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This paper refers to the problem of adaptabili-
ty over an infinite period of time, regarding dy-
namic networks. A never ending flow of exam-
ples have to be clustered, based on a distance-
measure. The developed model is based on the
self-organizing feature maps of Kohonen [6],
[7] and some adaptations by Fritzke [3]. The
problem of dynamic surface classification is
embedded in the SPIN project, where sub-sym-
bolic abstractions, based on a 3-d scanned en-
vironment is being done.

 

1. Survey

 

First the framing project and the concrete prob-
lem context is discussed in short (chapter 2).
Then in chapter 3 the network structure and as-
sociated aspects and problems are shown in de-
tail, supported by simulation results (chapter 4).

 

2. SPIN-Project

 

At the actual state of research the project SPIN
(from 

 

S

 

patial 

 

P

 

erception to 

 

I

 

dentification with

 

N

 

eural networks) is based on the data of a 3-d
scanning device and designed to reach a stage of
abstraction where convex clusters of surfaces
are generalized, completed and classified.

 

2-1. Main strategies

 

The system-design is based on some main prin-
ciples, which have in common that none of them
is in contradiction to a biological system. It is

 

not intended to find the best fitting model for
the lower levels of the mammal object-recogni-
tion-system, but obviously implausible features
should be avoided.

 

a. Learning instead of preprogrammed models

 

The internal world model should be build up
from a flow of examples scanned from the
outer world. The “pre-programmed” knowl-
edge is reduced to elementary features that
should be searched for (here: edges).

 

b. Hierarchy

 

The main structure is pipeline-oriented in-
stead of being controlled by a central instance
(see the Neocognitron by Fukushima [5] for a
good example of this strategy).

 

c. Symmetry

 

The general purpose processes (like classifi-
cation or completion) should be quite similar
at the different hierarchical levels.

 

d. Extensive use of feedback

 

A strict hierarchy is not as useful as it could
be, if the different layers are not connected in
both directions.

 

d-1Error feedback

 

The back-propagated error messages cor-
rect decisions on lower processing stages,
so it is not necessary to find always the
best answer immediately. Lower stages
may take the most likely way, knowing
that there is another instance, which will
give a negative feedback, if this decision
was wrong.
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d-2Focus-of-interest feedback

 

At the start-up time of the whole system,
lower components are triggered by local
“instincts”, whereas later on the activity of
the lower components is more and more
initiated by a focus-of-interest, generated
by higher stages.

 

e. Parallelism

 

The above described strategies lead straight
forward to forms of parallelism of rough
granularity and by the use of neural net-
works at several stages to parallelism at a fin-
er granularity.

 

2-2. Focus on surface-classification

 

The concrete problem area that will be dis-
cussed in this article, is defined now. 

 

Surface representation

 

Given a laser-range scanner and several pre-
processing steps, both beyond the focus of this
paper, which produce a surface representation,
built upon the curvatures at the borders of the
surfaces. The curvatures are calculated by pro-
jecting the border (at each border point) on two
orthogonal two-dimensional planes and then
regarding the 2-d-curvatures on these planes
(called the surface- and the border-curvature).
The orientations of these planes are defined at
each border point by the orientation of the local
border tangent and the local surface normal:
Both planes have to include the border tangent
and one of them (the plane to determine the sur-
face-curvature) has to include the surface nor-
mal (this has to be approximated or to be solved
analytically). Each surface is then described by
the concatenation of two vectors; one consisting
of the surface-curvatures at m

 

1

 

 equidistant
points along a whole cycle along the border and
another consisting of the border-curvatures at
m

 

2

 

 equidistant points along the same distance. 

This may be regarded as just another surface
vector-representation, but with the main aspect
that the form of the surface is described by the
curvatures at the border only, i.e. the character-
istics e.g. at the middle of the surface are not de-
tected at all. The idea beyond this representa-
tion is the assumption that surfaces in indoor
environments may be sufficiently captured by
the characteristics at their borders.

