

Euromicro ´94 – Realtime-Workshop
Vaesteraas (Västerås), Sweden, June 15-17, '94

Realtime-learning
on an Autonomous Mobile Robot with Neural Networks

Uwe R. Zimmer & Ewald von Puttkamer

University of Kaiserslautern - Computer Science Department - Research Group Prof. E. v. Puttkamer
P.O. Box 3049 - 67663 Kaiserslautern - Germany

Phone: …49 631 205 2624 - Fax: …49 631 205 2803 - Telex: 4 5627 unikl d
e-mail: uzimmer@informatik.uni-kl.de

The problem to be discussed here, is the usage
of neural network clustering techniques on a
mobile robot, in order to build qualitative top-
ologic environment maps. This has to be done
in realtime, i.e. the internal world-model has
to be adapted by the flow of sensor-samples
without the possibility to stop this data-flow.
Our experiments are done in a simulation en-
vironment as well as on a robot, called ALICE.

1. Realtime-learning

Due to the fact that the term “Realtime-learn-
ing” is not really well defined, we have to speci-
fy it first. In our context the robot has to “learn”
a representation of it's actual environment (here
called “qualitative topologic map”, QTM). The
process of adaptation has to be fulfilled in a
fixed amount of time (here: less than the time
between two sensor-samples), the sensor-sam-
pling rate being determined by the maximum
speed of the mobile system. Our robot is in the
actual version able to perform a speed of
25 cm /s. So a reasonable sampling-frequency
might be two complete samples of all sensors
within one second. The sensors used on ALICE
are passive light sensors, whiskers and simple
internal motor revolution counting for dead
reckoning.

2. Qualitative topologic maps

Qualitative topologic maps (QTM) are an alter-
native to exact geometric models of the environ-
ment (see e.g. [3] as an example of exact geomet-
ric mapping based on the data of a laser range

finder). Instead of modelling the boundaries of
the detected objects, only the sensor-informa-
tion itself is used to build a “map of sensor-im-
pressions” directly. This concept has already be-
ing proposed by Kuipers et al. [1], but the con-
struction process was done by explicit rules, i.e.
not by statistical techniques. Our map is con-
structed by special clustering techniques based
on Kohonen's Self-Organizing-Maps (described
in the next chapter). QTMs are able to represent
significant different sensor-situations and their
neighbouring relationships. Therefore similar
sensor-situations (“similar” to a representative
constellation found in the QTM) can be detect-
ed. So the first basic task for each autonomous
mobile system can be fulfilled: “Recognize plac-
es, where you have been before (without getting
exactly the same sensor-measurements)”. This
task may be summarized by “Qualitative Rec-
ognition”. On the other hand it is not possible to
get positions from this map for an exact recalli-
bration of the internal position. Nevertheless it
is possible to correlate the internal position
within the boundaries of the granularity of the
distinct represented sensor-situations.

3. Dynamic neural networks

The underlying neural network model is basi-
cally a Self-Organizing-Map in the variation by
Fritzke called Growing-Cell-Structures [2] and
with several adaptations and extensions de-
scribed in [5]. The main idea is to use the neigh-
bourhood connections in a dynamic neural net-
work as a representation of topologic neigh-
bourhood in the environment. The network-

Chapter: Project: ALICE Page: 2

processes have to be adapted in a way to avoid
not reasonable connections in the topologic in-
terpretation, although these connections would
make sense, if they are only interpreted by the
processes for growing and shrinking the net-
work.

4. Project: ALICE

The ALICE-Project consists of two major parts:
The real robot and an equivalent simulation en-
vironment. With the help of the operating- and
communication-system ALBATROSS [6] we are
able to use the same object code on both shells,
avoiding cross-compilers and other tools.
The mobile robot ALICE is a round (40 cm in di-
ameter, 20 cm high), fully autonomous platform
with an omnidirectional kinematic. 24 whisker-
light-sensor pairs are distributed symmetrically
at the border of the vehicle and three light-sen-
sors are directed towards the ceiling. Also it is
possible to determine a rough internal position
by dead-reckoning.
The software consists of three major processes:

•

Map-building:

Finding an adequate internal representation
of the environment as seen by the sensors.
Here topology-preserving neural network
structures are used as the basic concept.

