

Part III

SPIN

57

57

57

57

57

57

Chapter 7

SPIN Structure

The

SPIN

 system (from

S

patial

P

erception to

 I

dentification with

N

eural networks) is suggested as an exam-
ple for the application-related modelling process as introduced in chapter 2. The main purpose is object-
recognition, where the emphasis is on an adaptive recognition process rather than on a specific object-rec-
ognition-task. The symbolic part of the recognition-process is intentionally excluded. Symbolic object rec-
ognition is on the one hand an interesting and still strongly investigated field, but on the other hand too far
from the mobile robot related problems. The principal aspects here are sub-symbolic abstraction in order to
enhance the performance of a following symbolic system. The generated symbols (here: surface-clusters)
produced as the output of the

SPIN

-structure should be representative for the current environment. The im-
portance for mobile robots is obvious, due to the fact that the application-field here are explicitly unknown
environments. Nevertheless such adaptive recognition processes can be used for a wide range of other
tasks. The symbols (in contrast to any set of predefined symbols) can be recognized and reconstructed from
the flow of input data in a very stable, reliable, and reproducible manner, as will be shown below.
The process is based on the data from a high-precision range finder, applied to follow (i.e. to scan) edges in
3-d. The measuring device is mounted on a mobile robot manoeuvring in a structured and moderate dy-
namic environment. “Structured” means the existence of a sufficient number of scannable edges and “mod-
erate dynamic” expresses slow changes. The output is an environment model consisting of convex clusters,
which are generalized, completed and classified. This output model is the base for the interface to a sym-
bolic (classic) object recognition system (not part of the

SPIN

-project).
The

SPIN

-system is completely simulated, in contrast to the modelling levels discussed above in the

ALICE

-
project, where nearly every aspect is tested under real world and realtime conditions. Real world and real-
time aspects of

SPIN

 are mentioned in chapter 5 as well as in the final conclusions (chapter 13).

7.1. Construction Principles (Philosophies)

The system-design is based on some main principles, which have in common that none of them is an obvi-
ous contradiction to biological systems. It is not objected to find the best fitting model for the lower levels
of the mammal object-recognition-system, but obviously implausible features should be avoided. This first
section contains only philosophies, which are used as guidelines in the

SPIN

-project. The following list
should not be considered as definitions but as motivations associated with the introduced keywords.
The actual scope and capabilities are presented in section 7.2 and following chapters.

a.

Realtime Abilities

The time-correctness, i.e. the timeliness of an information or action is a very critical constraint on a mo-
bile robot. The requested adaptability of the whole system must be related to the most recent situation.
Therefore the off-line learning, adaptation or other processes must be avoided or restricted to a mini-

58 Chapter 7 – SPIN Structure

58 Chapter 7 – SPIN Structure

58 Chapter 7 – SPIN Structure

58 Chapter 7 – SPIN Structure

58 Chapter 7 – SPIN Structure

58 Chapter 7 – SPIN Structure

mum, because otherwise the robot has to stop in order to give the internal modelling the change to catch
up with realtime, which is a very inconvenient feature and in a large number of applications simply im-
possible. Thus the selected respectively developed techniques are carefully investigated regarding their
realtime abilities.

b.

Adaptability (Learning)

Building up a really adaptive system means leaving open as much degrees of freedom as possible and
useful. So the main part of the “model-base” or “feature-memory” should be able to learn from its envi-
ronment. Furthermore even the extraction process itself can be adaptive with regard to the current situa-
tion.

c.

Unsupervised Learning

The term “unsupervised” has to be specified in this context. Unsupervised learning is usually assumed
when the learning is only triggered by the flow of examples presented to the network. But someone
could have selected the examples (as positive or negative examples, as to be presented in a special order,
etc. pp.). Is this “selector” not a supervisor?
Here “unsupervised” is used as a synonym for “learning by examples” and the selector of the examples
is the outer world, because all the possible input (scanned scene) of a certain kind available from the en-
vironment is presented (sooner or later) to the learning-units. There is no instance discriminating be-
tween “important” and “unimportant” data from the environment.

d.

Guiding Heuristics

A kind of “soft” selector (a guiding heuristic) of the current learning-sets is tolerated, when it fulfils
some restrictions. A guiding heuristic should prefer some structures, but always in a fair manner, i.e. a
certain constellation is tested first but this has no influence to the fact that all the constellations are test-
ed. So all the guiding rules should be formulated as “Try this set first, but don’t forget to inspect the oth-
er ones afterwards”. This kind of heuristics has no influence to the domain of learnable features, but
some features are learned quicker than others.

e.

Hierarchical & Symmetric Layers

One of the major guiding questions, while constructing the

SPIN

-structure, was “What could be the
next, most plausible level of abstraction?”. So the system was build up bottom-up, without grasping for
really object-recognition results at each individual stage. The resulting structure is pipeline-oriented,
symmetric regarding each wider step and hierarchical.
The general purpose processes (like classification) should be quite similar or identical at several hierar-
chical levels. This means, once the system is able to classify geometric figures, it should not be of signifi-
cant influence, what these geometric elements are at a certain stage.

f.

Feedback

A strict hierarchy is not as useful as it could be, if the different layers are not connected in both direc-
tions. Without this feedback, the layers form a simple pipeline. Two different kinds of feedback are dis-
criminated in the following.

f-1

Error Feedback

The first form of feedback are back-propagated error-messages, which may take effect over multiple
layers in the counter-direction of the data-flow. This error-flow corrects decisions on lower abstrac-
tion levels. Thus there is no need for finding the right answer always or immediately. The most likely
way can be chosen at a certain stage, knowing that there is another instance, which will correct this
decision later, if this way was wrong.

f-2

Point-of-interest Feedback

The other frequently used form of feedback is point-of-interest generation, i.e. here: guiding of low-
er-level units based on higher level knowledge. At the start-up-time of the whole system, each unit is
either waiting for input, or show some activity, initiated only by the local “instinct”. Later, while the
flow of information has reached all components, the activities of lower-level units are more and
more triggered by higher-level components.

59

59

59

59

59

59

g.

Parallelism

The pipeline-organisation of the

SPIN

-system leads to the extensive usage of parallelism. Additionally,
while taking a closer look at the components, there are some more possibilities of parallelism regarding
the single neural nets.

g-1

Parallelism at a coarse granularity

This first form of parallelism is oriented at the abstraction components, i.e. there might be an own
processor or group of processors for each stage in the abstraction pipeline. The flow of data as well
as the error- and the point-of-interest-feedback is buffered between the processing elements and
there are no control packets in the counter directions documenting the processing of the information
(flow-control). The stages represented by one processing element could be any kind of feature extrac-
tor, classification units, etc.

g-2

Parallelism at a fine granularity

Implementing neural nets offers an obvious chance for using parallelism, but in most cases a special
hardware will become necessary. Due to the fact that the available hardware-components are not re-
ally suitable for a wide range of connectionist methods yet (as applied here), the realisation of the
fine granularity parallelism is not part of the current

SPIN

-project.

7.2. SPIN Structure

The

SPIN

-system as it is currently implemented is shown in figure 6. The structure can be divided into the
following sub-systems:

•

The Edge-Surface Detector

This module is the source of all information gathered from the environment. It consists of a freely-con-
trollable laser-range-finder, where several edge-following strategies are applied, in order to scan 3-d
edges in the current environment (see [Schäfer93] for details). The assumption applied is that the cur-
rent environment contains a significant number of scannable edges, or that the scannable edges are
sufficient to build a consistent model of forms or objects. This is usually the case in indoor and espe-
cially in office environments, but it is of course an assumption that can be wrong applied to arbitrary

?

Generalization
Completion!

Surface
Extractor

?

! Classification

Le
ar

ni
ng

M
an

ag
er

Le
ar

ni
ng

M
an

ag
er

Consistency
Checker

Consistency
Checker

Pt. of Interest
Selector

Look!

Found!?

Insert

SelectRemove,
Update

Next abstraction
(symbolic levels)

SPIN

Le
ar

ni
ng

M
an

ag
er

?

!

Extract area

Surface
Extractor

?

Generalization
Completion!

?

! Classification

Le
ar

ni
ng

M
an

ag
er

Le
ar

ni
ng

M
an

ag
er

Le
ar

ni
ng

M
an

ag
er

?

!
ConvexCluster

Extractor

Degree of
recognition

Degree of
recognition

Extract area

Check hallucination Check hallucination

Pt. of Interest
Handler

Point of Interest
Flow

Correct

Pt. of Interest
Map 3-D Reality

Surface
Model

ConvexCluster
Model

Models
&

Maps

Correct

University of Kaiserslautern
Research Group v. Puttkamer

Uwe R. Zimmer
(uzimmer@informatik.uni-kl.de)

more info
needed

more info
needed

Edge-Surface
Detector

Figure 6: SPIN main structure

60 Chapter 7 – SPIN Structure

60 Chapter 7 – SPIN Structure

60 Chapter 7 – SPIN Structure

60 Chapter 7 – SPIN Structure

60 Chapter 7 – SPIN Structure

60 Chapter 7 – SPIN Structure

mobile robot tasks. The other critical assumption is that the accuracy of such a laser-range-finder must
be in a range that enables the following components to calculate curvatures of these edges. This is pos-
sible with state-of-the-art range-measuring-devices, but it can be still critical in specific situations, as
for example measuring distances to specific surfaces or materials in flat angles. The speed of edge-
scanning depends widely on the mechanical construction for the beam-steering, but this will not influ-
ence the principal analysis of such a system as it is shown here. Nevertheless this component will (in
the opinion of the author) be the most critical one, regarding a practical application (see chapter 13 for
a discussion).

•

Models & Maps

The unsupervised building of adequate models and maps from the environment is the main purpose
of the

SPIN

-project. Thus the bar of models in figure 6 is the central structure. The idea is to earn a cer-
tain abstraction from the left to right side, where the left-most model (“

Point of interest map

”) plays a
special role (see below). The first and most immediate model is the “

3-d Reality

” consisting only of
edges scanned in the current environment. Special dynamic data-structures are applied to make the
model efficient (see [Schäfer93] for details). Edges forming a closed polygon are already represented as
surfaces here together with the connectivity information between neighbouring surfaces. The next
model (“

Surface Model

”) consists of completed, generalized and classified surfaces extracted from the
3-d reality model. Significantly different information can be stored here according to the world models
in the several processing steps leading to the surface model (see below for details). The difference be-
tween the models at different abstraction levels leads to a first possibility to trigger or steer the focus of
attention in this system. The

consistency checkers

 between the several stages detect the differences
and try to get an explanation for them. First there can be something missing in the higher model. Thus
a component responsible for extracting features for the pipeline processing towards the next abstrac-
tion level is triggered to check this feature. Second there can be something missing in the lower model
but be represented in the higher one. Obviously this is an hallucination of one of the processing stages,
but it can be a valid or a wrong one. This is checked by a wish for a detailed scan (“check hallucina-
tion”) at this spacial point in the reality (if possible, i.e. for example if the relevant perspective is cur-
rently not occluded). Finally, contradictions (which can be detected) between the models are solved by
eliminating them in the higher model. The third model (“

Convex Cluster Model

”) is the straightfor-
ward expansion to the next higher abstraction step. It is based on the surface model and represents
completed, generalized, and classified clusters of surfaces, which are common in the current environ-
ment. The interface to the following (symbolic object-recognition-) systems has to label these elements
and construct meaningful objects or features out of this model.

•

Abstraction pipelines

Between each two adjacent models on different abstraction levels exists a complete pipeline of process-
ing steps, necessary for the abstraction process. In the current version there are two (very similar) ab-
straction-pipelines to generate the surface-model and the convex-cluster-model. In the first stage the
feature that should be used as the basic element on the next abstraction level has to be extracted. This
selection has a major influence on the whole process, because all the following “learning-by-examples”
pipeline stages are very sensitive to the “boot-strap-phase” (i.e. the first elements to be processed have
a wide impact) and sensitive to the further order of presented examples. Therefore some pre-defined
knowledge is used at this extraction-stage in the form of a neuro-fuzzy system described in chapter 3.
The

generalization

 and

completion

 process is integrated in one pipeline stage, where the best match-
ing (learned) complete surface resp. surface-cluster from the (distributed and adaptive) model-base is
produced as an output. The completion-error measured at this stage (“Degree of recognition”) is em-
ployed as an error-feedback for the feature extraction stage, which can optimize the selection process
according to this signal, after a certain time-delay. The last pipeline stage is the

classification

 part,
which clusters the stream of surfaces respectively surface-clusters. The three pipeline stages are imple-
mented as separate processes, where each stage is approximated using several techniques of learning-
by-examples. The employed techniques will be critically compared during the following chapters.

•

Point-of-Interest System

Each component in the SPIN-structure is allowed to formulate wishes regarding the exploration proc-
ess, sequence or strategy of the environment. This could include requests like “Gather more informa-
tion at a specific area in the environment” or “Check a specific feature respectively hallucination found
during the abstraction process”. All these requests are collected in a “

point-of-interest flow

” and
stored in a “

point-of-interest map

”. The strategies employed for selecting the actual scan area are
called “focus of attention” or “visual search” strategies and will be discussed in chapter 8. In the cur-

61

61

61

61

61

61

rent version the form of requests is limited to an evaluation of specific scan-processes, i.e. each compo-
nent can give a “vote” for the efficiency of an executed edge scanning.

7.3. Edge, Surface Representations

The main data-structure applied in the

SPIN

-project is based on geometric information extracted from
scanned edges. In order to be position- and orientation-invariant, a border-curvature-representation of the
surfaces is chosen. The curvatures are calculated by projecting the border (at each border point) on two or-
thogonal two-dimensional planes and regarding the 2-d-curvatures on these planes (called the surface- and
the segment-curvature). The orientations of these planes are defined at each border point by the orientation
of the local border tangent and the local surface normal: Both planes have to include the border tangent and
one of them (the plane to determine the surface-curvature) has to include the surface normal.
Assuming a parametric form

{x(t), y(t)}

 of a 2-d border fragment, where . The 2-d curvature

k

 of
this fragment can then be defined analytically by:

(3)

where

 and (4)

Defining

; ; ; and (5)

 respectively can be expressed by:

 and (6)

resulting in the final, parametric form of the curvature

k

:

(7)

The curvature

k

 in the form of (7) is very sensitive to noise in the analysed curve. Applying Gaussian kernels
:

(8)

to the input curve, the parametric function

can be expressed by the convolution of

x(t)

 with the
Gaussian kernel:

(9)

Analogous can be derived from

 y(t)

. The smoothed curvature is then given by:

(10)

where

; ; ; and (11)

Due to the fact that the underlying sensor-samples, on which all these calculations are based on are very
sparse, these plane-orientations together with the resulting curvatures are approximated with simple dis-
crete techniques [Schäfer93], [Stecher94] or generated directly in simulations [Keuchel92], [Trundt94].

t 0 1,[]∈

k
y''

1 y' 2+
=

y'
dy
dx

= y''
d2y

dx2
=

ẋ
dx
dt

= ẋ̇
d2x

dt2
= ẏ

dy
dt

= ẏ̇
d2y

dt2
=

y' y''

y'
ẏ
ẋ

= y''
ẋẏ̇ ẏẋ̇−

ẋ3
=

k
ẋẏ̇ ẏẋ̇−

ẋ2 ẏ2+() 3 2⁄
=

g t σ,()

g t σ,()
e

t2

2σ2
−

σ 2π
=

X t σ,()

X t σ,() x t() g t σ,()⋅ x u()
e

t u−() 2

2σ2
−

σ 2π∞−

∞

∫= =

Y t σ,() kσ

kσ
ẊẎ̇ ẎẊ̇−

Ẋ
2

Ẏ
2+()

3 2⁄
=

Ẋ x t()
∂g t σ,()

∂t
⋅= Ẋ̇ x t()

∂2g t σ,()

∂t2
⋅= Ẏ y t()

∂g t σ,()
∂t

⋅= Ẏ̇ y t()
∂2g t σ,()

∂t2
⋅=

62 Chapter 7 – SPIN Structure

62 Chapter 7 – SPIN Structure

62 Chapter 7 – SPIN Structure

62 Chapter 7 – SPIN Structure

62 Chapter 7 – SPIN Structure

62 Chapter 7 – SPIN Structure

Each surface is then described by the concatenation of two vectors; one consisting of the surface-curvatures
at

m

1

 equidistant points along a whole cycle along the border and another consisting of the segment-curva-
tures at

m

2

 equidistant points along the same distance. The maximum number of curvature sample points
along the border is limited by the sampling rate of the range-finder, which has scanned the surface edges.
This surface vector-representation is based on the assumption that the form of a surface is sufficiently de-
scribed by the curvatures at its border, i.e. any characteristics e.g. at the middle of the surface are not detect-
ed at all. The motivation for this assumption is first observed and described by Attneave in [Attneave54],
postulating that information on the shape of a curve is concentrated at dominant points with high curva-

Figure 7: 3-d sample object

100°
45°

140°

❶

❷

❸

y

x

z

❶

❷
❸

z

x
y

z

y

x

Figure 8: Segment and surface curvatures

ϕ

-180°

+90°

+90°

+180°

0° 45° 90° 135° 180° 225° 270° 315° 360°

ϕ

γ

-180°

+90°

0°

+90°

+180°

0° 45° 90° 135° 180° 225° 270° 315° 360°

Surface curvature

❶

Segment curvature

γ
0°

❶

ϕ

γ

-180°

+90°

0°

+90°

+180°

0° 45° 90° 135° 180° 225° 270° 315° 360°

❷

ϕ

γ

-180°

+90°

0°

+90°

+180°

0° 45° 90° 135° 180° 225° 270° 315° 360°

❷

Surface curvature

Segment curvature

63

63

63

63

63

63

ture. Later on, Hubel and Wiesel ([Hubel68], [Hubel65], [Hubel62], [Hubel59]) discovered structures in the
receptive fields of the cat's and monkey's visual cortex, based on contrasts (and specific filters) instead of
absolute values, which make the employment of (higher) derivatives in visual processing biologically plau-
sible.