 

The task

 

Based on the representation described above,
the continuous flow of scanned and pre-proc-
essed surfaces is to be clustered (or classified)
based on the euclidian distance of the surface-
vectors.

 

3. Network Model

 

The part of SPIN discussed in this paper re-
quests a network model, with features listed be-
low:

•Unsupervised clustering
•Dynamical number of clusters
•Forgetting by time or frequency of access
•Flexibility over an infinite period of time

There is only a small number of well known net-
works that might be used for such purposes
(e.g. ART-models by Carpenter & Grossberg [2],
Self-organizing feature-maps by Kohonen [6],
[7], GAL by Alpaydin [1]). But all show limited
abilities in at least one of the mentioned points.

 

3-1. Dynamic Network Model

 

The base of the following network-model is the
self-organizing feature-map model by Kohonen
[6]. This well known structure is extended by
the possibility of adding and removing new
cells. This work was being done by Fritzke in
1991 [3], [4]. Although this is already published,
we will show the main aspects of this extension
in short form before we discuss our adaptations.

 

Generalization & Learning

 

The representation of the surfaces as shown
above is a vector in a 

 

m

 

-dimensional real-valued
vector-space. These vectors are mapped to an
array 

 

S

 

 of cells 

 

c

 

, each attached to an 

 

m

 

-dimen-
sional position vector 

 

pos(c)

 

. The cells in 

 

S

 

 are
connected in a triangular structure (the original
Kohonen-model uses a rectangular structure).
An input vector 

 

x

 

 is then mapped onto the cell
with the smallest distance to it (in the Euclidian
norm). This cell is called 

 

bmu

 

 (best matching
unit) and this part is the classification.

:
(1)

For learning purposes the cell bmu and it´s top-
ological neighbours in the triangular structure

c S∈∀
pos bmu( ) x− pos c( ) x−≤
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are moved towards the input vector (by a frac-
tion 

 

e

 

bmu

 

 and 

 

e

 

neighbour

 

 

 

of the distance). This
training step is repeated 

 

n

 

d

 

-times.
The described procedure results (if well de-
fined) in a 

 

topology-preserving

 

 (i.e. adjacent input
vectors are mapped on adjacent cells) and 

 

distri-
bution-preserving

 

 map (i.e. the relative density of
the cells approximates the probability density
P(X) of the input vectors).

 

Growing cell-structures

 

Up to here, the number of cells in 

 

S

 

 is constant,
i.e. the choice of the number of cells that should
represent adequately the probability-distribu-
tion of the input vectors has to be known in ad-
vance (Additionally the initial position of the
cells is critical regarding the ability and speed of
learning). To overcome this restriction a mecha-
nism of expanding the structure is introduced.
The initial structure is a single triangle, with ar-
bitrary values of the three cells at the corners. In
each learning step the distance between the in-
put vector and the 

 

bmu

 

 is added to an error-var-
iable associated with the found 

 

bmu

 

. After 

 

n

 

d

 

learning steps the cell with the maximal error-
variable is detected. This cell is called 

 

bs

 

 (black
sheep). Then the farthest direct neighbour in the
structure is detected and called 

 

f

 

. The new cell is
inserted in the middle between them:

(2)

This new cell must be connected with surround-
ing cells in order to keep the triangular struc-
ture. The error-variable is initialized as a mean
value of the error-variables of all 

 

d

 

 direct con-
nected neighbours:

(3)

The error-variables of the neighbours are re-
duced according to that amount:

:

(4)

 

Shrinking cell structures

 

Starting from a single triangle and expanding
the structure as described above will produce a

 

connected

 

 structure trying to approximate the

pos cnew( )
1
2

pos bs( ) pos f( )+( )⋅=

err cnew( )
1

d 1+
err neighbori( )

i 1=

d

∑=

i∀ 1 … d, ,=

err neighbori( )
d

d 1+
err neighbori( )=

 

probability density P(X). This might be the inad-
equate model because P(X) can consist of sever-
al distinct regions with P(X)=0 between them.
So there is a need for a procedure to disconnect
the structure if necessary. 
The basic idea is to find cells which are posi-
tioned in areas with P(X)=0 and to remove them.
As the indicator of this constellation, the
number of classifications without being 

