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World models for mobile robots as introduced in many
projects, are mostly redundant regarding similar situa-
tions detected in different places. The present paper pro-
poses a method for dynamic generation of a minimal world
model based on these redundancies. The technique is an ex-
tention of the qualitative topologic world modelling meth-
ods. As a central aspect the reliability regarding error-
tolerance and stability will be emphasized. The proposed
technique demands very low constraints on the kind and
quality of the employed sensors as well as for the kinematic
precision of the utilized mobile platform. Hard realtime
constraints can be handled due to the low computational
complexity. The principal discussions are supported by
real-world experiments with the mobile robot “

 

ALICE

 

”
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1. Motivation

 

Based on the idea that a (really useful) mobile robot
should be adaptive in its behaviour regarding its cur-
rent environment, a dynamic world modelling meth-
od is introduced in this article. The “really useful” at-
tribute includes sufficient simplicity, reliability, and
stability, which are therefore considered basic de-
mands for the proposed approach.

High precision metric approaches ([3] or [9]) demand
very reliable and accurate sensor devices, as well as
large computational power. Their applicability on
small, and light weighted platforms is limited. Dur-
ing the last few years, “qualitative methods” have
been proposed to overcome mainly problems regard-
ing complexity and stability. Works utilizing qualita-
tive modelling for self-localization and navigation
include the basic article from Kuipers introducing
the term “qualitative map” in [4], the work of Tani [6]
based on local sensor-sequences rather than on ex-
plicit topology, and the adaptive, topological models
introduced by Prescott [5].

 

1. The project 

 

ALICE

 

 is supported by the EU-project 
DG XII, F-5 (Teleman)

 

In order to focus on the main issues on this field, the
robot's world is designed to be simple, but still of
practical relevance. The project as well as the mobile,
experimental platform itself will be called 

 

ALICE

 

 in
the following. This is not an abbreviation, but just a
name.

The physical realization of 

 

ALICE

 

, includes 24 whisk-
ers and passive light sensors mounted together with
one standard (CISC-) CPU on an omnidirectional
platform. For an optical impression of 

 

ALICE

 

 please
refer to figure 1. The included features are just suffi-
cient for an autonomous mobile robot operating in
realtime in a universe as described in [7]. The dead-
reckoning disturbance for the internal position esti-
mation is 20-25% at an operational speed of 25 cm/s.
The angular resolution of the sensors is 20-30˚. The
term “realtime” is roughly and pragmatically ap-
proximated here by the demand that the machine
should be able to move continuously at full speed
where the world model is adapted without any time-
jitter or delay.

The author would like to emphasize that the low re-
liability and resolution of the employed sensor de-
vices together with the low relative position accuracy
and the limited computer power is 

 

not

 

 a weakness of
the system but is chosen

 

 intentionally

 

. A low-preci-

figure 1 : ALICE
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smoothed by applying gaussian functions. Finally
the sensor samples from different types of sensors
are weighted and concatenated to produce a “situa-
tion-vector”, or more briefly a “situation” (consisting
of 50 values in the example given).
In the following, sensor situations will be indicated
as ; the position or 

 

x, y

 

-component of such situa-
tions as .

 

3-2. Adaptation

 

As a basis for the network model, the euclidian norm
is applied to calculate distances between sensor situ-
ations, , and distances between positions, , respec-
tively. 
Consider a network  consisting of a number of cells

, which are connected with respect to the topologi-
cal neighbourhood of the situations  attached
to each cell. Then, at each adaptation step the cell

with the smallest situation-distance  to the
new input situation  is determined according to:

: (1)

In order to limit the effort for this adaptation to a con-
stant the search area is limited by the geometric dis-
tance . In the current system, this is done by ap-
plying adequate data-structures to the network-
management. The selected cell  and all its topo-
logical neighbours are then adapted according to:

(2)

 (3)

where  is the adjacency-function of the net-
work. The “classification error”  is then added to
a total classification error  attached to the cell

.

