 

.

•Gaussian or radial basis function (rbf):

(13)

Both functions may be used for membership
functions of terms appearing in an antecedent of
a lrule, while only rbf-s may be used in the defi-
nition of terms appearing in a consequence.

 

4-3. Fuzzyfication interface

 

Non-fuzzy input data are mapped to fuzzy sets
by treating them as “scaled” fuzzy singletons: If
u

 

0

 

 

 

∈

 

 U is a non-fuzzy input data and X is the cor-
responding linguistic variable with dom (X) = U
and T(X) = { , …, }, the input is fuzzyfied by
setting

S µ σ x, ,( ) 1 1 e

x µ−
σ

−
+

 
 
 

⁄=

N µ σ x, ,( ) e

x µ−( ) 2

2σ2
−

=

Tx
1 Tx

k
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 (1 

 

≤

 

 i 

 

≤

 

 k) (14)

 

4-4. Inference engine

 

The fuzzy implication (“then”) along with the
operation “and” and the combination of several
fuzzy rules (“else”) has to be defined. 
In the first step the evaluation of the “and” in
the antecedents is done by a cartesian product.

A 

 

∧

 

 B = {[(u, v), M

 

A

 

(u) · M

 

B

 

(v)] | u

 

∈

 

U, v

 

∈

 

V}(15)

Since all input terms are scaled fuzzy singletons,
equation (15) simplifies to:

A 

 

∧

 

 B = {[(u

 

0

 

, v

 

0

 

), 

 

α

 

] | u

 

0

 

 ∈

 

 U, v

 

0

 

 ∈

 

 V} (16)

 

α

 

 = M

 

A

 

(u

 

0

 

) · M

 

B

 

(v

 

0

 

) (17)

with 

 

α

 

 is said to be the “degree of fulfilment” for
this antecedent. The fuzzy implication is also
implemented by a cartesian product, with the
membership-function of the antecedents A be-
ing represented by a scalar 

 

α

 

(u) (because of the
scaled fuzzy singletons as the input data).

A 

 

→

 

 B = {[(u, v),

 

α

 

(u) · M

 

B

 

(v)] | u

 

 ∈

 

 U, v

 

 ∈

 

 V}(18)

The combination of multiple fuzzy implications
A

 

i

 

 

 

→

 

 B

 

i

 

 (1 

 

≤

 

 i 

 

≤

 

 r) is interpreted as a union of the
resulting fuzzy sets.

{A

 

i

 

 

 

→

 

 B

 

i

 

} = 

 

∪

 

 (A

 

i

 

 

 

→

 

 B

 

i

 

); (1 

 

≤

 

 i 

 

≤

 

 r) (19)

= {[(u, v), max

 

1 

 

≤

 

 i 

 

≤

 

 r

 

 {  (u,v)}] 

| u

 

 ∈

 

 U, v

 

 ∈ 

 

V}(20)
Since we have to keep in mind that we need dif-
ferentiable functions for the learning techniques
in the later neural network section, we approxi-
mate the 

 

max

 

-function by 

 

sum

 

 as defined below.

sum: [0, 1]

 

r

 

 

 

→

 

 [0, 1];
sum

 

1 

 

≤

 

 i 

 

≤

 

 r

 

 (  (w)) = 

(21)

Of course the definition itself contains a 

 

max

 

-
function again, but this one evaluates to a linear
function, as can be seen in the following exam-
ple of a complete rule evaluation.
Let “

 

if

 

 X

 

1

 

 = A

 

i

 

 

 

and

 

 X

 

2

 

 = B

 

i

 

 

 

then

 

 Y = C

 

i

 

” be a rule
base of r rules (1 

 

≤

 

 i 

 

≤

 

 r). In a first step the ante-
cedents reduce to

 

α

 

i

 

 = (x

 

0

 

) · (y

 

0

 

); (1 

 

≤

 

 i 

 

≤

 

 r) (22)