As an example of this technique, two surfaces of the 3-d object from figure 7 are represented with their bor-
der-curvatures as shown in figure 8.

A discussion of other classical methods like Fourier descriptors or invariant moments for the description of
2-d curves can be found in [Bebis91]. For the special

SPIN

 sub-task concerning surface completion, frequen-
cy coding (Fourier transformation) has been applied also (see [Grund93]).

7.4. Discussed Modules (the following chapters)

Four characteristic modules out of the

SPIN

-system will be carefully discussed in the following chapters.
Each of these modules represents another connectionist concept, but all of them fulfil the requirements pos-
tulated above. Some of the discussed techniques (visual search and surface fusion) are especially designed
for the

SPIN

-project and published in this thesis for the first time (beside the already published articles men-
tioned in the beginning of this thesis). One further neural concept (Adaptive Resonance Theory) is well-
known but applied to specific problems in the sub-symbolic object recognition field (surface-cluster classi-
fication). Finally, one module (surface classification) represents a significant expansion of an already intro-
duced technique. The discussed

SPIN

-components are mentioned according to their order in the processing-
pipeline (figure 6).

Visual Search

The visual search method presented in chapter 8 suggests a new framework for selective attention strate-
gies. A new clustering technique, especially adapted for realtime representations of spacial densities of sam-
ples is employed for the selective attention sub-system. In order to be able to interrupt ongoing search pro-
cedures, a fast reinforced learning component is applied driven by the feedback from the following
consuming components in the processing-pipeline.

Surface Fusion

The process of producing “acceptable” surface representations from scratch on, before an adaptation to the
current environment could take place, is a very critical task. Therefore a neuro-fuzzy-system is proposed
here, which composes the possibility of formulating coarse a-priori knowledge together with a precise ad-
aptation phase during the application. The neuro-fuzzy-decision-system (called

SPIN-NFDS

 in the follow-
ing) demonstrates very promising features, which will be discussed and compared to other recent ap-
proaches in chapter 3.

Surface Classification

Multiple approaches regarding the surface classification problem have been tested in the

SPIN

-project. The
first tested technique is the GAL (Grow-And-Learn) model by Alpaydin [Alpaydin91] applied to the

SPIN

surface classification task in the thesis from Sigmann [Sigmann93]. A generalization-tree approach based
on unsupervised competitive neural network is discussed in the thesis of Klapper [Klapper93]. Finally,
“problem dependent cell structures” (or “dynamic unsupervised clustering techniques”) based on the ideas
presented in [Fritzke91a], are applied and specifically expanded regarding the surface-classification task.
This work will be shown and discussed in chapter 4.

Surface-Cluster Classification

Classification of surface-clusters is very similar to the classification of single surfaces. The main differences
are the feature vector and the “natural” expectations. Test-runs have been done by Wagner regarding the
set of useful and significant features describing surface-clusters in a compact and fixed-length form [Wag-
nerM93]. The several feature vectors are tested with the dynamic unsupervised clustering-network present-
ed in [Zimmer93b]. The simulations shown in chapter 11 concentrate on the ART 2 respectively on the ART-
2A approach proposed by Carpenter and Grossberg (e.g. [Carpenter91b] or [Carpenter87a]).

64 Chapter 7 – SPIN Structure

64 Chapter 7 – SPIN Structure

64 Chapter 7 – SPIN Structure

64 Chapter 7 – SPIN Structure

64 Chapter 7 – SPIN Structure

64 Chapter 7 – SPIN Structure

7.5. Other SPIN-Investigations

The

SPIN

-project is discussed on the base of selected (key-) modules. Thus the reader is asked to refer to the
following list of other investigations in the context of

SPIN

 for any further information. The list is related to
the order of processing in the

SPIN

-pipeline:

•Generation of an 3-d world model and adequate control of a laser range finder: [Schäfer93]

•Efficient geometric world modelling: [Stecher94]

•Selective attention strategies for active surface completion: [Nölke94]

•The extraction of surfaces: [Stecher92]

•A neural fuzzy decision system: [Bruske93b]

•Completion of 3-d surfaces with multi-layer backpropagation networks and frequency coding:
[Grund93]

•Generalization and completion of surfaces with multi-layer backpropagation networks: [Trundt94]

•Classification of surfaces on the base of generalization trees and unsupervised neural networks:
 [Klapper93]

•Dynamic surface classifications on the base of “Grow and Learn” (GAL) from Alpaydin [Alpaydin91]:
[Sigmann93]

•Dynamic classification of surfaces with growing cell structures: [Keuchel92]

•Dynamic classification of surface-clusters on the base of Adaptive Resonance Theory (ART): [Keu-
chel94]

•Dynamic classification of surface-clusters with problem dependent cell structures: [WagnerM93]

All these works were guided and supervised by the author.

65

65

65

65

65

65

Chapter 8

Visual Search

Visual Search has been investigated by many researchers inspired by the biological fact, that the sensory
elements on the mammal retina are not equably distributed. Therefore the focus of attention (the area of the
retina with the highest density of sensory elements) has to be directed in a way, gathering data efficiently
according to certain criteria.
The work discussed in this chapter concentrates on applying a laser range finder instead of a silicon retina.
The laser range finder is maximal focused at any time, but therefore a low-resolution total-scene-image,
available with camera-like devices from scratch on, cannot be used here. By adapting a couple of algo-
rithms, the edge-scanning module steering the laser range finder is able to trace a detected edge. Based on
the scanned data, two questions have to be answered. First: “Should the actual (edge-) scanning be inter-
rupted in order to give another area of interest a chance of being investigated?” and second: “Where to start
a new edge-scanning, after being interrupted?”.

These two decision-problems might be solved by a range of decision systems. The correctness or efficiency
of the decisions depends widely on the actual environment and the underlying rule-base may not be well
initialized with a-priori knowledge. In section 8.1 the author will present a version of a reinforced decision
system together with an overall scheme for efficient control of highly focused devices.
Another aspect of visual search consists of local search strategies in order to gather relevant data from a cer-
tain (small) area efficiently. When applying standard control theory to the tracing component of the edge-
scanner, the system is usually lost, whenever smaller or larger “gaps” have to be overcome along an edge.
These gaps can occur rather often, because any disturbance of the high-precision range-finder, any kind of
occlusion, or any edge-part with “uncooperative” angles will result in misses. For detailed descriptions of
such problems please refer to [Schäfer93]. An approach to overcome this dilemma is discussed in section
8.2.
The implementation of several reinforcement models together with extensive test environments are per-
formed by Nölke [Nölke94] and Stecher [Stecher94].

8.1. Efficient Visual Search

Visual Search is a dynamic research field, investigated by researchers from many different disciplines. The
author will highlight only some main work concerning efficient visual search and applying connectionist
techniques (mainly self-organizing feature maps).
Ahmad and Omohundro have presented a multi-feature-map-system being able to search for and to locate
target objects with certain features (namely equilateral triangles, [Ahmad90]) in static camera images and
(more general) to detect feature correspondences between a camera frame and a model space ([Ahmad91],
[Ahmad94]). Marshall ([Marshall93b], [Marshall91a]) has shown general techniques to handle context-sen-

66 Chapter 8 – Visual Search

66 Chapter 8 – Visual Search

66 Chapter 8 – Visual Search

66 Chapter 8 – Visual Search

66 Chapter 8 – Visual Search

66 Chapter 8 – Visual Search

sitive problems like trajectory tracing, grouping and steering in visual motion perception with the “EXIN”-
network.
The visual search system presented here is mainly conceived as a support system for geometric environ-
ment abstractions on an autonomous mobile robot

1

.

8.1.1. Concepts and Structure

The main structure is based on the decomposition in three main parts as shown in figure 9:

•An (to a certain degree autonomous)

edge-scanner

, which is able to perform 3-d edge-following. Be-
ginning at a given starting point, the edge-scanner finds recursively all edges, which are noticed while
following the current edge. The result is the edge/surface map (denoted “3-d reality” in the

SPIN

-over-
view from section 7.2 on page 59), which represents discrete orientations and curvatures of all scanned
edge-fragments.

•Based on the edge/surface-map a long

pipeline of abstraction steps

 (up to a generalized, completed
and classified cluster representation, which will be used by a symbolic level) follows. The “efficiency”

2

of the actual data-flow is measured at each stage.

•Finally the edge-scanner is controlled by the

focus-of-attention manager

, whose decisions are based
on the efficiency feedback from the abstraction pipeline. The control task is divided into two sub-mod-
ules: The

area-of-interest generator

, which selects a region in the actual environment where an effi-
cient knowledge accumulation might be likely, and a “disturbance module” called

restlessness
generator

, which determines when to choose a new target area.

In the next two sections the author will focus the discussion on these two decision sub-modules.

8.1.2. Area-of-Interest Generator

The area of interest is selected on the basis of statistical information about the environment. The statistical
information includes spacial densities of edges, free-space and unknown regions. In order to collect and
represent these densities, a special, dynamic self-organizing map with 3-dimensional simplexes (tetrahe-
drons) is used as the basic structure. The simplexes divides the space in Voronoi regions, attributed with

1. see [Zimmer93a], [Zimmer93b] respectively chapter 7 for more information about other parts of the

SPIN

-project
2. a term which has to be determined by each individual abstraction step

Edge Scanner

Focus-of-Attention
Manager

Area-of-Interest
Generator

Clustering

Restlessness
Generator

Feature Extr.

Higher
Abstraction

Levels

Stop! Feed-
back

Raw data
Edges

Scan!

Efficiency
Feedback

Edge/Surface
Map

Ready!

Look! Feed-
back

 }
Figure 9: Focus of attention system

67

67

67

67

67

67

information about the amount of sensor data collected in this region as well as different densities (edges/
free-space). The specific attributes attached to each voronoi-region (cell)

c

 are:

•The mean quantification error accumulated with each classification step referring to the cell

c

.

•The mean quantification error accumulated during the last

t

 classification steps referring to

c

.

•The mean distance to neighbouring cells as an approximation for the size of the voronoi-space rep-
resented by

c

.

•The number of occupied points represented by

c

.

•The number of free-space points represented by

c

.

The network is adapted by replacing single cells with new simplexes or by fusing neighbouring simplexes,
according to the following criteria:

Insertion

• ; where controls the relative cluster-granularity and limits the lower size of the
cell's voronoi region. This condition is applied to detect situations, where the number of representa-
tives is too low in a specific region.

• . Each time a cluster has to represent occupied and free space at the same
time, the region is split.

The insertion process itself is outlined in figure 10, where a cell representing occupied space is forced to rep-
resent free-space also, and is therefore replaced by a new simplex. For clearness, triangles are used as sim-
plexes in a two-dimensional input space, but the reader should keep in mind that these simplexes are usu-
ally of a higher dimension.

Fusion

•Assuming a simplex

S

 with cells , …, .

S

 is fused to a single cell, if:

(12)

i.e. the number of updates during the last

t

 steps is low and

S

 represents only free space or only occu-
pied space. Moreover, in order to keep a structure of simplexes, a re-ordering must take place or the fu-
sion process must be restricted to simplexes with only one connection to the remaining graph. In the
current version a re-ordering of any kind is not implemented.

For other insertion/fusion criteria please refer to [Stecher92].
This unsupervised process gives the needed input for the area-of-interest selection. Up to now the decisions
are done by simple heuristics (search strategies), without using the efficiency feedback from the higher ab-
straction levels. In several tests the number of scanned edges/surfaces is significantly increased (in com-
parison to recursive edge-following) only by applying the clustering together with simple heuristics, but
even more can be achieved by using the restless-generator, whose decisions are already based on the effi-
ciency feedback (see next section).
This module is actually a framework for search strategies, which are adapted manually to the needs of the
abstraction pipeline. Although the results are already encouraging, it is planned to

select

 the search strate-

τ c

τ c
t

Fc

τ c
o

τ c
f

τc λ>() Fc ε>()∧ λ ε

τc
o 1>() τ c

f 1>() Fc ε>()∧ ∧

(0;4)

(5;0)

(6;0)

(0;4)

(5;0)

(3;0)

(3;0)
(0;1)

(;)

new free-space point

Figure 10: Replacement of a cell with a simplex

c1 cn

maxc
i

S∈ τ c
i

t() τε<() τ c
i

o

i 1=

n

∑ 1<
 
  τc

i

f

i 1=

n

∑ 1<
 
 ∨

 
 ∧

68 Chapter 8 – Visual Search

68 Chapter 8 – Visual Search

68 Chapter 8 – Visual Search

68 Chapter 8 – Visual Search

68 Chapter 8 – Visual Search

68 Chapter 8 – Visual Search

gies by a reinforcement system (as applied in the restlessness generator) as well as a neural fuzzy decision
system (

SPIN-NFDS

 [Zimmer93a] respectively chapter 3) for a further improvement of this task.

The tests with several search strategies seem to imply that the key issue of our visual search scenario is an
adequate clustering rather than a sophisticated search heuristic.

8.1.3. Restlessness Generator

Due to the fact that one edge scan may acquire a lot of time gathering information of low use for a certain
application (e.g. scanning walls), a module is introduced, which interrupts the actual scanning in order to
give another (perhaps more productive) area in the environment the chance of being explored. In contrast
to camera based systems, allowing the usage of the whole (low resolution) scene for this decision, the highly
focused laser range finder delivers only information about the currently scanned edge. Therefore the fea-
tures used for the decision are exclusively extracted from the current flow of laser-measurements:

•The length of the currently scanned edge.

•The sum of the absolute angles between the currently scanned edge-fragment.

•The mean distance between the edge and the background.

•The number of retries during the edge-scanning (the edge may be “lost” during the trace-procedures).

In order to keep the input space small, only these four statistical features are applied, despite the fact that
many others could be introduced.

According to the reinforcement learning scheme shown in figure 11, an action probability vector is defined
consisting of the different possible actions attributed with the probability this action should be chosen. The
actions used here are: “Stop scanning immediately” and a couple of “Try another

x

 elementary measure-
ments, before asking me again”. The probability attributes are generated by an associative memory module.
A dynamic supervised feature map system is used (Growing cell structures [Fritzke93c]) instead of multi-
layer backpropagation or cascade correlation, because of the high stability and adaptation speed.

To allow trials with the several strategies, the final action selector determines the action to test by the action
probabilities and a random number generator. This prevents that the action with the highest probability is
chosen always and therefore that a continuous “gradient decent” will go down the first path chosen ran-
domly at system start time.

The feature vector, the action probability vector together with the selected action, and the efficiency feed-
back is used to adapt the mapping in the associative memory. The probability of the selected action is in-
creased respectively decreased by a certain factor according to the efficiency feedback and finally the other
probabilities are scaled in order to keep the sum of all probabilities one.

The number of found and useful edges is increased in any of our tests applying this module, whereas the
amount of improvement depends widely on the actual environment. Therefore the author is limited to qual-
itative results here.

Action
Selector

Associative
Memory

Reinforcement Learning
Manager

Environment

Feature vector

Action probability vector

Action!

Feedback

Adapt!