•

Navigation & Pilot:

Finding a way (path) to a specified place in
the known (mapped) area of the environ-
ment and drive along this path, until the ro-
bot reaches the target-place or detects a
situation which prevents this plan.

Exploration

Navigation

Reflexes

World modelling

Se
ns

or
s

Actuators

Topologic Map

Abstractions

C
on

tr
ol

World knowledge

&
Actual Position

figure 1 : ALICE main-structure

Environment

Several reinforcement techniques are used
to fulfil this task adaptively (see [4] for de-
tails of the navigation technique).

•

Exploration:

Finding moves and paths to increase the
knowledge, accumulated in the map effi-
ciently.

Although these three components may be seen
as different levels of abstraction, they have to be
able to operate in parallel. The process of acquir-
ing knowledge by wandering around requires
all major components.

5. Map-building

As introduced above, we build maps, which
represent qualitative distinct regions in the en-
vironment. The basis elements, on which we are
able to perform this task, are simple (passive)
sensors, not being able to measure any distanc-
es. So what we may expect to get is a map of dis-
tinct light situations and of objects which have
been detected by the touch sensors.

5-1. Structure

The robot ALICE is wandering around (control-
led by an exploration algorithm or a specific
navigation task) while producing “situation
vectors” in equidistant time intervals. These sit-
uation vectors are calculated by concatenating
the weighted rough sensor informations:

•

x, y coordinates

 produced on the basis of
dead reckoning. We will show later that the
coordinates have to be correlated according
to the actual map as to compensate drift ef-
fects.

•

24 light sensors

 which are scaled according
to the sensor detecting the brightest light
source (in order to be independent from ab-
solute light intensities). In specific applica-
tions the absolute amount of light intensity
may be important, but we detected that the
distribution of light seems to be a better cri-
terion (regarding the map-building task).

•

24 touch sensors (whiskers)

 which are not pre-
processed in any way.

The weights of the several sensor kinds are ap-
proximated using the following assumption:
The detection of an obstacle by a whisker
should be interpreted as a new distinct sensor
situation, regardless of other sensors. Therefore
a relative high weight is attached to the touch

Chapter: Map-building Page: 3

sensors. The weights of the light and the posi-
tion sensors depend widely on the application.
If the navigation component (which uses this
map) plans paths in the sense of

x, y

-positions,
then the position data should get a high weight
in order to produce a equidistant grid of nodes
representing mainly different positions. On the
other hand, if the navigator plans paths from
one light situation to the other (e.g. a path from
the “window” to the “hallway”), then a equidis-
tant grid of positions is less important. Inde-
pendent of the actual navigation task, we have
to keep in mind that the position data have to be
considered to a certain amount, because the
connections between nodes in the graph (map)
should represent topologic neighbourhoods (i.e.
based on positions).
The calculated situation vector is passed to the
dynamic feature-map ([2], [5]), which is a more
flexible version of the common self-organizing-
map introduced by Kohonen ([7], [8]). For a very
short characterization, the main features are list-
ed below:

•Unsupervised clustering
•Dynamical number of clusters
•Forgetting by time or frequency of access
•Flexibility over an infinite period of time