  
MX0

i (u) = MX
i (u) ;  if  u = u0

0 ;  otherwise







MAi Bi→

MCi

MCi
w( )i 1=

r∑
maxw W∈ MCi

w( ){ }i 1=
r∑

MAi
MBi

 

and the output terms can be calculated to:

 = {[w,

 

 α

 

i

 

 ·  (w)] | w

 

 ∈

 

 W} (23)

The membership function of the union of the
output terms, using the sum-equation (21), may
be written as

M

 

Y

 

 (w) =  (24)

 

4-5. Defuzzyfication interface

 

Let Y be one of the output fuzzy sets from the in-
ference step (25). Then the centroid method (27)
is employed for the defuzzyfication to the non-
fuzzy output data y.

Y = {[w,  (w)], w

 

 ∈

 

 W} with (25)

 (w) = sum

 

1 

 

≤

 

 i 

 

≤

 

 r

 

 (  (w)) (26)

Note that only output terms C

 

i

 

 from the term set
of the linguistic variable associated with Y have
to be taken into account.

y = (27)

This technique is also known as “centre of area
method” (coa) or “centre of gravity”.

y = (28)

Since we restrict ourselves to gaussian functions
in the output terms, (28) becomes

y = (29)

and after some simplifications

y = (30)

 

4-6. Neural net architecture

 

The five layered feed-forward neural network
used for SPIN-NFDS is outlined in figure 3. The

C'i MCi

α
i

MCi
w( )⋅

i 1=
r∑

const α
ii 1=

r∑⋅

MY

MY α i MCi
⋅

w MY w( ) dw⋅∫
MY w( ) dw∫

α ii 1=
r∑ w MCi

w( ) dw⋅∫
α ii 1=

r∑ MCi
w( ) dw∫

α ii 1=
r∑ w e

w µ
i

−( ) 2

2σi
2

−

dw⋅∫

α
ii 1=

r∑ e

w µ
i

−( ) 2

2σ
i
2

−

dw∫

α iµii 1=
r∑ σi( ) αii 1=

r∑ σi( )⁄
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several layers are classified in the sense of the
NFD-scheme introduced above and by the cal-
culations being done at each layer. Note that this
network architecture is 

 

not

 

 fully connected. A

description of the computations at each stage
will be given in the following. The resulting set
of parameters, that may be trained contains the
parameters  of each membership function
from the input and the output variables and a
set of weights w, one for each output term in the
linguistic rules.

 

Layer 1: Linguistic input

 

The operation being done here is only transmit-
ting the input values to the terms of the corre-
sponding (i.e. not to all) input variables at the
next layer.

 

Layer 2: Input terms

 

Let n be the number of linguistic input variables
with names X

 

i

 

 (1 

 

≤

 

 i 

 

≤

 

 n), values (x

 

1

 

, …, x

 

n

 

) and
term sets T(X

 

i

 

). This layer computes the mem-
bership functions

(31)

where sigmoid (12) and gaussian functions (13)
are allowed. The parameters in each node,
which have to be optimized by learning (de-
scribed in the next section) are

( , ) (32)

y1

∏

∑ ∑

…

…
…

…

∏

…

/

∑ ∑…

/
… ⑤

④

③

②

①

linguistic

output

rules

input

linguistic
input

terms

terms

defuzzy-
fication

fuzzy-
fication

inference-
engine

ym

x1 xn

figure 3 : SPIN-NFDS network topology

FDS
scheme Layers

output

σ µ,

MXi

ji xi( ) 1 i n 1 ji T Xi( )≤ ≤( );≤ ≤;

µi

ji σi

ji

 

Layer 3: Rules

 

From the membership functions the degree of
fulfilment 

 

α

 

i

 

 (1 

 

≤

 

 i 

 

≤

 

 r) for each antecedent is to
be calculated (with r is the number of linguistic
rules in the rule base). The 

 

α

 

i

 

s are computed by

 

∏

 

-neurons

 

1

 

 without any additional weight in
the input terms.