Figure 11: Reinforcement learning

69

69

69

69

69

69

8.2. Adaptive Surface Completion

Whenever the scanner has lost its track along an edge, and even adaptive control strategies are not able to
continue the scan originating from the last detected edge-part, a heuristic is needed to guess a likely con-
tinuation in a certain distance. The approach shown here is based on a fixed set of continuation strategies
and a reinforced learning system for the selection of the most promising strategy. The general structure is
shown in figure 12, where the reinforcement learning component is identical to the system shown in section
8.2. The incompletely scanned edge is represented by its curvatures as introduced in section 7.3. The mem-
ory module associates a probability vector consisting of seven entries, each attached to a scan-continuation
strategy (i.e. a set of seven strategies is used during the tests). According to the probabilities, one of these
strategies is applied in the edge-scanning module. The evaluation can be done immediately and gives a bi-
nary feedback, i.e. the strategy has found the lost edge again or not. Due to the actual feedback, the proba-
bility for the selected strategy is slightly incremented or decremented and the rest of the vector is scaled to
keep the sum of probabilities one. The new probability vector is trained together with the appertaining edge
representation. Once again the associative memory is implemented on the base of the supervised growing
cell structures [Fritzke93b]. Thus the learning times are mainly determined by the number of steps in the
reinforcement phase, i.e. especially not by the adaptation times of the associative memory. Each reinforce-
ment step results in an experiment in the real world, i.e. the number of learning steps is critical in a real
world application. On the other hand, there are no distinct learning and execution phases. Therefore the
system is applied continuously, where the only change should be that the number of misses is going down
continuously in a static environment. This continuous optimization can be shown applying a fixed learning
set

3

. The error concerning a single training sample is measured in the following terms:

(13)

where is the training sample;

S

 is the set of strategies;
 is the probability for strategy

i

 applying sample ; and the feedback is given by:

(14)

Accordingly the error for a whole learning set

T

 is defined by the mean error:

3. Minor drawbacks during the learning phase stems from the original removal strategy defined in “growing cell structures”
[Fritzke93c] and could be easily avoided applying removal strategies shown in [Zimmer93b] and section 4.1.2.

Figure 12: Selective Attention Structure

Action
Selector

Associative
Memory

Reinforcement Learning
Manager

Environment

Scanned edge

Action probability vector

Number of strategy

Feedback (found?)

Adapt!

Edge-Scanner

Set of Strategies

Eξ 1 pi ξ() fi ξ()⋅()
i S∈
∑()−=

ξ
pi ξ() ξ f i ξ j()

fi ξ() 1 strategy i succeded for sample ξ;
0 strategy i missed for sample ; ξ




=

70 Chapter 8 – Visual Search

70 Chapter 8 – Visual Search

70 Chapter 8 – Visual Search

70 Chapter 8 – Visual Search

70 Chapter 8 – Visual Search

70 Chapter 8 – Visual Search

(15)

The following experiment is based on ten surfaces of different shapes cut at random border positions. Due
to the fact that the emphasize is not on sophisticated continuation strategies, but on the selection of these
strategies on the base of a reinforced learning system only 2-d surfaces and strategies are applied. The seven
used continuation strategies are very simple (e.g. reproduce the last

x

 edge-segments, or look at the middle
of the current gap, etc.). The several windows shown in figure 13 represent the reinforcement learning stag-
es after certain numbers of learning steps, where the small circles in the upper right corner above each sur-
face fragment represent (with the dark parts) the current error-rate of the system regarding that surface
fragment. In the beginning the error-rates are rather high (50-90%). Some of the surfaces can be attached to
a good continuation strategy during the first learning steps, where others need several trials with different
strategies, before a adequate one can be identified after 5000-7000 learning steps. But still there are some
surfaces (one in the example from figure 13), where no working continuation strategy could be found in the
current set. The only and obvious way to overcome this weakness is to add further algorithms to the set of
strategies. But the focus of this experiment is the continuous decrease of the global error i.e. especially not
the elimination of each individual error in all configurations. The global error in the shown test is below
10% in the final stage, where some surfaces are better than 3% and one is at 60% error rate. The shown ex-

ET 1
1
T

pi ξ j() f i ξ j()⋅()
i S∈
∑

j T∈
∑()−=

0 learning steps

1000 learning steps

3000 learning steps

5000 learning steps

6800 learning steps

Figure 13: Reinforcement learning on 10 surface fragments

71

71

71

71

71

71

periment is representative for the family of simple surfaces (like Polygons and Ellipses) cut at random bor-
der positions. The mean number of learning steps for a test-set with randomly cut surfaces is 4280 with a
standard derivation of 882, where the tests are stopped when the global error rate is below 10%. The deri-
vation is descended from the indeterminism in the action selection module as well as in the order of pres-
entation and positions of gaps of the surfaces.

8.3. Real World Remarks

The components discussed in this model are very closely related respectively connected to the “real world
(interface)”. Moreover and more specifically, the adaptations are done in close cooperation with the imme-
diate reactions from the environment. The actual environment plays therefore an important role for the
methods presented in this chapter. On the other hand all the tests are done on the base of simulations, due
to the fact that nor an adequate range finder neither a steering mechanism were available. For this reason,
the relevance of the components is questionable, whereas the key issue is not only the real world test itself,
but also the definition of representative test-environments. The author could show a qualitative, positive
impact of the discussed methods in simple, simulated environments. Depending on the configuration, this
impact is very encouraging, but the reader should keep in mind, that the relevance has to be discussed again
with regard of more realistic sensor models or specific environments. The author has currently no concrete
idea about these critical configurations, but their existence could not be excluded.
Some discussed parts contain large degrees of freedom (especially where sets of algorithms or strategies can
are handled) and can thus be used as a general framework for visual search strategies applied to highly fo-
cused devices. The actual (realistic) sensor model will have a strong impact on the (reduction of the) degrees
of freedom for an applicable visual search system.

73

73

73

73

73

73

Chapter 9

Surface Fusion

The task to be discussed in this chapter may be characterized in short by the question: “Given the represen-
tation of two surface fragments, decide whether they originally belong together (i.e. form one surface) or
not?” (figure 14). This problem appears as a part of the surface extraction process described above. The sur-
face representation used here is the common representation as defined in section 7.3. Because of the fact,
that the surface extraction is the first stage in the surface-processing-pipeline and all further components
are only trained by the flow of presented surface examples, implausible surfaces should be avoided here at
all times. This does not imply that learning techniques cannot be used here, but that a technique has to be
found using preset knowledge as a well defined initial state of our decision system.

As the basis for the decision process, features need to be defined, which have to be extracted from the two
surface fragments. The optimal decision function, which is able to find the correct answer in any case, can-
not be found for principal reasons, like the fact, that the decision process is highly context-dependent,
whereas the decision component has no access to the complete context in a real world. Therefore the com-
plete set of features, which would be sufficient for an optimal decision system, cannot be constructed ex-
plicitly. But a basic-set of features for a well defined statistically based system will be defined in the follow-
ing. For an illustration of the following features see figure 15.

•

Real-edge-curvature differences

(recd

a

, recd

b

)

A finite part of the edges (

e

1a

, e

2a

) is defined on both sides of the obscured area. The mean-curvature is
calculated at each edge-part and the difference between them is used as the first feature (

recd

a

). The
other curvature difference (

recd

b

) is calculated analogous for the second pair of edge-parts (

e

1b

, e

2b

).

•

Obscured-edge-curvature difference

 (oecd)

The mean-curvature along the obscured edge of one surface fragment is either calculated on the basis
of measurements along this virtual edge

o

1

, or by interpolating the surface-orientations at the end
parts of the real edges (

e

1a

, e

1b

). The difference between these curvatures at the obscured edges

o

1

 and

o

2

 is used as another measurement for similarity at the critical surface parts.

Figure 14: The surface fragmentation problem

?

74 Chapter 9 – Surface Fusion

74 Chapter 9 – Surface Fusion

74 Chapter 9 – Surface Fusion

74 Chapter 9 – Surface Fusion

74 Chapter 9 – Surface Fusion

74 Chapter 9 – Surface Fusion

•

Extrapolation distances

(d

1a

, d

1b

, d

2a

, d

2b

)

An extrapolation of the edge-end parts

e

1a

 and

e

2a

 is determined and the minimal distance between the
extrapolation of

e

1a

 and the endpoint

p

2a

 respectively the distance between extrapolation of

e

2a

 and the
endpoint

p

1a

 is calculated (resulting in

d

1a

 and

d

2a

). Analogous the distances

d

1b

 and

d

2b

 are calculated
at cut

b

.

•

Extrapolation-angle differences

 (

δ

1a

,

δ

1b

,

δ

2a

,

δ

2b

)

The orientation of the extrapolation at the point of minimal distance to the referring endpoint is calcu-
lated and compared to the edge-orientation at this end-point itself. All four extrapolations are handled
by this procedure resulting in four extrapolation-angle differences

δ

1a

,

δ

1b

,

δ

2a

,

δ

2b

.

The feature extraction procedures as defined above are not directly applicable. The number of orientation-
measurements per edge-length is quite low, because of the complex and time-consuming techniques need-
ed to trace 3d-edges with a laser-range-finder. So the useful kinds of extrapolations are limited to simple
methods. For the discrete formulations please refer to [Bruske93b].

9.1. Learning as well as Preset Knowledge

As a motivation for the kind of decision systems presented later in this chapter, the main problems and ad-
vantages of knowledge-based and learning system in our context will be discussed first. The learning sys-
tem discussed here is the well known multi-layer-backpropagation-system (MLBP) and the knowledge-
based system is a fuzzy logic system, introduced in detail in the next chapter. The fuzzy logic system is em-
ployed as a non-linear method, mapping exact input to exact output information, i.e. especially not as a
method handling non-quantitative, linguistic information.

The central problem using the MLBP-technique is the missing a-priori ability to find acceptable decisions
from scratch on. This is the main argument, why such techniques cannot be applied to the surface-fusion
task. The generally long learning periods of MLBP-systems makes this problem even worse. On the other
hand fuzzy logic systems have full abilities at any time and they do not need any learning periods at all, but
at least in our surface-fusion task they reach only a poor level of correctness in comparison to a well adapted
MLBP-system.

Based on the two main advantages (ad-hoc abilities of the fuzzy logic system and low error-rates of the
MLBP-system) of the two considered techniques, a combination of both will be constructed, called a Neu-
ral-Fuzzy-Decision System (NFDS). The central idea is to derive a multi-layer-feed-forward network as an
implementation of a predefined fuzzy-logic system and to adapt this rough decision system by back-prop-
agation-learning on examples from the current environment. In the best case the resulting decision-system
will offer ad-hoc abilities and the possibility of reaching lower error-rates in a short learning period (table
1). It will be shown in section 9.3 on page 137 that the simulations generally indicate this optimal behaviour.

δ1a

d1a

d2a

da

o1o2

e1b

e2b Fragment1

Fragment2

Figure 15: Feature Extraction

e1a

e2a

Cut b

Cut a

p2a
p1a

75

75

75

75

75

75

9.2. Known Neural-Fuzzy-Combination Techniques

This chapter gives a short survey of some existing Neural-Fuzzy-Decision-Systems

4

. In order to find a com-
mon terminology for the several approaches some definitions are given in the first part. Finally two of the
most recent technologies (NARA and NNFCDS) are presented and discussed in this section. Other models,
not discussed here can be found in [LeeCC91], [Jang92a], [Giles93], and [FuHC94].

9.2.1. Definitions

The well known concept of a

multi-layer-feed-forward network

 with adaptation by

backpropagation

 do
not need a further formalisation. Please refer for a short and precise introduction to [Hertz91] pp. 115-130
or for a more general presentation to [Rumelhart85] vol. 1 pp. 318-362.

A quite different impression may be got, when trying to find a common notation for the family of rule-based
systems called “

Fuzzy Logic

”. There are a lot of hard to match terminologies, so the author is forced to give
a small set of definitions in order to make a common base available for the following models.

9.2.1-1 Triangular Norms

In the following several triangular norms will be employed, which have in common that they are all two-
placed functions from [0, 1]

×

 [0, 1] to [0, 1].

Definition 1:

The operator “

⊗

” represents one of the following triangular norms:

(

intersection

) (16)

(

algebraic product

) (17)

(

bounded product

) (18)

(

drastic product

) (19)

where

(20)

4. also denoted as “Neural-Networks designed on Approximate Reasoning”, “Adapted-Network-Based Fuzzy Inference Sys-
tem”, “Neural-Network-Based Fuzzy Logic Control and Decision System”, “Back-Propagation Fuzzy System”, “Rule-Based
Network-Architecture” and several others.

Learning Systems
(Multi-Layer-BP)

Neural-Fuzzy-

Decision-System

Knowledge-Based
(Fuzzy Logic)

No

a-priori abilities

Ad-hoc abilities

Ad-hoc abilities

Long

learning periods

Shorter
learning periods

No
learning periods

Low
error-rates

(after learning)

Low
error-rates

(after learning)

High

error-rates

Table 1:

A comparison between learning and knowledge-based systems

x y∧ min x y{ , }=

x y⋅ xy=

x ⋅ y max 0 x y 1 −+ { , } =

x ∩ y
x y

1

=;

 y x 1 =;

0

x

;

y

,

1

<



=

x ∩ y () x ⋅ y () x y ⋅() x y ∧()≤ ≤ ≤

76 Chapter 9 – Surface Fusion

76 Chapter 9 – Surface Fusion

76 Chapter 9 – Surface Fusion

76 Chapter 9 – Surface Fusion

76 Chapter 9 – Surface Fusion

76 Chapter 9 – Surface Fusion

Definition 2:

The operator “

⊕

” represents one of the following triangular co-norms:

(

union

) (21)

(

algebraic sum

) (22)

(

bounded sum

) (23)

(

drastic sum

) (24)

where

(25)

The triangular norms “

⊗

” are employed for defining conjunctions in approximate reasoning, while the tri-
angular co-norms “

⊕

” serve the same role for fuzzy disjunctions.

9.2.1-2 Fuzzy Sets and Set Theoretic Operations

Definition 3:

A

fuzzy set

F

 in a universe of discourse

U

 is characterized by a

membership function

M

F

:

 U

 →

 [0,1]. A fuzzy set

F

 in

U

 may be represented as a set of ordered pairs of a generic element

u

 and
its grade of membership:

F

 = {[

u

,

M

F

(

u

)] |

u

∈

U

}. (26)

Definition 4:

A

fuzzy number

 in a continuous universe

U

 is a fuzzy set

F

 in

U

 which is

normal

 and

convex

:

max

 {

M

F

(

u

),

u

∈

U

} = 1 (normal) (27)

M

F

 (

λ

u

1

 + (1 -

λ

)

u

2

)

≥

min

 {

M

F

 (

u

1

),

M

F

 (

u

2

)}

∀

u

1

,

u

2

∈

U

; 0

≤

λ

≤

 1 (convex) (28)

Definition 5:

The

support of a fuzzy set

F

 is the set of all

u

∈

U

 such that

M

F

(u)

 > 0.

Definition 6:

A

fuzzy singleton

 is a fuzzy set whose support is a single

u

∈

U

 with

M

F

(u)

 = 1.

Let A

,

B

 be two fuzzy sets in

U

, and

A

1

, …,

A

n

 fuzzy sets in

U

1

, …,

U

n

 in the following.

Definition 7:

The

union

A

∪

B

 is characterized by the membership function

M

A

∪

B

 with:

M

A

∪

B

 (

u

) =

max

 {

M

A

 (

u

),

M

 B

 (

u

)},

∀

u

∈

U

(29)

Definition 8:

The

intersection

A

 ∩ B is characterized by the membership function MA ∩ B with:

MA ∩ B (u) = min {MA (u), M B (u)} or (30)

MA ∩ B (u) = MA (u) ⋅ M B (u), ∀ u ∈ U (31)

Definition 9: The complement is characterized by the membership function with:

(32)

Definition 10: The cartesian product A1 × … × An in the product space U1 × … × Un is characterized by the
membership function with:

 (u1, …, un) = min { (u1), …, (un)} or (33)

 (u1, …, un)= (u1) ⋅ … ⋅ (un), ∀ (u1, …, un) ∈ U1 × … × Un (34)

Definition 11: An n-ary fuzzy relation R is a fuzzy set in U1 × … × Un and is expressed as:

 = {[(u1, …, un), MR (u1, …un)] | (u1, …, un) ∈ U1 × … × Un} (35)

Let R be a fuzzy relation in U × V and S a fuzzy relation in V × W.

Definition 12: A sup-star composition of R and S is a fuzzy relation denoted by R•S with:

R•S = {[(u, w), {MR (u, v) ⊗ MS (v, w)}] | u ∈ U, w ∈ W} (36)

where “⊗ ” can be any operator in the class of triangular norms (see definition 1).

x y∨ max x y{ , }=

x ✛ y x y xy −+=

x ✛ y min 1 x y + { , } =

x ∪ y
x y

0

=;

 y x 0 =;

1

x

;

y

,

0

>




=

x y∨() x ✛ y () x ✛ y () x ∪ y ()≤ ≤ ≤

A M
A

M
A

u() 1 MA u()−=

MA1 … A1n××

MA1 … A1n
×× MA1

MA
n

MA1 … A1n
×× MA1

MA
n

RU1 … U
n

××

supv V∈

77

77

77

77

77

77

9.2.1-3 Fuzzy Implications

In order to define a complete fuzzy decision system, several techniques implementing fuzzy-implications
have to be introduced. Since the introduction of fuzzy-logic (see e.g. chapter "[Zadeh73]"), nearly 40 distinct
fuzzy implication relations have been proposed for different applications (see chapter "[LeeCC90b]" for
most of the references). Most of the approaches may be classified into the following three categories. Let

A

respectively

B

 be a fuzzy set in

U

 respectively in

V

.