 (after n adaptation steps):

(4)

where (5)

In order to decrease the adaptation speed of a well
adapted network, the parameters  and  are con-
trolled by:

(6)

where: 
and  resp.  are the initial values of the param-
eters  and .
In each adaptation step, where  is larger than a
tolerated error , a global counter  is incre-
mented. This counter will be used as a measurement
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sion system like 

 

ALICE

 

 is an adequate experimental
platform for any world modelling and control tech-
nique, which is intended to be stable and reliable in a
real world. Any sensor and kinematic system with
features superior compared to 

 

ALICE

 

 (i.e. almost any
sensor system) promises a further improvement in
terms of speed and precision but not with regard of
the discussed, principal abilities.

 

2. Topological World-Modelling

 

The central motivation of 

 

q

 

ualitative 

 

t

 

opological
world models (

 

QT

 

-Models) is the basic mobile robot
task: “Recognize places you have seen before!”. In
this article this task will be approximated by extract-
ing “situations” (i.e. recognized places) together
with their topological neighbourhood from the cur-
rent sequence of sensor-samples, rather than model-
ling the boundaries of the detected obstacles and ob-
jects in a metric manner. Assuming a stable situation-
recognition-process and a technique for moving be-
tween distinct situations, the concept of a qualitative,
topological world model suggests a human-motivat-
ed basis for a navigation. The main concept has al-
ready been proposed by Kuipers et al. [4], but there
the construction process was carried out using ex-
plicit rules, not statistical techniques. Therefore, the
real-world abilities of the Kuipers approach are, in
the opinion of the author, limited.
The world model proposed in this article is based on
clustering techniques introduced by Kohonen (“self-
organizing-maps”) and Fritzke (“growing cell struc-
tures”, [1]) together with some previously proposed
extensions by this research group [2]. Due to a couple
of specific autonomous robots-constraints, these
structures are modified to cope with realtime-as-
pects, lifelong learning, “local forgetting”, and corre-
lation.

 

3. Methods

 

This section will introduce the technical details of the
proposed topological world model. The algorithms
following are expressed in general terms ignoring
computational details. 

 

3-1. Pre-Processing

 

Following the idea of representing situations (con-
sisting of readings from different kinds of sensors) in
a way that they can be compared directly, the sensor-
samples have to be preprocessed to form a vector of
unified elements. In the current system, passive light
and tactile sensors as well as an 

 

(x, y)

 

-position pro-
duced by odometry are available. Considering the
fact, that the angular resolution of the tactile sensors
is very low, each vector of tactile readings is
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for the need for change in the network structure. An
update-counter  attached to  is incremented
and will be used as an indicator for the stability of
this specific cell.
In order to use the high speed of this adaptation
process to achieve better adaptation, each situation is
presented several times 

 

k

 

 to the network. A constant
delay of 

 

l

 

 sensor-sample-time-slots before the current
sensor situation affects the network is also found
useful (see section “Correlation” below). According-
ly a learning set holding  situations is
implemented.

 

3-3. Growing & Shrinking

 

At start-up time of the system, there are no cells; the
network is empty. So the common problem finding a
“good” initial state of the network is avoided, but
there is a need for some growing strategy. In the
present system, two growing strategies are applied.
The first is called “

 

spontaneous insertion

 

”, the sec-
ond “

 

statistical insertion

 

”. In the first, new cells rep-
resenting the current sensor situation, are inserted
when the distance between the current sensor situa-
tion and  exceeds a certain limit  (in the special
case of an empty network this strategy produces the
first cell). In the second strategy a new cell is inserted
in the middle between the cell with the highest “de-
gree of movement”  (measured by the cell at-
tribute ) and its farthest topological neighbour

 every  “miss-classifications” (measured by
the global counter ). The new cell is instantiated
with mean-values of  and  for position and
light-intensity, but with minimal values for touch-in-
formation.
Another aspect of growing relates to the topological
connections between cells. Assuming that  has
just changed from  to  in two consecutive ad-
aptation steps, and that the cell  has 

 

m

 

 other
neighbours  ( ), the following changes
in connection weights are imposed:

(7)

(8)

with 
A connection with a weight 

 

≤

 

 0 is regarded as non ex-
istent. Thus the deletion of cells is now straight for-
ward. A cell or a cell-cluster with no connection is re-
moved.