 

bmu

 

 is
recorded for each cell. If this number 

 

k

 

 for a cer-
tain cell exceeds the value in (5) this cell is re-
moved and so are those of it´s neighbours neces-
sary to return to a structure of triangles (

 

p

 

s

 

means the probability of keeping needed cells
and 

 

n

 

 is the actual number of cells)

(5)

For a more detailed description of the algo-
rithms so far see e.g. [3], [4].

 

3-2. Extensions & Adaptations

 

A number of problems with the above network-
structure have being found regarding the con-
crete restrictions of our surface-clustering and
classification. The central aspect here is the fact
that our learning set is not fixed but consists of a
continual flow of examples. So the task is not to
model the best approximation of a limited set of
input vectors, but to find a representation of the
probability distribution and a good clustering of
the 

 

most recently

 

 presented surfaces. Additional-
ly the classification-function has to be accessible

 

all the times

 

 (after a certain amount of learned
surfaces), i.e. the structure should change
smoothly from one state to the next while learn-
ing.

 

Buffering the flow of examples

 

The number of produced examples per time-in-
terval is smaller than the number of surfaces
that might be learned during this interval. So
the received examples are buffered in a FIFO-list
and each example is being learned several
times.

 

Limited growing and adaptation

 

In the original model the learning phase simply
stops when the required accuracy is reached.
The SPIN-project does not know of an end of

k n nd 1 1 ps
1 n⁄−( )

1 nd 1+( )⁄
−( )⋅ ⋅> kr=
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learning, so there must be another definition of
stability.

Assuming a tolerated error of 

 

d

 

accuracy

 

 and an in-
put vector 

 

x

 

. If the 

 

bmu

 

 resulting from the classi-
fication of the vector 

 

x

 

 fulfils the equation (6)

(6)

then the learning for this cell is switched to a
modified learning scheme: The fraction of 

 

bmu

 

correction 

 

e

 

bmu

 

 is reduced by the factor 

 

∆

 

e

 

bmu

 

and the 

 

bmu

 

 is now moved towards 

 

x

 

 by this re-
duced fraction of 

 

∆

 

e

 

bmu

 

· 

 

e

 

bmu

 

. The direct neigh-
bours are not corrected at all. Additionally this
classification does not increment 

 

n

 

d

 

, i.e. the gen-
eration of new cells is delayed.

If these classifications continue over some peri-
od of time, the moving of cells will become
slower and no new cells are created. The modi-
fied learning scheme is reset to normal learning
when one classification does not fulfil (6), i.e.

 

e

 

bmu

 

 is set to the original value, etc. 

Summarizing this modification, two main ef-
fects are important:

 

a.

 

The growing of the network is stopped (or at
least slowed down, depending on the classifi-
cation error), although the flow of examples
may still continue.

 

b.

 

The network structure (i.e. the positions of
the cells) is stabilized, when the examples fit
into the clustering built up.

 

Cautious removal

 

The removal of cells in the original algorithms
causes the removal of neighbouring cells, in or-
der to return to a structure of triangles. This pro-
cedure does not care about the importance of
these neighbouring cells, so often used cells
might disappear. If the relative density of cells is
large, then the remaining cells might fulfil most
of the further oncoming classifications. But in a
sparse clustering, i.e. each cell represents a
whole isolated class (e.g. with P(X)=0 at it´s bor-
ders), the functionality of these cells can not be
adequately approximated by the remaining
ones. And even worse, these cells will be gener-
ated again in the further process, because the
classification-errors in this area will rise signifi-
cantly. On the way to this rebuilt structure, the
remaining cells are corrected in large steps be-
cause of large classification-errors. 

dbmu x pos bmu( )− daccuracy≤=

 