Definition 13:

The

fuzzy conjunction

 is defined by:

(37)

where “

⊗

” can be any operator in the class of triangular norms (see definition 1).

Definition 14:

The

fuzzy disjunction

 is defined by:

(38)

where “

⊕

” can be any operator in the class of triangular co-norms (see definition 2).

Definition 15:

The

fuzzy implications

 are classified into five groups:

(

Material implication

) (39)

(

Propositional calculus

) (40)

(

Extended propositional calculus

) (41)

(

Generalized modus ponens

) (42)

(

Generalized modus tollens

) (43)

Based of this definitions a large number of fuzzy implications may be generated by employing different tri-
angular norms and co-norm. Some of the commonly used implications are listed below.

(

Mini-operation rule

, Mamdani) (44)

(

Product-operation rule

, Larsen) (45)

(

Arithmetic rule

, Zadeh) (46)

(

Maxmin rule

, Zadeh) (47)

The rules introduced by Mamdani and Larsen will be referred below, in order to classify the different types
of rule evaluation.

9.2.1-4 Approximate Reasoning

Definition 16:

A

linguistic variable

 is characterized by a quadruple

(X, T(X), U, M(X))

 in which

X

 is the

name of the variable

;

T(X)

 = { , …, } is the

term set

 of

X

, that is the set of

linguistic values

 of

X

 with
each linguistic value corresponding to a fuzzy number defined on

U

 (or

dom (X)

 =

U

);

M

 = { , …, }
is the set of membership functions characterizing these fuzzy numbers.

Definition 17:

A

proposition

 (syntactical form: “<linguistic variable> is < linguistic value>”) has the se-
mantic: “Instantiate the linguistic variable to the fuzzy number associated with the linguistic value”.

The fuzzy implication inference rule used here is a form of the

generalized modus ponens

 (

gmp

):

where

A

,

A

´,

B

,

B

´ are fuzzy sets and

X

,

Y

 are linguistic variables. Premise 2 is a

fuzzy rule

, where the inter-
section

A

∩

A

´ can be regarded as the “degree of fulfilment” of the rule's antecedent, influencing the actual

premise 1:

X

 is

A

´
premise 2: if

X

 is

A

 then

Y

 is

B

consequence:

Y

 is

B

´

A B→() ⊗ u v(,) MA u() MB v()⊗[,] u U v V∈,∈{ , }=

A B→() ⊕ u v(,) MA u() MB v()⊕[,] u U v V∈,∈{ , }=

A B→ =

 u v (,) M
A

 u () M B v ()⊕ [,] u U v V ∈,∈ { , } =

 u v (,) M
A

 u () M A u () M B v ()⊗()⊕ [,] u U v V ∈,∈ { , } =

 u v (,) M
A

 u () M
B

 v ()⊗() M B v ()⊕ [,] u U v V ∈,∈ { , } =

 u v (,) sup c 0 1[,] ∈ c M A u ()⊗ M B v ()≤{ } [,] u U v V ∈,∈ { , } =

 u v (,) inf c 0 1[,] ∈ c M B v ()⊕ M A u ()≤{ } [,] u U v V ∈,∈ { , } =

 u v (,) M A u () M B v ()∧ [,] u U v V ∈,∈ { , } =

 u v (,) M A u () M B v ()⋅ [,] u U v V ∈,∈ { , } =

 u v (,) M
A

 u () ✛ M B v () [,] u U v V ∈,∈ { , } =

 u v (,) M
A

 u () M A u () M B v ()∧()∨ [,] u U v V ∈,∈ { , } =

TX
1 TX

k

MX
1 MX

k

78 Chapter 9 – Surface Fusion

78 Chapter 9 – Surface Fusion

78 Chapter 9 – Surface Fusion

78 Chapter 9 – Surface Fusion

78 Chapter 9 – Surface Fusion

78 Chapter 9 – Surface Fusion

relation between

B

and

 B

´ according to the following. Writing the premises of the gmp without the linguistic
variables leads to (

R

 is a fuzzy relation in

U

×

V

)

Definition 18:

The

sup-star compositional rule of inference

 asserts that the fuzzy set

B

´ in

V

 is given by

B

´ =

A

´ •

R

(48)

so the consequence may be written as

Four different kinds of compositional operators may be found in the literature. They are produced by re-
placing the “

⊗

” operator by one of the triangular norms from definition 1.

•

sup-min

 operator (Zadeh, 1973)

•

sup-product

 operator (Kaufmann, 1975)

•

sup-bounded

-product operator (Mizumoto, 1981)

•

sup-drastic

-product operator (Mizumoto, 1981)

In most fuzzy logic controllers the

sup-min

 or

sup-product

 operators are employed for their simplicity and
computational efficiency.

9.2.1-5 Fuzzy Decision System (FDS)

5

Based on the fuzzy logic foundations above and according to a general scheme for a FDS in figure 16 five
basic elements “

membership functions

”, “

rule base

”, “

fuzzyfication

”, “

inference engine

” and “

defuzzy-
fication

” have to be formalized.

Membership Functions

Common membership functions are sigmoid- or gaussian-functions as well as simple linear functions con-
catenated to form triangle or trapezoid-shaped functions. The applicability of the linguistic term-sets of the
linguistic variables are extensively determined by these membership functions. Generally the selection and
parameterisation is done on the basis of intuition and partial understanding of underlying physical or other
constraints. On the other hand most of the following Neural-Fuzzy-Decision-Systems are able to adapt the
functions according to an optimization criteria.

5. also denoted as “fuzzy inference system”, “fuzzy associative memory”, “fuzzy controller” and several others depending on
the context.

premise 1: {[

u

,

M

A

´

(

u

)] |

u

 ∈

U

}
premise 2: {[(

u

,

v

),

M

R

(

u

,

v

)] |

u

 ∈

U

,

v

 ∈

V

}

conseq.: {[

v

, {

M

A

´

(

u

)

⊗

M

R

(

u

,

v

)}] |

v

 ∈

V

} supu U∈

interface
fuzzyfication

interface
defuzzyfication

knowledge base

membership functions

rule base

inference engine

fuzzy

fuzzy

outputinput

Figure 16: Fuzzy decision system (structure)

79

79

79

79

79

79

Rule Base

Beside the definition of the membership functions, the rule base is the second element to express expert
knowledge. The rule base is usually of the form:

if

 {a set of conditions is satisfied}

then

 {a set of consequences is to be inferred}

else

if

 {another set of conditions is satisfied}

then

 {another set of consequences is to be inferred}

else

…

Since the propositions making up the antecedents and the consequences of this

if-then-else

 construct are as-
sociated with terms from linguistic variables, they are referred to as

linguistic rules

. Several

sentence con-
nectives

 like

and

 or

else

are linking propositions to an antecedent and fuzzy rules to a complete rule base.
There is a huge number of approaches implementing the sentence connectives and the fuzzy implication
(relation).

Fuzzyfication

In most fuzzy decision systems non-fuzzy input data are mapped to fuzzy sets by treating them as fuzzy
singletons: If

u

0

∈

U

 is a non-fuzzy input data and

X

 is the corresponding linguistic variable with

dom (X)

 =

U

 and

T(X)

 =

{

, …,

}

, the input is fuzzyfied to the fuzzy sets by setting the corresponding
membership functions:

 (1

≤

i

≤

k

) (49)

The usual evaluation of the inputs as a fuzzy comparison in the antecedents (e.g.

ActualPressure

 is

high

) may
now be calculated by the fuzzy intersection like introduced in definition 8 respectively equations (30) and
(31). Thus the resulting membership functions evaluate to:

 (1

≤

i

≤

k

) (50)

Inference Engine

The inference mechanism used here is generally more rudimentary than that used in typical expert systems,
since the consequent of a rule does not interfere the antecedent of another. This kind of evaluation may be
called “one-level-forward data-driven inference” and is predestined to fast and deterministic controllers.
In a multiple-input-multiple-output (MIMO) system the rule-base may be formulated like:

(51)

with

(52)

The independence of the fuzzy sets in the consequences allows to limit the following discussion to multiple-
input-single-output (MISO) systems without less of generality. Considering the general form of a MISO sys-
tem in the case of a two input/single output system below.

Input:

X

 is

A'

 and

Y

 is

B'

R

1

: if

X

 is

A

1

 and

Y

 is

B

1

 then

Z

 is

C

1

 else
R

2

: if

X

 is

A

2

 and

Y

 is

B

2

 then

Z

 is

C

2

 else

…

R

n

: if

X

 is

A

n

 and

Y

 is

B

n

 then

Z

 is

C

n

 else

Output:

Z

 is

C'

where

X, Y, Z

 are linguistic variables and

A

i

, B

i

, C

i

 are linguistic values in the universe of discourse

U, V, W

.

Tx
1 Tx

k Tx
i

Mx
i u() 1 if; u u0=

0 if; u u0≠



=

M
x T

x
i∩

i u()
M

T
x
i u0() if; u u0=

0 if; u u0≠



=

R R1 … Rn, ,{ }=

Ri if x 1 is A 1
i

 () and … and x k is A k
i

 ()() then y 1 is B 1
i

 … y q is B q
i

 , ,()=

80 Chapter 9 – Surface Fusion

80 Chapter 9 – Surface Fusion

80 Chapter 9 – Surface Fusion

80 Chapter 9 – Surface Fusion

80 Chapter 9 – Surface Fusion

80 Chapter 9 – Surface Fusion

The fuzzy rule

R

i

 is being implemented as a fuzzy implication (fuzzy relation) characterized by the mem-
bership-function:

(53)

The consequence

C'

 is deduced from the sup-star compositional rule of inference employing the above def-
initions of fuzzy implications.

Lemma 1:

The sup-min operator “•” and the else-connective “

∪

” applying the inputs

A', B'

 to the rule-set
are commutative:

(54)

Due to lemma 1, it is allowed to evaluate the rules individually, before the final result

C'

 is composed from
the results

C'

i

 from each rule

R

i

. For the proofs (which are straight forward) of this and the following lemma
please refer to [LeeCC90b].

Lemma 2:

Applying the intersection “

∧

“or the algebraic product “

⋅

” for the sentence connective “

and

” and
the sup-min operator for the individual rule evaluation results in:

 if (55)

 if (56)

Therefore the influence of the inputs to a single rules can be evaluated independently. Equivalently lemma
1' and lemma 2' may been shown using the “sup-product” instead of the “sup-min”-operator.

Since the inputs are fuzzy singletons (

A'

 =

u

0

,

B'

 =

v

0

), the “degree of fulfilment”

α

 of the antecedents may
be calculated simply by:

 respectively (57)

 and are simply denoted as in the following. The set

C'

 derived from the resulting sets of each rule
may now be characterized by its membership function:

(58)

Depending on the choice for the implementation of “

⊗

” and other more structural differences, four different
kind of fuzzy reasoning have to be distinguished.

a.

First type

:

Mamdani's Minimum Operation rule as a fuzzy implication function

This first type of fuzzy reasoning uses

(59)

which means, that

M

C'

 pointwise defined by:

(60)

b.

Second type

:

Larsen's Product Operation rule as a fuzzy implication function

The type of fuzzy reasoning is completely identical to the first one, despite the fact, that the algebraic
product is used instead of the intersection in the implications.

c.

Third type

:

Tsukamoto's Method with linguistic terms as monotonic membership functions

This method is used as a speed-up technique for fuzzy reasoning of type 1. All membership functions
are forced to be monotonic. Thus the results of the individual rules are simply calculated by:

 where (61)

The defuzzyfication step is then given by a weighted combination:

MRi
u v w, ,() M

A
i
 and B

i
 C

i
 → u v w , ,()=

C' A ' B',() Ri
i 1=

n

∪• A' B',()
i 1=

n

∪ Ri•= C' i
i 1=

n

∪= =

A' B ',() Ai and B i C →()• A ' A i C i →()•[] B ' B i C i →()•[]∩= MAi Bi× MAi
MBi

∧=

A' B ',() Ai and B i C →()• A ' A i C i →()•[] B ' B i C i →()•[]= MA
i

B
i

× MA
i

MB
i

⋅=

α̂ i MA
i

u0() MB
i

v0()∧= α̇ i MA
i

u0() MB
i

v0()⋅=

α̂ i α̇ i α i

MC ' α i MCi
⊗

i 1=

n

∪=

MC ' α i MC
i

∧
i 1=

n

∪=

MC ' w() α 1 MC1
w()∧() … αn MC

n
w()∧()∨ ∨=

βi Ci α i()= α i MAi
u0() MBi

v0()⊗=

81

81

81

81

81

81

(62)

Notice that the membership functions of the fuzzy sets

A

i

 and

B

i

 have not to be monotonic in the context
discussed so far.

d.

Fourth type

:

The consequence of a rule is a function of the linguistic input variables

In this last type of fuzzy reasoning a different structure for the rules itself is being chosen. The i-th rule
in the rule-base is formulated in the form:

R

i

: if

x

1

 is

A

i

 and … and

x

k

 is

K

i

 then

z

 =

f

i

 (

x

1

, …,

x

k

)

The

α

i

s are calculated as usual, so that the crisp results from each rule are given by

 where (63)

and the output value is calculated by a weighted sum.

(64)

For a detailed description of this model and its applications please refer to [Takagi85].

Defuzzyfication

This last step is usually required, because most of the applications need crisp outputs. The applied tech-
niques depend widely on the application domain, but some basic methods should be mentioned. Generally
the defuzzyfication should aim to achieve a crisp output, which represents the fuzzy output optimal.

a.

Mean of Maximum

 (

MoM

)
The mean of maximum method generates an output which represents the mean value of all with

 is a local maximum of the output fuzzy set .

 with

l

 equals the number of local maxima. (65)

b.

Centre of Area

 (

CoA

)
The centre of area method generates a centre of gravity in the possibility distribution of the fuzzy output
set. The exact value in a continuous universe is:

(66)

In most implementations only a discrete approximation is possible or applicable. But despite the imple-
mentation details, this method is the most used and often most useful technique.

For a literature survey with a lot of references on this topic refer to [LeeCC90b].

9.2.2. NARA

NARA

 (Neural-Networks designed on Approximate Reasoning Architecture) has been introduced and re-
fined by Takagi in his papers [Takagi92a], [Takagi92b], [Takagi92c], [Takagi91] and [Takagi90]. According to
our classification NARA represents a “type 4” reasoning system.

z0

βiα i
i 1=

n

∑

βi
i 1=

n

∑
=

βi f i α i()= αi MAi
u0() MBi

v0() …⊗ ⊗=

z0

α if i x1 … xk, ,()
i 1=

n

∑

α i
i 1=

n

∑
=

wi W∈
MC wi() w MC w(),[] w W∈{ }

z0

wi
i 1=

n

∑
l

=

z0

M w() w d w ∫

M w

() d w ∫
=

82 Chapter 9 – Surface Fusion

82 Chapter 9 – Surface Fusion

82 Chapter 9 – Surface Fusion

82 Chapter 9 – Surface Fusion

82 Chapter 9 – Surface Fusion

82 Chapter 9 – Surface Fusion

Architecture

Neural networks are employed to compute the rule antecedents

α

i

 (one network

NN

mem

 for all

α

i

) and the
rule consequences

f

i

 (

α

i

) (one network

NN

i

 per consequence function

f

i

 (

α

i

)). Finally the output is computed
as usual in type four reasoning systems by a weighted sum. Therefore the NARA system is able to learn (or
adapt) its consequence functions as well as its membership functions for the antecedents (membership
functions of the individual input terms are not represented explicitly). The architecture may be employed
recursively, namely by replacing a consequent network by a complete “sub-NARA” structure.

Training

Assuming a training data set the learning process as
proposed by Takagi may be structured in five steps.

a.

Clustering of the training set

The input set has to be clustered into

r

 Clusters

C

i

, which corresponds to the

r

 rules, which will be em-
ployed. The clustering is done on the basis of the input vectors and according to the application in mind,
i.e. widely on experience, than on universal algorithms.

b.

Training of the

NN

mem

-network

The network

NN

mem

 is being trained in a supervised manner in order to distinguish the

r

 antecedents of
the rules, i.e. the network should produce the following output

; where

x

 is the actual input vector (67)

c.

Training of the

r NN

i

-networks

Each network

NN

i

 is being trained to perform the consequence function of the

i

-th rule, represented by
the training pairs . The supervised training procedure has to be stopped in order to prevent
overfitting, i.e. to keep the ability to generalize at a certain degree of an acceptable error level.

d.

Pruning of the input vector

In order to prevent highly correlated elements in the input vector, the above training-steps are repeated
without a certain element

x

j

 from the input vector

x

. If the achieved error-level is not significantly higher
than before, the element will be removed. The test is being done for all the elements of the input vector.

e.

Refining (adding sub-nets recursively)

If there are subnets

NN

i

 with intolerable large training errors, they will be replaced by a complete sub-
NARA architecture and the above learning-steps (incl. this) are completely applied to this sub-net. No-
tice that the clustering technique from step

a

 has to be refined, in order to get a more detailed clustering.