As mentioned in chapter 3 the connections of
the dynamically constructed network (here
based on triangles) are interpreted as the con-
nections of a topologic graph, representing dis-
tinct places and their neighbourhood relation-
ships. The connection structure will depend
widely on the presentation order of the situation
vectors. So it is possible to build up a “chaotic”
graph (i.e. a graph with a lot of topologically not
plausible connections), by presenting the input
vectors stochastically distributed over a large
area in the environment. It should be possible to
find network adaptation functions, considering
that the inputs are from different kinds of sen-
sors, and therefore being able to construct con-
nections which represent a “flat” and topologic
“clean” graph structure in any case. Neverthe-
less, we will show the interpretation of the situ-
ation vector as a uniform vector only. As we will
see in the next chapter one may get a well adapt-
ed structure also by using special exploration
constraints.
The internal

x, y

-coordinates are corrected by a
small fraction of the distance to the actual best
matching unit (

bmu

) towards the

x, y

-coordi-

nates of this bmu. The fraction must be much
smaller than the adaptation factor

e

bmu

 of the

bmu

 itself, but higher than the drift effects, cor-
rupting the internal position.

5-2. Simulations

The simulations are all done in one environment
(figure 2), where three light sources, different
kinds of objects, rough and plain surfaces, and a
passage (nor symmetrical neither straight) are
represented. The light sources are limited by di-
aphragms like that ones being used with studio
spotlights. Therefore light is emitted within a
certain angular range only (indicated by the
white lines in figure 2).

The optimization criteria in the following simu-
lation runs is not easy to formulate, because the
usefulness of the produced topologic graph de-
pends on the navigator or other components
employing the structure for their purposes. We
have successfully tested our navigator on the
produced networks (shown below), but we
have not yet tried to find the “best map”-criteria
for our (or other) navigator(s). So we use some
simple measurements to detect well adapted
maps:

•

Small number of intersections:

 The connec-
tions of the topologic graph should not in-
tersect.

•

Short connections:

 Only nodes being immedi-
ate neighbours should be connected.

•

Small number of nodes:

 Due to the fact that
the computational effort depends linear
from the number of nodes, any realtime
constrained task requires a map consisting
of a limited number of nodes.

•

Slow “movement” of the cells:

 Tasks (specially
recognition tasks) employing the topologic
map depend on stable structures. Or, in oth-

Lightsources

Obstacle
ALICE

figure 2 : Test-Environment

Chapter: Map-building Page: 4

er terms: The adaptation processes should
result in similar networks after the updates.

•

Realtime Adaptation:

 The adaptation process
itself has to fulfil certain realtime con-
straints (see “Small number of nodes”).
Moreover, the network structure should
represent the actual environment after a rea-
sonable amount of time.

•

“Well adapted” representation:

 This demand
depends on the tasks using the map. They
have to give a certain amount of detail or
generalization, which have to be represent-
ed in the map.

•Other task specific constrains …
The following groups of parameters may be al-
tered in order to optimize the above criteria.

•

Network parameters:

The maximal number of nodes (the “size” of
the network) may be limited. This forces the
adaptation procedures to remove map re-
gions not being used for a certain amount of
steps. The required accuracy of the classifi-
cation (

d

accuracy

) as well as the number of
false classifications, until new cells are in-
serted (

n

distribution

), have to be determined.
In order to get a stable but fast adapted
structure, the “moving” parameters of the
cells (

e

bmu

,

e

neighbour

,

∆

e

bmu

) have to be opti-
mized. Finally, several other parameters
will not be referred here (

p

sure

,

e

stable

, start-
ing configuration, …).

•

Sensor weights:

The sensor weights as introduced above,
have a great influence of the kind of map
being produced.

•

Exploration strategy:

The exploration (i.e. the order of presented
situation vectors) influences widely the
structure of the produced map.

The described simulation runs are evaluated on
the trajectory shown in figure 3. As an explora-

figure 3 : Test-Trajectory

tion strategy, simple random movements are
performed in a window wandering along the
trajectory.