 

3-4. Correlation

 

Three degrees of freedom out of the internal repre-
sentation (

 

(x, y)

 

-position and orientation) are cor-
rupted by drift effects or other errors and have to be
continuously corrected according to the world mod-
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el. The correlation of current and former sensor im-
pressions from the operational environment is an es-
sential task for all mobile robots, which have no
access to global positioning or predefined global
landmarks. The correlation process in the case of
qualitative topologic maps is discussed in [7].

 

3-5. Eliminating Redundancy

 

The representation as introduced up to here handles
every situation completely individually (connected
by topological links only). Due to the assumption
that similar situations occur in multiple locations, it
is tried to eliminate this redundancy. 
In the special case of 

 

ALICE

 

, the touch information is
an obvious example for this kind of redundancy. The
number of different wall or corner situations is be-
tween 10 and 30 in most environments. Neverthe-
less, the touch information is stored separately in
each situation according to the QT-maps. The follow-
ing concept, called 

 

non-spatial mapping

 

, will elimi-
nate most of the redundancy while keeping some ba-
sic features of the introduced qualitative topologic
maps.
Based on the three different kinds of sensor informa-
tion gathered on the 

 

ALICE

 

 platform, three separated
self-organizing maps are constructed: the 

 

geometry-
network

 

 ( ), the 

 

light-network

 

 ( ), and the

 

touch-network

 

 ( ), representing the distribution of
the cartesian coordinates, the light-, and the whisker-
information respectively. While the network  is
built according to the introduced rules of the qualita-
tive topologic maps (but based on the position infor-
mation only), the networks  and  can be imple-
mented emplyoing standard self organizing maps or
growing cell structures [1]. Assuming that the total
number of different situations cannot be estimated in
advance (although it is assumed that they are limit-
ed), the growing cell structures will show superior
behaviour and are chosen therefore in the present
case.
A new input situation  is divided into the situa-
tions , , and , representing the different kinds
of sensor information. Following the usual adapta-
tion process, the cells , , and  are deter-
mined according to:

: 
(9)

: 
(10)

: .
(11)

The adaptation as well as the growing and shrinking
procedures as introduced in the sections 3-2 and 3-3
are applied. The resulting clustering will represent
the distributions in the current environment regard-
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ing the different kinds of sensor information, but the
relation between places and sensor impressions is
missing. Therefore two links between the nets are in-
troduced. In case of stable classifications (i.e.

, , and ), the links should
be set to:

(12)

(13)

Unfortunately it is not sufficient to establish these
connections after each adaptation step, because the
densities (regarding the geometric space) in the sev-
eral networks differ significantly. Using the cells of
the geometric network as an index for the whole
model (by following the attached links), it has to rep-
resent each situation-border in every network.
Therefore, an additional “

 

spontaneous insertion

 

” is
introduced in , triggered by the networks  and

. After each adaptation step fulfilling the demand-
ed amount of accuracy, the conditions (12) and (13)
are checked. In case that the links are correct, nothing
has to be done. If the geometric cell  has not yet
any link attached, the demanded links are instantiat-
ed. But in the critical case that links are already estab-
lished but pointing to different cells, the resolution of
the network  or the accuracy of the internal posi-
tion is too low. Ensuring that small errors in the posi-
tion measurement will not lead to new and redun-
dant cells, the topological neighbours of  in a
spherical geometrical neighbourhood of radius 
are checked. If one of these direct neighbours fulfil
the demanded conditions (12) and (13), no further
processing is required. In case that such a cell cannot
be found, a new cell is inserted in  immediately,
and instantiated with the correct links.
Thus, the restriction that one place should not be
linked to multiple situations is considered. The coun-
ter direction is of course intended, namely that multi-
ple places are linked to the same light or tough situa-
tion.
Applying the non-spatial mapping technique, a cou-
ple of effects are obtained:

•

 

Compact World Model

 

In a first phase, all three networks grow linear with
the exploration/manoeuvring/navigation time. Af-
ter establishing a sufficient set of light and touch sit-
uations, the growing rates of  and  slow down
significantly. Nevertheless a complete saturation
could not be observed (regarding exploration of un-
limited, unknown terrain). In the performed tests 
reaches approximately 20% whereas  stays at 5%
of the size of the geometric network . 
•

 

Smaller Accuracy

 