Discussion

NARA offers an universal way to approximate complex functions, by partitioning the input space into dis-
tinct clusters, where the output is being computed by a weighted sum over the consequence functions. The
NARA structure may be interpreted as an implementation of a fuzzy decision system of type 4, but the a-
priori-knowledge is only involved via the sample input-/output-pairs and distance measurement applied
in the clustering technique (respectively the clustering technique itself), i.e. not via explicit rules or prede-
fined membership functions. Depending on the chosen neural network architecture, NARA is able to learn
arbitrary shaped cluster-borders and complex functions. The main disadvantage, as seen by the author, is
the limitation to enter a-priori-knowledge only via implicit ways (by using a specific network structure and
learning technique or via a distance measurement or clustering technique), i.e. the usual way to formulate
knowledge in rules and membership functions cannot be applied here. On the other side NARA offers an
universal frame for function approximation techniques using input space segmentation.

9.2.3. NNFCDS

The second discussed model is NNFCDS introduced by Lin and Lee in [LinC91]. The proposed system can
be classified as a type 1 fuzzy reasoning system, where the extraction of rules from data is included.

E x y,() x Input vector ≡ y Output vector ≡,{ }=

α i
1 x Ci∈;
0 otherwise ;




=

x y,() Ci∈

83

83

83

83

83

83

Architecture

NNFCDS consists of a five layer neural network, implementing the transformation from crisp input to crisp
output data. The NNFCDS network architecture is shown in figure 17, where the individual layers can be
characterized as follows:

a.

Layer 1: Linguistic Input

The crisp input values are spread to the next layer, where the sets of linguistic terms attached to each in-
put variable are implemented. The link to the next layer is thus not fully interconnected.

b.

Layer 2: Input Terms

Gaussians are proposed by Lin and Lee for the input membership functions. Thus this second layer
evaluates these gaussians for each term out of the input term sets. The connections to the next layer may
represent any combination of terms in the input sets, but is usually limited according to a pruning pro-
cedure introduced below. The parameters from the input gaussians are interpreted as the
weights between layer one and two.

c.

Layer 3: Rules

The rule evaluation (the fuzzy “and”-connective) is implemented by a

min

-operator. Each rule node cor-
responds to the antecedent of a fuzzy rule

i

, calculating their degrees of fulfilment.

d.

Layer 4: Output Terms

The overall support for each fuzzy output term

j

 is calculated by integrating all antecedents con-
cerning these output terms from the previous layer applying:

(68)

e.

Layer 5: Linguistic Output

The defuzzyfication is performed by applying the centre-of-area method. The output terms membership
functions are limited to gaussians. Therefore the output can be expressed by:

 (see (88) to (91) for a closer discussion of this equation) (69)

where are the parameters of the gaussian output membership functions (see (73)) and
is the support from rule

i

.

 are also interpreted as the weights between layer four and five.

y1

∧

∨ ∨

…

…
…

…

∧

…

/

∨ ∨…

/
… ⑤

④

③

②

①

linguistic

output

rules

input

linguistic
input

terms

terms

defuzzy-
fication

fuzzy-
fication

inference-
engine

ym

x1 xn

Figure 17: NNFCDS network topology

FDS
scheme Layers

output

µi j σij,()

α i

supj α i

supj min α 1,∑{ }=

yj

yj

µijσijsupi
i

∑
σijsupi

i
∑

=

µij σij,() supj

µij σi j,()

84 Chapter 9 – Surface Fusion

84 Chapter 9 – Surface Fusion

84 Chapter 9 – Surface Fusion

84 Chapter 9 – Surface Fusion

84 Chapter 9 – Surface Fusion

84 Chapter 9 – Surface Fusion

Training

An off-line training procedure is suggested for NNFCDS, consisting of two phases. First an unsupervised
clustering of the (fixed) input data is performed in order to extract the underlying fuzzy rules, resulting in
a pre-structured network. Applying a well defined training set, this pre-structuring eliminates most of the
potential connections from and to layer three. See also [Kosko92] for another example of extracting fuzzy
rules from fixed data sets. The second training phase contains a gradient decent approximation of the over-
all neuro-fuzzy system to the training set. This is performed in a supervised manner, where heuristics have
to be applied, overcoming the restrictions of the non-differentiable fuzzy-implication respectively defuzzy-
fication implementations. The applied “gradient-heuristics” can be found in [LinC91].
In the following, the rule extraction procedure as proposed from Lin and Lee will be discussed briefly. The
data set analysis is divided into four stages: initialization, clustering, rule extraction, and pruning

a.

Initialization

The number of input respectively output terms has to be chosen in advance, and determines the whole
connective structure of the network, beside the number of nodes and connections in layer three (rule
layer). Here any possible combination of input terms is considered as a potential connection from layer
two to layer three and thus installed. Finally, layer three has to be fully connected to layer four.

b.

Clustering

A self-organizing map algorithm is applied, clustering the input data (the modification refers to the
neighbourhood adaptation). It is assumed that the initial choose of the gaussian centres is well de-
fined, because the modified Kohonen algorithm would not converge to the intended input terms other-
wise. The results of the first clustering step are the stabilized centres of the gaussians of the input terms.
The width of the input gaussians can then be approximated by:

(70)

where

r

 determines the degree of overlapping between the gaussians.

c.

Rule Extraction

A competitive learning algorithm is employed for the determination of the weights between layer three
and layer four. The proof for convergence regarding this competitive process can be found in [LinC91].
Among the different terms out of each term set attached to the linguistic outputs, only one can be acti-
vated by each rule node. This (reasonable) limitation in the consequences of the fuzzy rules, limits the
number of extracted connections additionally. The time complexity (assuming SISD computers) for this
process is:

(71)

where

n

 is the number of linguistic variables

X

;

m

 is the number of linguistic output variables

Y

; and

L

 is the applied learning set.

d.

Pruning

Pruning is performed by detecting “overlapping” rules, i.e. rule combinations, replacing (and substitut-
ing) multiple rules generated in step c are forced. Redundant rule sub-sets can be detected according to
the following criteria:

d-1

The consequences of all rules out of the rule sub-set are identical, and

d-2

some input terms are common to these rules, and

d-3

for all input term combinations, not included in the common input terms, a rule can be found having
this combination (and of course the common input terms) as its input

6

.

This process might result in a further reduction of rule nodes.

Discussion

The introduced NNFCDS model by Lin and Lee offers high flexibility and supports even the pre-structuring
process of the system, where the amount of expert knowledge, is reduced to the determination of the

6. Due to a fault in the original article, this criterion is corrected to the presented form in [Bruske93b].

µij

σi

µi µcloses t−
r

=

O T Xi() T Yi() L⋅
i 1=

m

∏⋅
i 1=

n

∏ 
 

85

85

85

85

85

85

number of linguistic input and output terms. Nevertheless, two major weaknesses can be found in this
model. First the computational effort (and even the space complexity) regarding the pre-structuring process
is rather high, assuming SISD computers. This could be overcome, applying parallel computers, optimized
for such typical neural processing, like competitive learning, and self-organizing maps. The second point is
that the “gradient-heuristics” needed for the second learning phase can fail totally. Thus the

SPIN-NFDS

 sys-
tem, introduced in the next section is built on the base of differentiable functions in all layers.

9.3. SPIN-NFDS – A Neural Fuzzy Decision System

According to the general model of a

fuzzy-decision-system

 (

fds

), all the needed components (figure 16) are
discussed first in order to define a mapping on a neural net structure in the following. Finally some short
remarks about the learning techniques will be made.

9.3.1. The Structure of the Fuzzy Decision System

Rule-base

The rule-base in

SPIN-NFDS

 consists of linguistic rules, which obey the following syntax:

<lrule> ::= if <antec> then <conseq> [else <lrule>]

<antec> ::= <propos> [and <antec>] | anything

<conseq>::= <propos> [and <antec>]
where <propos>::= <variable name> is <term name>

where

<term name>

 denotes a linguistic value of the linguistic variable

<variable name>

. The “

anything

”
antecedent is used to define consequences as unconditioned “facts” in the rule-base. The actual rule set is
translated to fuzzy relations according to definition 11, 12, and 18.

Membership functions

Membership functions are used according to the definition of linguistic variables, in order to define the lin-
guistic values of the associated term set. The membership functions are restricted in this system to the fol-
lowing basic types.

•Sigmoid function:

(72)

In the following, a sigmoid function with

σ

 > 0 is called a

rsigmoid function

 and with

σ

 < 0 a

lsigmoid
function

.

•Gaussian or radial basis function (rbf):

(73)

Both functions may be used for membership functions of terms appearing in an antecedent of a lrule, while
only rbf-s may be used in the definition of terms appearing in a consequence.

Fuzzyfication interface

Non-fuzzy input data are mapped to fuzzy sets by treating them as “scaled” fuzzy singletons: If

u

0

∈

U

 is
a non-fuzzy input data and

X

 is the corresponding linguistic variable with

dom (X)

 =

U

 and

T(X)

 = { ,
…, }, the input is fuzzyfied by setting

 (1

≤

i

≤

k

) (74)

S µ σ x, ,() 1 1 e

x µ−

σ
−

+ 
 

⁄=

N µ σ x, ,() e

x µ−() 2

2σ2
−

=

Tx
1

Tx
k

MX0

i u() MX
i u() u u0=;
0 otherwise ;




=

86 Chapter 9 – Surface Fusion

86 Chapter 9 – Surface Fusion

86 Chapter 9 – Surface Fusion

86 Chapter 9 – Surface Fusion

86 Chapter 9 – Surface Fusion

86 Chapter 9 – Surface Fusion

Inference engine

The fuzzy implication (“then”) along with the operation “and” and the combination of several fuzzy rules
(“else”) has to be defined.
In the first step the evaluation of the “and” in the antecedents is done by a cartesian product.

A

∧

B

 = {[

(u, v)

,

M

A

(u)

 ·

M

B

(v)

] |

u

∈

U

,

v

∈

V

} (75)

Since all input terms are scaled fuzzy singletons, equation (75) simplifies to:

A

∧

B

 = {[

(u

0

, v

0

)

,

α

] |

u

0

 ∈

U

,

v

0

 ∈

V

} (76)

α

 =

M

A

(u

0

)

 ·

M

B

(v

0

)

(77)

with

α

 is said to be the “degree of fulfilment” for this antecedent. The fuzzy implication is also implemented
by a cartesian product, with the membership-function of the antecedents

A

 being represented by a scalar

α

(u)

 (because of the scaled fuzzy singletons as the input data).

A

→

B

 = {[

(u, v)

,

α

(u)

 ·

M

B

(v)

] |

u

 ∈

U

,

v

 ∈

V

} (78)

The combination of multiple fuzzy implications

A

i

→

B

i

 (1

≤

i

≤

r

) is interpreted as a union of the resulting
fuzzy sets.

{

A

i

→

 B

i

} =

∪

 (

A

i

→

B

i

); (1

≤

i

≤

r

) (79)

= {[

(u, v)

,

max

1

≤

i

≤

r

 { (

u,v

)}] |

u

 ∈

U

,

v

 ∈

V

} (80)

Since differentiable functions are needed for the learning techniques in the later neural network section, the

max

-function is approximated by

sum

 as defined below.

sum

: [0, 1]

r

→

 [0, 1]; (81)

sum

1

≤

i

≤

r

 ((

w

)) = (82)

Of course the definition itself contains a

max

-function again, but this one reduces to a linear function, as can
be seen in the following example of a complete rule evaluation.
Let “

if

X

1

 =

A

i

and

X

2

 =

B

i

then

Y

 =

C

i

” be a rule base of

r

 rules (1

≤

 i

≤

r

). In a first step the antecedents
reduce to

α

i

 = (

x

0

) · (

y

0

); (1 ≤ i ≤ r) (83)

and the output terms can be calculated to:

 = {[w, αi · (w)] | w ∈ W} (84)

The membership function of the union of the output terms, using the sum-equation (81), may be written as

MY (w) = (85)

Defuzzyfication interface
Let Y be one of the output fuzzy sets from the inference step (86). Then the centroid method (88) is employed
for the defuzzyfication to the non-fuzzy output data y.

Y = {[w, (w)], w ∈ W} with (86)

 (w) = sum1 ≤ i ≤ r ((w)) (87)

Note that only output terms Ci from the term set of the linguistic variable associated with Y have to be taken
into account.

y = (88)

This technique is also known as “centre of area method” (coa) or “centre of gravity”.

y = (89)

MA
i

B
i

→

MC
i

MC
i

w()i 1=
r∑

maxw W∈ MC
i

w(){ }i 1=
r∑

MA
i

MB
i

C' i MCi

α i MC
i

w()⋅i 1=
r∑

const α ii 1=
r∑⋅

MY

MY α i MC
i

⋅

w MY w() dw⋅∫
MY w() dw∫

α ii 1=
r∑ w MC

i
w() dw⋅∫

α ii 1=
r∑ MCi

w() dw∫

87

87

87

87

87

87

Since the system is restricted to gaussian functions in the output terms, (89) becomes

y

 = (90)

and after some simplifications

y

 = (91)

9.3.2. Neural Net Architecture

The five layered feed-forward neural network used for

SPIN-NFDS

 is outlined in figure 18. The several lay-
ers are classified in the sense of the NFD-scheme introduced above and by the calculations being done at
each layer. Note that this network architecture is

not

 fully connected. A description of the computations at
each stage is given in the following. The resulting set of parameters, that may be trained contains the pa-
rameters of each membership function from the input and the output variables and a set of weights

w

,
one for each output term in the linguistic rules.

Layer 1: Linguistic input

The operation being done here is only transmitting the input values to the terms of the corresponding (i.e.
not to all) input variables at the next layer.

Layer 2: Input terms

Let

n

 be the number of linguistic input variables with names

X

i

 (1

≤

i

≤

n

), values (

x

1

, …,

x

n

), and term sets

T(X

i

)

. This layer computes the membership functions

(92)

α ii 1=
r∑ w e

w µ
i

−() 2

2σ
i
2

−

dw⋅∫

α ii 1=
r∑ e

w µ
i

−() 2

2σ
i
2

−

dw∫

α iµ ii 1=
r∑ σi

α ii 1=
r∑ σi

y1

∏

∑ ∑

…

…
…

…

∏

…

/

∑ ∑…

/
… ⑤

④

③

②

①

linguistic

output

rules

input

linguistic
input

terms

terms

defuzzy-
fication

fuzzy-
fication

inference-
engine

ym

x1 xn

Figure 18: SPIN-NFDS network topology

FDS
scheme Layers

output

σ µ,

MX
i

j
i xi() 1 i n 1 j i T Xi()≤ ≤();≤ ≤;

88 Chapter 9 – Surface Fusion

88 Chapter 9 – Surface Fusion

88 Chapter 9 – Surface Fusion

88 Chapter 9 – Surface Fusion

88 Chapter 9 – Surface Fusion

88 Chapter 9 – Surface Fusion

where sigmoid (72) and gaussian functions (73) are allowed. The parameters in each node, which have to
be optimized by learning (described in the next section) are

(,) (93)

Layer 3: Rules

From the membership functions the degree of fulfilment

α

i

 (1

≤

 i

≤

r

) for each antecedent has to be calculated
(with

r

 is the number of linguistic rules in the rule base). The

α

i

s are computed by

∏

-neurons

7

 without any
additional weight in the input terms.

Layer 4: Output terms

Let

t

 = and

n

i

 be the number of linguistic rules supporting the

i

-th term of

Y

j

. So is the support
of the

k

-th rule for the

i

-th term of

Y

j

 and equation (91) may be formulated as

y

j

= (94)

The computational step being performed in this layer is the summation of the support for each term from
the term sets of the linguistic output variables, i.e.

s

i

= (95)

where weights

w

ki

 are introduced as a possibility to determine the “importance” of a single rule for an out-
put term. All these weights are initialized to 1 and may be altered during the learning phase.

Layer 5: Linguistic output

Once the supports

s

i

 have been calculated by the previous layer, equation (91) simplifies to

y

j

 = (96)

Note that there is a certain redundancy concerning the parameters and

w

ki

.

9.3.3. Learning in SPIN-NFDS

Training is performed by standard backpropagation techniques. Two schemes are supported: The “usual”
backpropagation (also called: off-line, batch, epoch) and the “on-line” backpropagation (also referred to as
sample, or stochastic backpropagation).
The applied network error, which all the corrections are based on, is defined as the common square error

 with respect to a training set

T

:

(97)

where denotes the

j

-th output term of the

SPIN-NFDS

-system applying .
This network error is used in case of batch-error-backpropagation, where all the elements in the test set

T

 are evaluated in order to get a good base for the following gradient decent method. If a “on-line” correc-
tion is need, the error term can be calculated for each training pair individually:

(98)

“On-line” learning according to results in worse approximations for the gradients (in comparison to
batch-error-backpropagation), but limiting the learning constants to small steps producing a smooth behav-
iour nevertheless. Moreover the stochastic element included in the spontaneous learning technique can
avoid local minima in some situations.