 

Layer 4: Output terms

 

Let t=  and n

 

i

 

 be the number of linguistic
rules supporting the i-th term of Y

 

j

 

. So  is the
support of the k-th rule for the i-th term of Y

 

j

 

and equation (30) may be formulated as

y

 

j

 

 = (33)

The computational step being performed in this
layer is the summation of the support for each
term from the term sets of the linguistic output
variables, i.e.

s

 

i

 

 = (34)

where weights w

 

ki

 

 are introduced as a possibili-
ty to determine the “importance” of a single rule
for an output term. All these weights are initial-
ized to 1 in the beginning and may be altered
during the learning phase.

 

Layer 5: Linguistic output

 

Once the supports s

 

i

 

 have been calculated by the
previous layer, equation (30) simplifies to

y

 

j

 

 = (35)

Note that there is a certain redundancy concern-
ing the parameters  and w

 

ki

 

.

 

4-7. Learning in SPIN-NFDS

 

Training is performed by standard backpropa-
gation techniques. Two schemes are supported:
The “normal” backpropagation (also called: off-
line, batch, epoch) and the “on-line” backpropa-
gation (also referred to as sample, or stochastic
backpropagation).

 

1. A 

 

∏

 

-neuron calculates its output to out

 

∏

 

 =

 

∏

 

x

 

i

 

 
with x

 

1

 

, …, x

 

n

 

 being the inputs of the neuron.

T Yj( )
α

k
i

µiσi
αk

i
k 1=

ni∑( )i 1=
t∑

σi αk
i

k 1=

ni∑( )i 1=
t∑

wkiαk
i

k 1=

ni∑

µ
i
σ

i
sii 1=

t∑
σisii 1=

t∑

σi
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5. Experimental results

 

Several tests have been done, according to the
following test strategies for SPIN-NFDS:

•Analyse the 

 

training performance

 

, with an ad-
hoc rule base for our decision task.

•Analyse the 

 

generalisation performance

 

, i.e.
training and testing is being done with dif-
ferent sets of test surface-fragments.

•Compare performances resulting from large
training sets to that resulting from small but

 

“characteristic” training sets

 

.

•Compare performances resulting from
changes in the predefined rule-base.

•Compare performances from SPIN-NFDS to
that of a “classic” backpropagation classifi-
er.

Some of the most interesting results are shown
in the following. For the complete discussion
see [1]. The training sets T

 

1

 

 and T

 

2

 

 consist of 300
example pairs of fragments each.

 

Training performance

 

As the reader may see from table 1, the classifi-
cation rate rises really fast (remember we are re-
garding a backpropagation system!) even for a
primitive rule base (initial classification rate is
only 50%). This fast convergence is slowed
down by adding noise, but nevertheless a classi-
fication rate beyond 90 % is reached with 50
training steps.

 

Generalisation performance

 

Interesting, but not completely surprising are
the results of the tests for generalisation. We
may see from table 2 that the training on un-
noisy training sets shows only poor results in
noisy environments, whereas training on noisy
training sets shows reasonable results on noisy

 

and

 

 unnoisy test sets.

Table 1 : Training performance with 0% noise

iterations: 0 1 5 10 50 175

class. rate[%] : 50 50 96 96 97 99

class. rate[%] : 50 50 50 63 92 98

T1
0%

T1
10%

 

6. Conclusion

 

First, we would like to recall the benefits we
have observed in the tests of SPIN-NFDS : Supe-
rior speed of convergence and generalization
performance compared to conventional back-
propagation-trained nets, 

 

and

 

 superior accuracy
compared to conventional fuzzy inference sys-
tem. Therefore we feel encouraged to call the
concept a combination of the advantages from
fuzzy inference systems and neural networks.
As one future direction, we will adapt the SPIN-
NFDS on other parts of the SPIN-project, in or-
der to get a wider testbed of applications.
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