Due to the more compact world model, some details
of specific situations will be lost. This effect poten-
tially increases the required accuracy of the position
measurement, because the correlation radius (denot-
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ing the spherical, geometrical area, within a proper
correlation can be performed) will be decreased. On
the other hand, the correlation radius can be manip-
ulated by the network parameters of  and  di-
rectly. Thus, the smaller accuracy regarding the non-
spatial mapping is a less critical effect.
•

 

Global Adaptation

 

The non-spatial mapping results in global adapta-
tion of the world model in every adaptation step, i.e.
the concept of a corner will be learned employing
several examples found at different places in the real
environment. The order of adaptation steps is very
critical in this context, because the global models of
situations can “drift away” when the robot leaves a
specific area for some time. Thus, the global situa-
tion models can be completely inadequate when re-
turning to an area of the operational environment
which was not visited for some time.
A potential but not satisfying solution for the prob-
lems of global adaptation would be an introduction
of a small influence of the cartesian coordinates in
the networks  and . This would be a compro-
mise between the qualitative topological maps and
the non-spatial mapping, but once again almost
identical situations at different areas in the environ-
ments will be stored separately, which does not mean
any principal improvement regarding the QT-maps.
Therefore this solution is not evaluated here, but per-
haps it is worth to keep this possibility in mind con-
sidering concrete, practical applications.

 

4. Experiment

 

In this section, the author tries to emphasize the real
world aspect of the 

 

ALICE

 

 project, i.e. the world mod-
elling should be stable regarding the assumed world.
The behaviour of 

 

ALICE

 

 is documented under a cou-
ple of critical conditions, like inadequate parameters,
certain sensor weights, lost correlation, and dynamic
environments in [7].
The results shown depend critically on the strategy
and order of gathering sensor readings from the ac-
tual environment. The set of strategies (called “ex-
ploration”) applied in these experiments is discussed
in [8].
In a static environment, the world model reaches an
equilibrium state after sufficient exploration of all
available features. 

 

ALICE

 

 needs approximately 15 to
20 minutes to build up a QT-map of the static test en-
vironment. The final state (after gathering 5000 sen-
sor situations) represents the geometric features, the
light distribution as well as a network graph well
suited for the navigator. As introduced in section 3,
the network holds much more information than
shown in the following figures. The cells contain
complete sensor situations together with statistical
values about their history, while the connections are

Nl Nt

Nl Nt
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attributed by degrees of confidence. All this informa-
tion is employed in the planning and execution
(driving) phase of the navigator.
The second example of a developed world model
(shown in figure 2a and figure 2b) demonstrates the
ability to adapt to a changing world. In order to make
the effect obvious, the formerly closed circle in the
environment is cut off at the lower end until the gath-
ering of sensor situation 3500 (figure 2a). Up to this
situation, the world model shows a clear gap in the
lower part. Although the absolute position error be-
tween the two sides of the gap is larger than it would
be without the splitting wall, then gap is closed
smoothly after another 1500 training steps (and of
course, after removing the introduced obstacle). Due
to the careful and smooth removal routines, the two
worlds coexist for a certain time, until the world with
the gap is completely “washed-out”. The navigator
may take advantage from the fact that the confidence
values of the connections distinguish between most
recent and established information. 

 

5. Conclusion

 

Eliminating redundancies by applying the non-spa-
tial mapping methods, memory requirements could
be significantly reduced. This is of special interest in
applications, where the available computational
power or the memory capacity is strictly limited, e.g.
in robots equipped with micro-controllers. On the
other hand, the reader should keep some critical ef-
fects concerning the non-spatial mapping in mind.

Figure 2a: 3500 samples

Figure 2b:  4331 samples

 

The limitation regarding global adaptation will be a
major drawback in some applications. Although the
original method of qualitative topologic method as
introduced in [7] and [8] can be easily handled in us-
ing one standard CPU only, the further reduction in-
troduced in the present paper could open up a wide
range of applications, where only micro-controller
configurations can be employed.
Moreover, both methods (qualitative topologic
world modelling and its extention: non-spatial map-
ping) show superior results, if the main focus is on
simplicity, stability or qualitative aspects of the task.
Especially the small requirements for sensor equip-
ment together with a high degree of robustness is an
unique feature. The experiments have shown real
world abilities offering sufficient information for
navigation purposes as well as a stable self-localiza-
tion method.
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