7. A

∏

-neuron calculates its output to out

∏

 =

∏

x

i

 with x

1

, …, x

n

 being the inputs of the neuron.

µ i

j
i σi

j
i

T Yj() α k
i

µiσi
αk

i
k 1=

ni∑()i 1=
t∑

σi α k
i

k 1=

ni∑()i 1=
t∑

wkiαk
i

k 1=

n
i∑

µiσi
sii 1=

t∑
σisii 1=

t∑
σi

ET

ET

1
2

yT NFDS xT()−() 2

xT yT,() T∈
∑ 1

2
yj

T yj
NFDS xT()−()

j 1=

m

∑ 
 

xT yT,() T∈
∑= =

yj
NFD S xT() xT

ET

E x y,()

E x y,()
1
2

yj yj
NFD S x()−()

j 1=

m

∑=

E x y,()

89

89

89

89

89

89

Based on or (denoted with

E

 in the following) a gradient decent on the network weights is imple-
mented. For the last layer

n

 in the network this results in:

(99)

where is the learning constant for the weight .

In all previous layers the changes of the weights are calculated recursively according to:

(100)

and

 (the error signal for the neuron

j

 in layer

l

) (101)

where is the output and the network input of neuron

j

 in layer

l

.

The actual gradients for the

SPIN-NFDS

-system are calculated and shown in [Bruske93b] pp.46-49. A wide
range of optimizations (especially speed-ups) can be applied to a backpropagation system (see [Hertz91]
for a set of common optimizations). In the context of the

SPIN-NFDS

-system a momentum term (102) has
been introduced, but due to the already very high learning rates as discussed in the next section, the actual
speed-up is not essential. On the other hand, a momentum term (as most of other potential speed-ups) can
be a significant risk regarding the stability and convergence of the whole system.

(102)

where denotes the previous change in .

As usual, the learning constants are treated in groups corresponding to the layers of the network.

9.3.4. Simulations

Several tests have been done, according to the following test strategies for

SPIN-NFDS

:

•Analysing the

training performance

, with an “ad-hoc” rule base for our decision task.

•Analysing the

generalisation performance

, i.e. training and testing is being done with different sets of test
surface-fragments.

•Comparing performances resulting from changes in the size of the learning set.

•Comparing performances resulting from changes in the predefined rule-base.

•Comparing performances from

SPIN-NFDS

 to that of a “classic” backpropagation classifier.

The employed rule base is intentionally simple and far from an “optimal” solution. Elementary geometric
considerations (introduced in the motivation of this chapter) like smooth continuations are used to formu-
late the rules. The found rule base gives rather worse results, regarding the decision problem. Due to the
general idea that global geometric rules will not sufficiently approximate the specific surface fusion prob-
lems given by different environments, it has not being tried to optimize the rule base beyond certain limits.

Some of the most interesting results are shown in the following. For the complete discussion see
[Bruske93b]. The training sets

T

1

 and

T

2

 applied in all tests, consist of 300 examples of fragment-pairs each.

ET E x y,()

wij
n new, wij

n o ld, η ij
n

∂E

∂wi j
n

+=

η ij
n wij

n

wij
l new, wi j

l old, η ij
l δj

l
∂netj

l

∂wij
l

+=

δj
l δk

l 1+
∂netk

l 1+

∂oj
l

∂oj
l

∂netj
l

k
∑=

oj
l netj

l

wij
l new, wi j

l old, η ij
l δj

l
∂netj

l

∂wij
l

α∆ wij
l ol d,+ +=

∆wi j
l old, wij

l o ld,

Table 2 : Training performance with 0% and 10% noise

Iterations 0 1 5 10 50 175

Class. rate[%] 50 50 96 96 97 99

Class. rate[%] 50 50 50 63 92 98

T1
0%

T1
10%

90 Chapter 9 – Surface Fusion

90 Chapter 9 – Surface Fusion

90 Chapter 9 – Surface Fusion

90 Chapter 9 – Surface Fusion

90 Chapter 9 – Surface Fusion

90 Chapter 9 – Surface Fusion

Training performance

As the reader may see from table 2, the classification rate rises very fast, considering a backpropagation sys-
tem, even for a less optimized rule base. The initial classification rate for the rule base applied here is only
50%. This fast convergence is slowed down by adding noise, but nevertheless a classification rate beyond
90 % is reached with 50 training steps.

Generalisation performance

Interesting, but not completely surprising are the results of the tests for generalization. The reader may see
from table 3 that the training on crisp training sets shows only poor results in noisy environments, whereas
training on noisy training sets shows reasonable results on noisy and crisp test sets.

Table 3 : Generalization performance

Classification rates
[%] after

70 iterations

trained on

classifies

98 98 98

83 96 97

63 85 95

T1
0% T1

5% T1
10%

T2
0%

T2
5%

T2
10%

91

91

91

91

91

91

Chapter 10

Surface Classification

Based on the surface representation described in section 7.3, the continuous flow of scanned and pre-proc-
essed surfaces is to be clustered respectively classified based on a norm applied to the surface-vectors.

10.1. Network Model

The part of

SPIN

 discussed in this chapter requires a network model, with features listed below:

•Unsupervised clustering

•Dynamical number of clusters

•Forgetting controlled by time or frequency of access

•Flexibility over an infinite period of time

There is only a small number of well known networks that might be used for such purposes (e.g. ART-mod-
els by Carpenter & Grossberg [Carpenter91a], [Carpenter91b], [Carpenter88], [Carpenter87a], [Carpen-
ter87b], [Grossberg87c], [Moore88], Self-organizing feature-maps by Kohonen [Kohonen90], [Kohonen84],
GAL by Alpaydin [Alpaydin91]). But all show limited abilities in at least one of the mentioned aspects.
None of the methods is prepared to handle flexibility over an infinite period of time. Variable number of
classes is not supported by the Kohonen-structure. Finally, controlled forgetting is not considered by Ko-
honen and Alpaydin.

10.1.1. Dynamic Network Model

The base of the following network-model is the self-organizing feature-map model by Kohonen [Ko-
honen90]. The well known structure is extended by the possibility of adding and removing new cells. This
work was done by Fritzke in 1991 [Fritzke91a], [Fritzke91c]. Although being published already, the main
aspects of this extension will be shown in short form before discussing further adaptations.

Generalization & Learning

The representation of the surfaces as shown above is a vector in a

m

-dimensional real-valued vector-space.
These vectors are mapped to an array

S

 of cells

c

, each attached to an

m

-dimensional position vector

pos(c)

.
The cells in

S

 are connected in a simplex structure (the original Kohonen-model uses a rectangular struc-
ture). For clearness but without loss of generality, triangles will be used as the simplex structure in all fol-
lowing discussions. An input vector

x

 is then mapped to the cell with the smallest distance to

x

 (in the Eu-

92 Chapter 10 – Surface Classification

92 Chapter 10 – Surface Classification

92 Chapter 10 – Surface Classification

92 Chapter 10 – Surface Classification

92 Chapter 10 – Surface Classification

92 Chapter 10 – Surface Classification

clidian norm). This cell is called

bmu

 (best matching unit) and this procedure is referred to as the
classification.

: (103)

For learning purposes the cell

bmu

 and its topological neighbours in the triangular structure are “moved”
towards the input vector (by a fraction

e

bmu

 and

e

neighbour

of the distance). This training step is repeated

n

d

-
times.

The described procedure results (if well defined) in a

topology-preserving

 (i.e. adjacent input vectors are
mapped on adjacent cells) and

distribution-preserving

 map (i.e. the density of the cells approximates the
probability density

P(X)

 of the input vectors).

Growing cell-structures

Up to here, the number of cells in

S

 is constant, i.e. the number of cells that should represent the probability-
distribution of the input vectors adequately has to be known in advance. Additionally the initial position
of the cells is critical regarding the ability and speed of learning. To overcome this restriction a mechanism
of expanding the structure is introduced. The initial structure is a single triangle, with arbitrary values of
the three cells. In each learning step the distance between the input vector and the

bmu

 is added to an error-
variable associated with the found

bmu

. After

n

d

 learning steps the cell with the maximal error-variable is
detected. This cell is called

bs

 (black sheep). Then the farthest direct neighbour in the structure is detected
and called

f

. The new cell is inserted in the middle between them:

(104)

This new cell must be connected with surrounding cells in order to keep the triangular structure. The error-
variable is initialized as a mean value of the error-variables of all

d

 direct connected neighbours:

(105)

The error-variables of the neighbours are reduced according to that amount:

: (106)

Shrinking cell structures

Starting from a single triangle and expanding the structure as described above will produce a connected
structure approximating the probability density

P(X)

. This might be an inadequate model because

P(X)

could consist of several distinct regions with

P(X)

=0 between them. So there is a need for a procedure split-
ting the different parts of the structure if necessary.

The basic idea is finding cells which are positioned in areas with

P(X)

=0 and remove them. As the indicator
of this constellation, the number of classifications

k

 without being

bmu

 are recorded for each cell. If

k

 exceeds
the value in (107) for a certain cell, this cell is removed and so are those of its neighbours necessary to return
to a structure of triangles (

p

s

 means the probability of keeping needed cells and

n

 is the current number of
cells)

(107)

For a more detailed discussion of the algorithms so far see [Fritzke91a], [Fritzke91c], or [Fritzke93c].

10.1.2. Extensions & Adaptations

A number of problems have being found employing the above network-structure for surface-clustering and
classification. The central aspect here is the fact that the applied learning set is not fixed but consists of a
continual flow of examples. So the task is not modelling the best approximation of a limited set of input
vectors, but finding a representation of the probability distribution and a adequate clustering of the

most
recently

 presented surfaces. Additionally the classification-function has to be accessible

continuously

 (after a
certain amount of learned surfaces), i.e. the structure should change states smoothly while learning.

c S∈∀ pos bmu() x− pos c() x−≤

pos cnew()
1
2

pos bs() pos f()+()⋅=

err cnew()
1

d 1+
err neighbori()

i 1=

d

∑=

i∀ 1 … d, ,= err neighbori()
d

d 1+
err neighbori()=

k n nd 1 1 ps
1 n⁄−()

1 n
d

1+()⁄
−()⋅ ⋅> kr=

93

93

93

93

93

93

Buffering the flow of examples

The number of produced examples per time-interval is smaller than the number of surfaces that might be
used for adapting the model during this interval. So the received examples are buffered in a FIFO-list and
each example is applied multiple times.

Limited growing and adaptation

In the original model the learning phase simply stops when the required accuracy is reached. The

SPIN

-
project does not know anything about an end of learning, so there must be another definition of stability.
Assuming a tolerated error of

d

accuracy

 and an input vector

x

. If the

bmu

 resulting from the classification of
the vector

x

 fulfils equation (108)

(108)

then the learning for this cell is switched to a modified learning scheme: The fraction of

bmu

 correction

e

bmu

is reduced by the factor

∆

e

bmu

 and the

bmu

 is now moved towards

x

 by this reduced fraction of

∆

e

bmu

·

e

bmu

.
The direct neighbours are not corrected at all. Additionally this classification does not increment

n

d

, i.e. the
generation of new cells is delayed respectively stopped.
If these classifications continue over some period of time, the moving of cells will become slower and no
new cells will be created. The modified learning scheme is reset immediately to normal learning when one
classification does not fulfil (108), i.e.

e

bmu

 is set to the original value, etc.
Summarizing this modification, two main effects are important:

a.

The growing of the network is stopped (or at least slowed down, depending on the classification error),
although the flow of examples may still continue.

b.

The network structure (i.e. the positions of the cells) is stabilized, when the examples fit into the cluster-
ing built up.

c.

The network is switched spontaneously to maximal learning flexibility if necessary.

Cautious removal

The removal of cells in the original algorithms causes the removal of neighbouring cells, in order to return
to a structure of triangles. This procedure does not care about the importance of these neighbouring cells,
so important (i.e. often used) cells might disappear. If the relative density of cells is large, then the remaining
cells might fulfil most of the further oncoming classifications. But in a sparse clustering, i.e. each cell repre-
sents a whole isolated class (e.g. with

P(X)

=0 at its borders), the functionality of these cells can not be ade-
quately approximated by the remaining ones. And even worse, these cells will be created once again in the
further process, because the classification-errors in this area will rise significantly. On the way to this rebuilt
structure, the remaining cells are corrected in large steps because of large classification-errors.
In some constellations a cyclic behaviour can be detected, i.e. even in the moment when the structure was
built up again, one of the cells in this area is removed, and the procedure starts again. This unstable and
discontinuous behaviour can not be tolerated in the present system.
The chosen solution is based on the idea of accepting “over-classification” under some circumstances, but
never deleting employed cells. Thus each time a cell is detected as not being used for a certain period of
time, it is only removed when all the cells which would be removed in order to keep the structure of trian-
gles intact are also detected as unused. As a result of this manipulation, the network will consist of more
cells than necessary, and effects like swapping between two cells in situations where one cell would be suf-
ficient or other instability problems might be considered. None of these potential problems were observed
during the simulations.

Speed of forgetting

In the original model the value of

k

r

 might be approximated as (see equation (107)):

(109)

A value of

p

s

 near 1 implies a good approximation of the vectors in the current learning set. But due to the
fact that the learning set is dynamic, another aspect arises: What happens to a learned cell, when the gen-
erating examples are deleted from the learning set? In the simulations this cell is removed or even massively
corrected in a couple of minutes, i.e. there is absolutely no long-term memory.

dbmu x pos bmu()− daccuracy≤=

kr n nd⋅ 0 ps 1≤ ≤();≤

94 Chapter 10 – Surface Classification

94 Chapter 10 – Surface Classification

94 Chapter 10 – Surface Classification

94 Chapter 10 – Surface Classification

94 Chapter 10 – Surface Classification

94 Chapter 10 – Surface Classification

In order to create a possibility to determine slower forgetting then implied by

p

s

=1, the definition is extend-
ed of

k

r

 for values of

p

s

>1 (Notice that

p

s

 is no longer a probability in this case):

(110)

So arbitrary long storage-times of presented surfaces can be forced. Additional information could be stored
in every cell in

S

, like frequency of access or time since last access, etc. pp., in order to find a better choice
for cells to delete, but this ideas are not tested in the context of surface classification. For an example of an-
other forgetting strategy (“local forgetting”) please refer to section 4.2.3.

10.1.3. Parameters

This section is intended to give an idea of the meaning of some parameters as well as of useful ranges in
this context.

Network size

The size of the network structure is not determined directly by an upper or lower bound in the current ver-
sion, but is implied by the required accuracy of the classification. Therefore this parameter needs not to be
tuned.

Accuracy of classification

The accuracy of classification is defined as the euclidian distance between the example-vector and the found

bmu

 (see equation (108)). So the first stage of learning is reached when all the vectors of the learning set are
in between of at least one of the hyper-spheres with radius

 d

accuracy

around the cells of the network. Then
the modified learning-phase is entered, i.e. no new cells are created and the speed of moving as well as the
number of cells moved in each step are reduced (until the classification errors rises again). The network is
called “stable”, when

e

bmu

 drops below a certain limit

e

stable

.
Choosing

d

accuracy

 too small results in a one-to-one mapping of the current learning set and the cells in the
structure, i.e. one cell is created for each vector in the learning set. On the other hand a large value of

d

accuracy

means a small number of created cells and a large tolerated classification-error. Finding an “optimal” value
depends widely on the purpose of the system and the employed vector-representation.

Moving fractions e

bmu

 , e

neighbour

 , and

∆

e

bmu

Simulations have shown good results with values in range given by equation (111) for

e

bmu

.

(111)

A “working range” for

e

neighbour

 is shown in (112), but some further restrictions must be considered.

(112)

A small value for

e

neighbour

 might result in a not topology preserving cell moving in the network-structure,
because one cell, which is marked as the current

bmu

 could be moved over a long distance, without moving
the surrounding cells in an adequate manner. Large values for

e

neighbour

 are dangerous too, due to the fact
that if a neighbouring cell of a critical-cell (i.e. not yet well adapted) becomes the

bmu

, the correction dis-
tance of this critical-cell could be larger than in the case that the critical-cell itself is the

bmu

.

∆

e

bmu

 is limited due to the following discussion. When the value of

e

bmu

 remains below the limit

e

stable

, the
network is said to be stable. But this should imply that every vector of the learning set is classified

at least
once

 with a classification error smaller than

d

accuracy

:

(113)

or

(114)

kr
n nd 1 1 ps

1 n⁄−()
1 n

d
1+()⁄

−()⋅ ⋅ ps 1≤;
n nd ps⋅ ⋅ ps 1>;




=

1
20

ebmu

1
5

≤ ≤

1
50

ebm u eneighbour

1
20

ebmu≤ ≤

ebmu ∆ebmu
Learni ng s et e

stab le
 >⋅

esta ble

ebmu 
 

1 Learning set ⁄
∆

e

bmu

1

<<

95

95

95

95

95

95

where |

Learning set

| is the number of example vectors in the learning set

These are the obvious limits only. Both bounds would not result in a reasonable learning behaviour. A value
of

∆

e

bmu

 too near to 1 generates a very slow convergence of the network without reaching a better accuracy,
and a value too near to the lower bound results in a system resting too early i.e. with sub-optimal positions
of the cells. Simulations have shown good results for values in the range of:

(115)

Removal of cells

An uncritical behaviour (with the new learning scheme) could be shown in simulations with values of

p

s

larger than 0.5. Further increasing of this value results in an increased time a learned example vector (or
class of vectors) remains in the network, without the need to “refresh” the corresponding cell with this ex-
ample vector(s).