In figure 4 to 6 the creation of a topologic envi-
ronment map filling the test environment is
shown. Notice that the nodes nearest to the ob-
stacles represent the situations, when ALICE
touches the obstacles with its whiskers, whereas
nodes in open spaces represents different light
situations. The total number of processed input
signals was 5254. and the number of nodes in
the network was 196. This run can be repro-
duced on other test-trajectories leading to simi-
lar results. Due to the small number of nodes in
this examples, we are not forced to limit the total
number of nodes. In an open (i.e. not limited)
environment, it is necessary to limit the network
size according to the available computing pow-
er.

figure 4 : 1/3 of Test-Trajectory passed

figure 5 : 2/3 of Test-Trajectory passed

figure 6 : Full Test-Trajectory passed

Chapter: Conclusions Page: 5

One important parameter for the adaptation is

e

bmu

 (and implicitly

e

neighbour

), which deter-
mines the adaptation speed as well as the net-
work structure itself. In order to show two typi-
cal wrong configured networks, we set

e

bmu

 to
0.01, which produces an overfitting of the envi-
ronment, by inserting too much cells to fulfil the
demanded accuracy (figure 7). On the other
hand choosing

e

bmu

 too high (0.1) results in a
fast moving cell structure with chaotic connec-
tions and no useful modelling of the environ-
ment (figure 8).

The realtime aspects of the simulations might be
summarized as follows: The computational ef-
fort rises linear with the number of nodes in the
network (using parallel techniques it may be re-
duced to

O(log(n))

). In order to guarantee a cer-
tain adaptation speed, the total number of
nodes must be limited. Therefore the area which
might be explored without segmentation is lim-
ited by the “complexity” of the environment
(which determines the necessary number of
nodes) and of course by the available comput-
ing power.

6. Conclusions

We have shown by complexity approximations
as well as by test-runs that the qualitative topo-
logic maps, shown in this paper, are able to be

figure 7 : ebmu = 0.01

figure 8 : ebmu = 0.1

performed under realtime constraints. Moreo-
ver they are a solid basis for a range of basic mo-
bile robot tasks, which need not to have an exact
geometric model of the environment, but which
have to be performed on a stable and fast basis.
The navigation and track control task on these
QTMs is quite different to exact geometric ap-
proaches. A possible solution for this task,
which adapts to the actual environment as well
as to internal drift effects is shown in [4].

References

[1] Benjamin J. Kuipers, Y. T. Byun

A Qualitative Approach to Robot Exploration and
Map-Learning

AAAI '87 - Workshop on spatial reasoning and
multi-sensor fusion

[2] Bernd Fritzke

Growing Cell Structures - A Self-organizing Network
for Unsupervised and Supervised Learning

Technical Report 93-026, International Computer
Science Institute, Berkeley, California

[3] Uwe R. Zimmer

Connectionist Decision Systems for a Visual Search
Problem

Proc. of the IIZUKA ´94, Fukuoka, Japan, August
1-7, 1994, Invited paper

[4] Uwe R. Zimmer, Cornelia Fischer, Ewald von
Puttkamer

Navigation on Topologic Feature-Maps

submitted to IIZUKA ´94, Fukuoka, Japan, Au-
gust 1-7, 1994

[5] Herman Keuchel, Ewald von Puttkamer,
Uwe R. Zimmer

SPIN - Learning and Forgetting Surface Classifica-
tions with Dynamic Neural Networks

Proceedings of the ICANN '93, Amsterdam, The
Netherlands

[6] Ewald von Puttkamer, Christopher Wetzler,
Uwe R. Zimmer

ALBATROSS - The Communication Scheme as a Key
to FulFil Hard Real-Time Constraints

Proceedings of the Euromicro-Workshop on Real-
time Systems '92, Athens, Greece

[7] Teuvo Kohonen

Self-Organization and Associative Memory

Springer-Verlag, Berlin Heidelberg New York To-
kyo, ISBN 3-540-12165-X

[8] Teuvo Kohonen

Statistical Pattern Recognition Revisited

Advanced Neural Computers / R. Eckmiller (Ed-
itor), Elsevier Science Publishers B.V. (North-Hol-
land), 1990