In some constellations we found a cyclic behav-
iour, i.e. even in the moment when the structure
was build up again, one of the cells in this area is
being removed, and the procedure starts again.
This unstable and discontinuous behaviour can
not be tolerated in our system.
The solution we have chosen is based on the
idea of accepting “over-classification” under
some circumstances, but not deleting cells,
which are used. This means concrete that each
time a cell is detected as not being used for a cer-
tain period of time, it is only removed when all
the cells which would be removed in order to
keep the structure of triangles intact are also de-
tected as unused. As a result of this manipula-
tion, the network will consist of more cells than
necessary, and so one might think of effects like
swapping between two cells in situations where
one cell would be sufficient or other instability
problems. But in our simulations we have never
observed such situations.

 

Speed of forgetting

 

In the original model the value of 

 

k

 

r

 

 might be
approximated as (see equation (5)):

(7)

A value of 

 

p

 

s

 

 near 1 implies a good approxima-
tion of the vectors in the current learning set.
But as our learning set is dynamic, another as-
pect arises: What happen to a learned cell, when
the generating examples are deleted from the
learning set. In our simulations this cell is re-
moved or even massively corrected in a couple
of minutes, i.e. there is absolutely no long-term
memory.
In order to create a possibility to determine
slower forgetting then implied by 

 

p

 

s

 

=1, we ex-
tended the definition of 

 

k

 

r

 

 for values of 

 

p

 

s

 

>1
(Notice that 

 

p

 

s

 

 is not a probability in this case):

(8)

So arbitrary long storage-times of presented
surfaces can be implemented. One might think
of additional information stored for every cell in

 

S

 

, like frequency of access or time since last ac-
cess, etc. pp., in order to find a better choice of
cells to delete, but this ideas are not tested here.

kr n nd⋅ 0 ps 1≤ ≤( );≤

  

kr =
n ⋅nd ⋅ 1− (1− ps

1
n )

1
nd+1































;ps ≤ 1

n ⋅nd ⋅ps  ;ps > 1













 

Chapter: Network Model Page: 5

 

3-3. Parameters

 

This section is intended to give an idea of the
meaning of some parameters as well as showing
up the ranges which appears to be useful to us.

 

Network size

 

The size of the network structure is not deter-
mined directly by an upper or lower bound, but
is implied by the required accuracy of the classi-
fication. Therefore this parameter needs not to
be tuned at all (because it is not there).

 

Accuracy of classification

 

The accuracy of classification is the euclidian
distance between the example-vector and the
found 

 

bmu

 

 (see equation (6)). So the first stage of
learning is reached when all the vectors of the
learning set are in between of at least one of the
hyper-spheres with radius

 

 d

 

accuracy

 

 

 

around the
cells of the network. Then the modified learn-
ing-phase is entered, i.e. no new cells are created
and the speed of moving and the number of
cells moved in each step are reduced (until the
classification errors rises again). The network is
called “stable”, when the value of 

 

e

 

bmu

 

 remains
below a certain limit 

 

e

 

stable

 

.
Choosing 

 

d

 

accuracy

 

 too small results in a one-to-
one mapping of the actual learning set and the
cells in the structure, i.e. one cell is created for
each vector in the learning set. On the other
hand a large value of 

 

d

 

accuracy

 

 means a small
number of created cells and a large tolerated
classification-error. Finding the “optimal” value
depends widely on the purpose of the system
and the used vector-representation of the exam-
ples.

 

Moving fractions e

 

bmu

 

, e

 

neighbour

 

 & 

 

∆

 

e

 

bmu

 

Simulations have shown good results with val-
ues in range of (9) for 

 

e

 

bmu

 

.

 

(9)

A “working range” for 

 

e

 

neighbour

 

 is shown in
(10), but there are some conditions, which one
has to keep in mind.