Creation of new cells

The factor

n

d

, which determines the number of learning steps before a new cell is inserted, should be chosen
in a way that “just enough” probability density information is accumulated before a position for a new cell

∆ebm u

estab le

ebmu 
 

1

c Learni ng s et
c

3 6[,]

∈;=

Figure 19: Some of the input surfaces

Figure 20: Generated classes

96 Chapter 10 – Surface Classification

96 Chapter 10 – Surface Classification

96 Chapter 10 – Surface Classification

96 Chapter 10 – Surface Classification

96 Chapter 10 – Surface Classification

96 Chapter 10 – Surface Classification

is determined. Twice the number of expected classes works as a rough approximation, but obviously this
“just enough” depends widely on the actual distribution of the example vectors.

10.2. Simulations

A flow of examples consisting of 20 different types of surfaces, which are all quantised to 32 values for the
segment curvature and in 16 entries for the surface curvature was simulated. The number of generated dif-
ferent examples is 2000. Noise is added in the form that every orientation of the bordering surface pieces is
disturbed in the range of

±

 6˚ for the segment orientation and

±

 9˚ for the surface orientation. Some of the
generated examples are shown in figure 19. As a result of adding noise some surfaces are drawn as “not
closed”, but this does not influence the generality of the test-set. After 6500 learning steps (110 seconds on
a MC68030 processor with a 40 MHz clock) 19 different classes are generated (

n

d

 = 40,

e

bmu

 = 0.1,

e

neighbour

 =
0.005,

∆

e

bmu

 = 0.998). In figure 20 the surface-classes are shown with unused (i.e. employed for keeping the
simplex structure consistent only) cells crossed out. The shown example is representative, in the sense that
all of the well defined test-sets have caused such a network behaviour in the simulations.

97

97

97

97

97

97

Chapter 11

Surface-Cluster Classification

The final processing stage of the

SPIN

-project is described in this section. The central structure handled here
are groups of connected 3 -d freeform surfaces, extracted and completed from the surface model. These
groups of surfaces are called “

surface-clusters

”. Due to the fact that the applied grouping strategies are
adapted by the flow of typical structures from the environment, i.e. not by expectations in a predefined
model base, the term “object” is avoided, in order not to associate objects, where any kind of (non-geomet-
ric) meaning is attached.

The task discussed here is a continuously adapted definition of representative classes of surface-clusters.
The only criterion for the definition of a specific surface-cluster-class is the fact that a group of surface-clus-
ters is statistically representative in the current universe of data going throw the processing pipeline. Based
on this stable environment-representation, a following (symbolic) object-recognition system should be able
to construct and recognize objects, which are meaningful for a certain application.

The implementation of the two ART 2 network models (described in the next section) were done by Keuchel
[Keuchel94], whereas the training sets and graphical representations are generated by Wagner [Wag-
nerM93].

11.1. Adaptive Resonance Theory (ART 2, ART 2-A)

The author likes to motivate the reasons for the selection of the Adaptive Resonance Theory (ART) for the
surface-cluster classification task in this section. The technical details about these well-known techniques
introduced by Carpenter and Grossberg can be found in [Carpenter91a], [Carpenter91b], [Carpenter88],
[Carpenter87a], [Carpenter87b], [Grossberg87c], [Moore88]. Due to the fact that among the basic ART-mod-
els, ART 1 is designed for binary inputs only, and ARTMAP is a supervised version, the two models: ART 2
respectively ART 2-A are remaining to be tested within the

SPIN

-project. An introduction to the ART-phi-
losophy is skipped here completely, because the models are rather complicated and cannot (at least due to
the abilities of the author) described in an obvious and abstract way without losing important details. More-
over, very detailed and motivating introductions can be found in the articles mentioned above. Thus a list
of features, which have forced the application of ART in the

SPIN

-project are given here only:

•

Competitive clustering

An unlimited number of analog inputs are classified according to the training-sets presented before.

•

Normalization and contrast enhancement

These two feature are offered in the model itself. Thus these steps can be skipped in the preprocessing
phase.

98 Chapter 11 – Surface-Cluster Classification

98 Chapter 11 – Surface-Cluster Classification

98 Chapter 11 – Surface-Cluster Classification

98 Chapter 11 – Surface-Cluster Classification

98 Chapter 11 – Surface-Cluster Classification

98 Chapter 11 – Surface-Cluster Classification

•

Unlimited flexibility

Any kind of “cooling down” of learning parameters is unknown to the ART models. The adaptation
abilities and speeds are constant during the whole lifetime of the system.

•

Spontaneous learning abilities

Large learning performances can be expected, due to the fact that some learning rules contain sponta-
neous instead of gradient decent or other “smooth” adaptations – a major advantage of ART regarding
the adaptive methods discussed up to here.

•

On-line learning

The lifetime of the system is not divided into a learning and an execution phase – a very important fea-
ture in the

SPIN

-context. Nevertheless, adaptation can be suppressed, if that should be necessary.

•

High adaptation speed

The number of learning steps (especially in the ART 2-A model) needed for a satisfying adaptation is
very low in comparison to most other clustering techniques. This is another necessary feature for any
on-line application.

•

Biological inspiration

The physiological motivation, inspirations, and similarities are often mentioned and emphasized in
the articles of Carpenter and Grossberg. Due to the limited competence of the author in this field, this
motivation is noticed, but does not have any significance for the evaluation of the models.

Some other (in the

SPIN

-context negative) features might be noticed also:

•

Fixed number of classes

This limitation refers to the original articles, but there are obvious possibilities to overcome this prob-
lem.

•

Critical initialisation

Due to the fact, that the whole network structure is build up from scratch on, some competitive parts
of the network must have preset (and different) values. This has turned out not to be a serious problem
for the actual task here.

•

Complex structure

The normalization, contrast-enhancement, and selective attention subsystems are completely imple-
mented employing neural models. Thus some parts seem to be more complex than they would have
been applying “conventional” methods. The author has not tried to overcome this weakness, because
the learning speed is satisfying. On the other hand, the strict limitation to a few (neural-) operators in
the ART-models results in a very “consistent” and “elegant” structure. Of course, these are no princi-
pal arguments, but they play a role during the implementation and debugging phase.

The expected learning speeds in the ART 2-A model are one or two magnitudes higher than the speeds from
the ART 2 model, because of simplifications in the transfer functions and the competitive layers together
with “quick binding” or “spontaneous adaptation” in some constellations. On the other hand the slower
adaptation and some other features of ART 2 promise more stability. Therefore both models are discussed
in the tests from section 11.3.

11.2. Surface-Cluster Representation

Any network clustering method needs a representation vector of fixed length, in order to apply a standard
norm for the distance-measurements occurring at several stages (for example at the competitive layer). The
number of surfaces in a surface-cluster is variable. Therefore a description in the form of curvatures or other
features in equidistant border points cannot be applied here. Moreover the descriptive vector should be
kept small to ensure an effective clustering. A number of general statistical features have been calculated
for each surface-cluster. The complete set of features together with example values calculated at a truncated
pyramid, where one of the six surfaces was missing is shown in table 4. It has turned out during tests dis-
cussed in the next section that 18 out of these 40 features are sufficient for the test set classifications follow-
ing.

99

99

99

99

99

99

11.3. Simulations

The tests with several sets of surface-clusters are performed with both models (ART 2 and ART 2-A). The
focus of the simulations presented here is on the three following aspects:

•

Learning performance (convergence)

The number of learning epochs and the actual computation times, until a stable and useful state of the
network is reached are measured.

•

Generalization

Based on a trained network, a new but similar training set is presented and classified without any fur-
ther adaptation.

•

Flexibility (incremental learning)

The first test for flexibility contains a continuously growing learning set. The second version of this test
assigns a spontaneous change to a new learning set consisting of completely new samples.

The model parameters are chosen according to some preceding investigations (discussed in [Keuchel94])
and set to constant values for all following simulations (see table 5 and table 6). Due to the fact, that both

Surfaces

No. of sur-
faces

Size Largest
size

Smallest
size

Mean size Largest
size (rel.)

Smallest
size (rel.)

Mean size
(rel.)

5 1.655 m

2

0.604 m

2

0.059 m

2

0.331 m

2

0.365 0.036 0.139

Surface corners

Maximal
number

Minimal
number

Mean
number

Obtuse
corners

Most ap-
pearing no

4 4 4 4 5

Surface corner angles

Mean Maximum Minimum Obtuse Acute

89.98

°

150.02

°

59.98

°

6 14

Edge angles

Mean Maximum Minimum Obtuse Acute

88.56

°

149.05

°

59.01

°

3 5

Edges

Total
number

Total
length

Longest
edge

Shortest
edge

Mean edge
length

Longest
(rel.)

Shortest
(rel.)

Mean edge
(rel.)

8 4.460 m 1.260 m 0.140 m 0.558 m 0.125 0.283 0.031

Corners

Total
number

Max. no. of
surfaces

Min. no. of
surfaces

Mean no.
of surfaces

Most like-
ly corner

Mean no.
of corners

Obtuse
corners

Acute cor-
ners

Symmetric
al corners

4 3 3 3 4 3 2 2 2

Table 4 :

Surface-cluster features

100 Chapter 11 – Surface-Cluster Classification

100 Chapter 11 – Surface-Cluster Classification

100 Chapter 11 – Surface-Cluster Classification

100 Chapter 11 – Surface-Cluster Classification

100 Chapter 11 – Surface-Cluster Classification

100 Chapter 11 – Surface-Cluster Classification

ART models show reasonable behaviours in all tests applying the shown parameters, it is no real limitation
to exclude the network parameters from the degrees of freedom from the main simulations.

ART 2-A needs fewer parameters, and the first four have similar or identical meaning as the parameters
from the ART 2 model.

Three sets of surface-clusters are generated (table 7). All surface clusters are generated by deleting some sur-
faces from the basic forms (e.g. cubes, prisms, etc.) and scaling the remaining object randomly in all dimen-
sions (with some limitations depending on the basic form). Thus all entries in the sets are unique, but some
of them are similar to a certain degree. The same basic forms are employed in the generation of the learning
and test set, whereas other forms are applied in the alternative set (used for incremental learning and gen-
eralization tests).

Out of the cluster features described in section 11.2, a set of “significant” features is extracted. The idea is
that features with a large variance within one class of surface-clusters do not have an important impact for
the quality of the class. The following strategy was chosen to divide significant from non-significant fea-
tures.

(1)

Assign all features to the set of significant features.

(2)

Apply the features from the set of significant features to the learning-set and cluster the set until a stable
classification occurs.

(3)

Calculate the range of values (minima and maxima) for each applied feature and for each generated
class.

Parameter Value Comments

z

up

-init 0.5 normalized initial value for weight vectors

b 0.2 learning constant

q 0.02 threshold for signal function

r 0.99 classification accuracy

a 10 ---

b 10 ---

c 0.1 ---

d 0.9 ---

Table 5 :

Parameters for ART 2

Parameter Value Comments

z

up

-init 0.5 normalized initial value for weight vectors

b 0.2 learning constant

q 0.02 threshold for signal function

r 0.99 classification accuracy

Table 6 :

Parameters for ART 2-A

101

101

101

101

101

101

(4)

Select features, with a range of values larger than a certain threshold. Features are only included in this
selection, if this wide range can be observed in multiple classes.

(5)

If there could be some features selected in step 4 then
• exclude these features from the set of significant features; continue with step 2
otherwise
• stop

The remaining (significant) features (18 out of 40) after applying the above procedure are marked grey in
table 8.

Learning set (46) Test set (44) Alternative set (45)

Octahedrons Prisms

8 7 10

Pyramids Truncated pyramids

14 14 14

Rectangular solids (rectangular parallelepipedons) Cubes

14 14 7

Truncated tetrahedrons Tetrahedrons

10 9 14

Table 7 :

Applied learning and test sets

Surfaces

No. of sur-
faces

Size Largest
size

Smallest
size

Mean size

Largest
size (rel.)

Smallest
size (rel.)

Mean size
(rel.)

Surface corners

Maximal
number

Minimal
number

Mean
number

Obtuse
corners

Most ap-
pearing no

Surface corner angles

Mean Maximum Minimum

Obtuse Acute

Edge angles

Mean

Maximum

Minimum

Obtuse Acute

Edges

Total
number

Total
length

Longest
edge

Shortest
edge

Mean edge
length

Longest
(rel.)

Shortest
(rel.)

Mean edge
(rel.)

Corners

Table 8 :

Remaining surface-cluster features

102 Chapter 11 – Surface-Cluster Classification

102 Chapter 11 – Surface-Cluster Classification

102 Chapter 11 – Surface-Cluster Classification

102 Chapter 11 – Surface-Cluster Classification

102 Chapter 11 – Surface-Cluster Classification

102 Chapter 11 – Surface-Cluster Classification

Learning performance (convergence)

The number of learning epochs, until a stable behaviour can be detected is very small (for example in com-
parison to any backpropagation system). A clustering is regarded as “stable”, when three successive learn-
ing set classifications are identical. Thus the number of learning epochs in table 9 is are quite pessimistic. A
stable classification occurs often after one or two learning epochs, but the state “stable” is not yet accepted
by the observer. The number of learning steps per second is of course a very rough approximation depend-
ing widely on the actual implementation. In the test-implementation a number of (graphical) outputs are
done during the learning phase. This is one of the explanations for the quite low difference in learning
speeds between ART 2 and ART 2-A. Other effects are that steady-state values of the differential equations
are employed and the (competitive) F

2

-layer of ART 2 is implemented allowing one winner only. The clas-
sification results using other training sets or similar parameters are comparable. Depending on the order of
presentation, nine to eleven classes are generated, and the classification is changed only very slightly dur-
ing the adaptation phase, i.e. the assignment of a surface-cluster to a certain class is done only once and
hardly ever changed until a stable state is detected. The classification shown in figure 21, produced by the
ART 2-A network with sequential presentation is representative for all classifications with the learning set
from table 7 employing the parameters from table 5 and table 6. Whether the found classes are really suit-
able for a following symbolic object recognition system or not, cannot be answered ultimately. On the other
hand, the visual impression from figure 21 makes an useful application plausible, when applying “human”
criteria for the classification semantic.

Generalization

The classification of the training set (shown in figure 21) is the basis for the generalization test. Without any
further adaptations the test set and the alternative set are applied for classification to the same networks.
The results of these classifications can been seen in figure 22 for the test set, and in figure 23 for the alterna-
tive set. Only two entries could not be assigned to the established classes, whereas the rest of the sets fits
very well in the previously learned classification schema. The shown results are produced with the ART 2-
A model, although the classifications generated with the ART 2 model are equivalent or slightly better (only
one not assigned surface-cluster). The shown generalizations are astonishingly good. Therefore the “coun-
ter-test” (i.e. training the model with the alternative set and classifying the remaining sets) was done also.
In this case twelve (instead of two in the test above) surface-clusters out of the training set remain unclas-
sified. But the interpretation of this worse generalization is, that the alternative set is not as representative
as the training set was for the universe of surface-clusters applied here, i.e. this second test does not say an-
ything about the generalization abilities of the ART models, but shows simply the fact that generalization
can only be done on the base of representative inputs.

Total
number

Max. no. of
surfaces

Min. no. of
surfaces

Mean no.
of surfaces

Most like-
ly corner

Mean no.
of corners

Obtuse
corners

Acute cor-
ners

Symmetric
al corners

ART 2 ART 2-A

Learning epochs (sequential presentation)

3.5 … 5.5 3 … 4

Learning epochs (stochastically presentation)

7 … 8 7 … 11

Learning steps / s (68040, 30 MHz) (rough approximation!)

25 55

Table 9 :

Learning performance

Table 8 :

Remaining surface-cluster features

103

103

103

103

103

103

Incremental learning

The tests for incremental learning are processed in two phases. First the learning set is increased dynami-
cally (but still including the former entries) and second two different sets are applied alternating for the ad-
aptation.
The first test-phase (

increasing learning sets

) is based on the stable classification of the training set from
figure 21. The training set was then mixed with the alternative set and presented to the ART 2-A model. Af-
ter four additional learning epochs a stable classification could be established, where two new classed were
added. The new classes are the natural consequence of the two unclassified surface-clusters from the gen-
eralization test with the alternative set. Due to some minor changes in the classifications, one of the two en-
tries, which have forced new classes, was included in one of the old classes, when the adaptations came to
a stable state. Thus only one additional class was needed to include the alternative set, and the number of
training epochs reaching this state is still very small. Other slight movements of the classification borders
in order to represent both sets, were reasonable. The same test with the ART 2 (instead of the 2-A) model,
results in an even more stable behaviour and the same number of additional adaptation steps. None of the
classifications from the learning set were revised during the second adaptation. Moreover no additional
classes were needed and minor changes in the classification borders were sufficient to fit the complete al-
ternative set into the previous classification schema.