(10)

A small value for 

 

e

 

neighbour

 

 might result in mov-
ing of cells not preserving topology in the net-

1
20

ebmu
1
5

≤ ≤

1
50

ebmu eneighbor
1
20

ebmu≤ ≤

 

work-structure, because one cell, which is
marked as the actual 

 

bmu

 

 could be moved over a
long distance, without moving the surrounding
cells in an adequate manner. Large values for

 

e

 

neighbour

 

 are dangerous too, because if a neigh-
bouring cell of a critical-cell is the 

 

bmu

 

, the cor-
rection distance of this critical-cell could be larg-
er than in the case that the critical-cell is the 

 

bmu

 

itself.

 

∆

 

e

 

bmu

 

 is limited by the following idea. When the
value of 

 

e

 

bmu

 

 remains below the limit 

 

e

 

stable

 

. the
network is said to be stable. But this should im-
ply that every vector of the learning set is classi-
fied 

 

at least once

 

 with a classification error small-
er than 

 

d

 

accuracy

 

 (in (11) |

 

Learning set

 

| is the
number of example vectors in the learning set).

(11)

or

(12)

But these are only the trivial limits. Both bounds
would not result in a reasonable learning behav-
iour, because a value of 

 

∆

 

e

 

bmu

 

 too near to 1 pro-
duces a very slow convergence of the network
without reaching a better accuracy and a value
too near to the lower bound makes the system
rest too early i.e. in sub-optimal positions of the
cells. The simulations have shown good results
for values in the range of:

(13)

 

Removal of cells

 

Our simulations have shown an uncritical be-
haviour (with the new learning scheme) with
values of 

 

p

 

s

 

 larger than 0.5. Each increase of this
value depends only on the amount of time a
learned example vector (or class of vectors)
should remain in the network, without the need
to “refresh” the corresponding cell with this ex-
ample vector(s).

 

Creation of new cells

 

The factor 

 

n

 

d

 

, which determines the number of
learning steps before a new cell is inserted,
should be chosen in a way that there can be “just

ebmu ∆ebmu
Learning set e 

stable
 >⋅

estable

ebmu 
 

1 Learning set ⁄  
∆

 
e

 

bmu

 
1

 
<<

∆ebmu

estable

ebmu 
 

1
c Learning  set 

c 3 6[ , ]
 

∈;=
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enough” probability-density-information accu-
mulated before a position for a new cell is deter-
mined. Twice the number of expected classes
works as a rough approximation, but obviously
this “just enough” depends widely on the distri-
bution of the example vectors.

 

4. Simulations

 

A flow of examples consisting of 20 different
types of surfaces, which are all quantisized in 32
values for the segment curvature and in 16 en-
tries for the surface curvature was simulated.
The number of generated different examples is
2000. Noise is added in the form that every ori-
entation of the bordering surface pieces is ma-
nipulated in the range of 

 

±

 

6˚ for the segment ori-
entation and 

 

±

 

9˚ for the surface orientation. A
part of the generated examples is shown in fig-
ure 1. As a result of adding noise, some surfaces
are not closed, but this does not influence the
generality of the test-set. After 6500 learning
steps (1´ 50” on a MC68030 processor at 40 MHz
clock) 19 different classes are generated (

 

n

 

d

 

=40,

 

e

 

bmu

 

=0.1, 

 

e

 

neighbour

 

=0.005, 

 

∆

 

e

 

bmu

 

=0.998). In figure
2 the surface-classes are shown, with unused
cells crossed out. The shown example is repre-
sentative, i.e. all of the well defined test-sets
have caused such a network behaviour.

 

5. Conclusion

 

An open problem in our structure is that most of
the surfaces are learned relatively fast, and only
a small number (one or two) of not still learned
surfaces keeps the learning-phase running for
quite a long time. A learning focused on these

figure 1 : Some of the input surfaces

 

“problem-vectors” might be a solution, but this
has not yet been tested in detail.
As a quite general technique for dynamic clus-
tering problems (and based on the encouraging
simulations), we are about to use this network
on problems like topologic environment map-
ping, based on sparsely preprocessed sensor-in-
formations, i.e we are trying to get additional re-
finements through further real applications. 
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