In the second test phase (

alternating learning sets

), only the alternative set was applied to the ART 2-A
model previously adapted with the training set (figure 21). The classification results regarding the elements
from the alternative set were very similar to the test above, but when the training set is classified (not
trained) again, two of the entries from the training set cannot be classified any longer. They have been
“washed-out” from the model. Two more training phases (first the learning set, then the alternative set

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Figure 21: Classification of the learning set with a ART 2-A model

104 Chapter 11 – Surface-Cluster Classification

104 Chapter 11 – Surface-Cluster Classification

104 Chapter 11 – Surface-Cluster Classification

104 Chapter 11 – Surface-Cluster Classification

104 Chapter 11 – Surface-Cluster Classification

104 Chapter 11 – Surface-Cluster Classification

trained again) with four training epochs each were needed to get a classification which was satisfying for
both sets. Circular adaptations, i.e. the adaptation was swapped between two stages where each of them
were not satisfying for one of the training sets, could be detected in some simulations. In any test-case a
small number (4-6) of alternating training phases were sufficient for a stable classification, i.e. including
both sets completely. Nevertheless this is a very weak argument, because it could not be shown that a con-
vergent behaviour will occur in any case.
The “alternating learning sets”-evaluation with the ART 2 model was significantly better than the test with
ART 2-A described above. Slight movements of the classification borders could be detected, but nothing
from the learning set was “washed-out” and no cyclic behaviour occurs at all. The slight but reasonable clas-
sification movements regarding the learning set are shown in figure 24.

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Figure 22: Classification of the test set with a ART 2-A model

unclassified

(empty)

105

105

105

105

105

105

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Figure 23: Classification of the alternative set with a ART 2-A model

unclassified

(empty)

(empty)

Figure 24: Classification movements

cl
as

s
1

cl
as

s
6

adapted with the learning set

adapted additionally with the alternative set

{
 {

107

107

107

107

107

107

Chapter 12

Realtime Aspects

The

SPIN

-project is designed for the application on a mobile platform. Thus hard constraints regarding ro-
bustness and timeliness have to be fulfilled. A possible solution of this demands could be found by employ-
ing a formal realtime formalism respectively calculus. Established techniques and references from this do-
main can be found for example in [Levi90]. But two problems arise when applying such methods. The first
one refers to the need of a very strict specification, which is especially hard to formulate regarding realtime
constraints. The second one is still the limitation of the project-size, which can be handled with the currently
known methods. This prevents definitely the usage of formal techniques (as they are introduced up to now)
for the

SPIN

-project, consisting of a large number of parallel and complex processes.
Accepting formal methods not to be adequate for the

SPIN

-project, the author has chosen another strategy
for approximating the demands. The whole system (and especially the communication system) should be
designed as simple as possible, based on only a few but sufficient and efficient methods. This is only an en-
gineering argument and not a formal technique, but it can help making the system handy and finally “more
secure”. What this argument means for a single task (e.g. no interrupts or caches etc.) is not illustrated here.
Thus a limited communication-system, which gives some very important assurances regarding realtime
constraints is discussed in the rest of this section. The proposed communication system is part of the

ALBA-
TROSS

 (

A

 f

L

exi

B

le multi-t

A

sking and real

T

ime netwo

R

k-

O

perating-

S

y

S

tem kernel), implemented on a
VME-bus system and successfully employed by multiple mobile robots. Other aspects of

ALBATROSS

, not
discussed in this thesis can be found in [Zimmer91] and [Zimmer92] or following the list of references to
other

ALBATROSS

 investigations:

•

ALBATROSS

 - all the kernel structures: [Wetzler91]

•

ALBATROSS

 - the I/O structure: [Peukert91]

•The

ALBATROSS

 communication scheduler: [Tebuckhorst92]

•Cyclic scheduling in a realtime communication system: [Peukert94]

•The blackboard communication scheme: [Nölke92]

•A communication monitor: [Sabiwalsky92]

Each of theses works were guided and supervised by the author.

12.1. Concepts of Realtime

Before arguing about realtime constraints, it is necessary to define the meaning of “realtime” in this context.
The definitions shown here are based on

time

 and on

reliability

 aspects and formulated with the background
of cyclic scheduling systems.

108 Chapter 12 – Realtime Aspects

108 Chapter 12 – Realtime Aspects

108 Chapter 12 – Realtime Aspects

108 Chapter 12 – Realtime Aspects

108 Chapter 12 – Realtime Aspects

108 Chapter 12 – Realtime Aspects

Concept 1:

“Hard Realtime”
A hard realtime task

has to be

 fulfilled

every time

 in a

fixed

 amount of time and other resources. Missing the
deadline of a hard realtime task means an “emergency-stop” of the whole system. To fulfil this demand,
every kind of time jitter and other uncertainties must be avoided.

Concept 2:

“Semi-Hard Realtime”
A semi-hard realtime task

has to be

 fulfilled

every time

 in an

average

 amount of time and other resources. The
definition of “average” has to be strict, in the sense of standard deviations or other terms. The deadline of
a semi-hard realtime task might be missed several times before emergency measures have to be taken.

Concept 3:

“Soft Realtime”
A soft realtime task

should be

 fulfilled in time to guarantee the functionality of a system. Missing the dead-
line of such a task might result in a reduced functionality, but does not refer to security-aspects or the reli-
ability of the system.
In the above definition the

SPIN

 components are soft realtime tasks, but the interesting problem is to fit the

SPIN

 modules into a hard realtime system like a mobile robot, without disturbing the hard realtime parts,
but as an integral part of the whole system.

ALICE

-components may be applied as examples for the other
two classes of realtime-tasks.

12.2. Embedding SPIN in a Hard Realtime System

Integrating a system consisting of realtime-tasks at all levels, as defined above on a mobile platform leads
to the need of a common communication system, fulfilling several demands. Assuming that the complexity
of the system does not allow an integration on one CPU (beside the fact, that such a constellation would
arise other problems), an explicit (physical) communication system is required. This is for sure the case for
the

SPIN

-system. So the first oncoming aspect is the fact that a system consisting of several asynchronous
CPUs has to be synchronized via a communication system, without a significant or, even worse, unpredict-
able effort for this sychronization. The strict demands are formulated precisely in the following three re-
quirements:

a.

Non-blocking access to the communication-system

Every call for new data or for an export of new outputs must successfully end within a fixed (and of
course short) time - even if one communication partner is broken down or in any other possible constel-
lation.

b.

Passive synchronization

All the tasks are synchronized

implicitly

 by the flow of data, without an explicit trigger (interrupt). As-
suming a task in the system is crashed down, the only effect seen by other tasks is the lack of newer data.

c.

Actuality

The actuality is more important than the order of information, i.e. any kind of flow-control is explicitly
ignored on the lowest communication level. The reason for this design decision is that critical informa-
tion in a hard realtime system is only valid during a small range of time.

A communication system fulfilling these constraints is shown in the next section.

12.2.1. The Realtime Communication Scheme

Before discussing protocols, the hardware-environment has to be defined. In the current

ALBATROSS

-sys-
tem two independent processors connected via a dual-ported RAM are assumed, i.e. the memory-domains
of the processors overlay. The definition of “dual-ported” in this context is given by a configuration where
both processors may access the same memory-area

simultaneously

. A conflict at the level of a byte-access has
to be solved with special hardware, in a way that neither side is being blocked and a byte will stay an indi-
visible element.
Following the demands above, a simple communication-buffer access is designed and shown here at the
operating system level. The common base of collision-free and locking-free access with two asynchronous
partners is a three-buffer structure. In figure 6 the connection between two processors at the hardware-level
and the location of the buffers for the communication are shown.

109

109

109

109

109

109

In figure 7, figure 8, and figure 9 the implementation fragments (in a Pascal-like syntax) for reading from
and writing to the communication-area are shown. The critical accesses to the variables “ReadLocked” and
“Actual” are marked (

bold

 for a critical writing;

italic

 for a critical reading).

Variables not under local control may change their values at

any

 time. This fact seems to make any formal
proof of the correctness rather hard. Fortunately the critical variables may change only to a small number
of values. So all the possible cases can be proven step by step. In order to assure the correctness of the whole
realtime-transfer the following four points have to be proven in detail:

•

Mutual exclusion

Every communication-buffer is accessed by only one processor at all times.

•

Well-defined results

The returned values of each communication-access fulfil the specification always.

•

Termination

The execution time of each communication-access is limited by a constant.

•

Actuality

The most actual information is being delivered in any case.

Figure 25: memory domains

ReadLocked

Actual

Buffer #1

Buffer #2

Buffer #3

Task Operating-System

Operating-System Task

dual ported RAM

producer - memory domain

consumer - memory domain

Type BufferIndex= (Buffer1, Buffer2, Buffer3);

Var Actual, {may only be written by the producer }
ReadLocked {may only be written by the consumer }

: BufferIndex;

{ Both variables have to be one byte long and }
{ are located in the dual-ported-RAM area. }
{ The initial value of both variables }
{ should be “Buffer1”. }

Figure 26: common data-structures

110 Chapter 12 – Realtime Aspects

110 Chapter 12 – Realtime Aspects

110 Chapter 12 – Realtime Aspects

110 Chapter 12 – Realtime Aspects

110 Chapter 12 – Realtime Aspects

110 Chapter 12 – Realtime Aspects

Up to here, only the access-routines at the operating-system level are mentioned. But how does this appear
to the task? The chosen syntax is simple and the semantic is much like an electric wire. There are two special
functions for each variable, so all possibilities of range- and type-checking may be used. For a consuming
task the buffer access is masked by the following interface function:

LookForNew<VarName> (Var <VarName>: <VarType>): Boolean;
e.g.: LookForNewRadarMap (Var RadarMap: RadarShot): Boolean;

The boolean result signals the actuality of the read information (Is this information ever being read before?).
For a producing task the buffer-access is hidden by the following interface procedure:

Make<VarName>Available (<VarName>: <VarType>);
e.g.: MakeRadarMapAvailable (RadarMap: RadarShot);

As the final remark in this section the author would like to emphasize once again that reading or writing in
this communication-scheme is free of blocking, even when the communication partner has crashed in a crit-
ical phase.

Type Actuality = (Old, New);

Function Import (Var ImportedData: Datatype): Actuality;

Begin
Import:= Old;

{--- Phase 1: select a buffer for read-access}
While ReadLocked ≠ Actual Do

ReadLocked:= Actual;
Import:= New

EndWhile;

{--- Phase 2: read-access to the selected buffer}
ReadFrom (ReadLocked, ImportedData)

EndFunction Import;

Figure 27: buffer-access for reading

Procedure Export (ExportedData: Datatype);

VarBuffer, WriteBuffer, CopyOfReadLocked: BufferIndex;

Begin
{--- Phase 1: select a buffer for write-access}

CopyOfReadLocked:= ReadLocked;
For Buffer:= Buffer1 to Buffer3 Do

If (Buffer ≠ Actual) and
(Buffer ≠ CopyOfReadLocked) Then

WriteBuffer:= Buffer
EndIf

EndFor;

{--- Phase 2: write-access to the selected buffer}
WriteTo (WriteBuffer, ExportedData);

{--- Phase 3: assign completely written buffer as actual}
Actual:= WriteBuffer

EndProcedure Export;

Figure 28: buffer-access for writing

111

111

111

111

111

111

12.2.2. Need for a Communication Controller

If the configuration consists of more than two CPUs and the CPUs are not embedded in a local multi-ported
RAM-area, which is to the knowledge of the author currently not available at all, there must be an explicit,
physical communication system. Thus one of the communication-partners can only access the dual-ported-
RAM via a kind of communication system (usually a short range bus-system). This means a break in the
realtime-communication scheme shown so far, because the communication is not symmetric at the physical
level. One processor may access the dual-ported-RAM much like the local RAM, while the other processor
has to use a communication system to access the same dual-ported-RAM.

A new aspect appears from here on. What happens if the access to the (far) dual-ported-RAM fails, because
of a disturbance on the communication system? In the above discussion a memory-access was a local trans-
fer and therefore without any aspects of a failed communication.

This problem leads to a contradiction. On the one hand it is necessary to finish a transfer in a short, constant,
and predefined time, but on the other hand a failed access via the communication-system must be repeated.
The processor for the local task is not available any longer after the first failed trial. So which processor will
initiate the second trial? The problem can only be solved by introducing a third processor as a host for the

communication-controller

 as shown in figure 10.

Figure 29: the communication controller

ReadLocked

Actual

Buffer #2

Buffer #1

Buffer #3

Task Operating-System

dual ported RAM

producer - memory domain

consumer - memory domain

ReadLocked

Actual

Buffer #2

Buffer #1

Buffer #3

Task Operating-System

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
r

communication-
system

112 Chapter 12 – Realtime Aspects

112 Chapter 12 – Realtime Aspects

112 Chapter 12 – Realtime Aspects

112 Chapter 12 – Realtime Aspects

112 Chapter 12 – Realtime Aspects

112 Chapter 12 – Realtime Aspects

From the view of the tasks any buffer-access looks like an access to the local RAM, i.e. it can be successfully
done in a well defined time. The communication-controller may read from or write to the (far) dual-ported-
RAMs several times, without disturbing the local tasks at all.

12.2.3. Cyclic Transfers

Cyclic transfers means that there is a pre-scheduling of the communication-slots instead of transient trans-
fers while the system is running. The pre-calculated scheduling plan is then executed in a cyclic manner.
The aspects of this kind of transfer will be discussed in the form of three questions:

What is the major problem employing transient transfers?

Whenever a producer wants to distribute its results (this happens completely asynchronously) it runs
through an arbitration-phase on the communication-system. The time, the process has to spend in this
phase, is quite difficult to calculate – if it can be limited at all.

What is the restriction of pre-scheduling?

The restriction is actually simple – the complete set of communication demands have to be known in ad-
vance. In a realtime system the worst case conditions must be calculated and specified. From the worst case
conditions the highest needed sampling frequency is being deduced.

What are the advantages of a cyclic-transfer-system?

The construction is based on worst case conditions, i.e. the worst case may happen without any confusion.
Moreover, a kind of over-sampling may be introduced. When the maximal needed sampling frequency is
calculated, three possibilities have to be considered. First the communication-system is not able to transfer
data with such a frequency. So another hardware is needed, or the realtime-constraints have to be relaxed.
Second, the communication capacity just corresponds to this highest frequency, so nothing is left to do. But
the usual case will be, that there is some extra capacity on the communication-medium, even in the worst,
assumed case. In this context “worst case” is defined considering the constraints of the physical system, but
all the computer hardware is assumed to be without any failure, especially the communication-system.
Thus the extra capacity may be employed to reduce the risk of transient hardware failures by introducing
redundant transfers. In a physical sense this may be interpreted as over-sampling.
An example of a hard realtime pre-scheduling system may be found in [Peukert94].

12.2.4. Transfer Synchronization

Up to here a communication-controller and a cyclic-transfer strategy has been introduced, but some prob-
lems are still left. These problems will become obvious, when the timing-behaviour of the communication-
system as seen by the local tasks is being examined. Two important points should be listed:

•The communication-channels are served with a guaranteed frequency, or even more often.

•The exact time of the update-event (i.e. arrival of new information) on any communication-channel is
not explicitly known by the local task (the update-event does not force any asynchronous interrupt).

The typical behaviour of a task in the introduced communication environment will be shown briefly in the
following. At some state the task will look for new input-data. If there is new (i.e. not yet processed) infor-
mation already available, the task will start calculating. Otherwise the task will do some busy-waiting loops
on the requested input-channels, until new information has arrived. After finishing the specified work on
this new information and having made some output-data available for the rest of the world, the task will
check the needed input-channels and the procedure starts again. So, there is an implicit synchronization on
the input-data. An explicit specification of the update-time is not necessary.
Unfortunately there are also some other tasks in a realtime-system. Due to correlation purposes, some tasks
needs a global time. For example a module composing data from different outer sensors to one representa-
tion. Sensor-information from different sources (transmitted via the communication-system), but sampled
at the same global time must be fused.

113

113

113

113

113

113

In the following sections two different strategies solving this correlation problem will be introduced.

12.2.4-1 Time-Rigid Transfers

The execution of the scheduling-plan (employing time-rigid transfers) is in the exclusive responsibility of
the communication-controller. So the only way to make a global time available is to produce the global time
by the communication-controller itself and to embed this global time as an ordinary realtime-transfer in the
scheduling-plan.

What are the advantages of time-rigid transfers?

a.

The communication-capacity might be used nearly optimal, because the timing of the communication is
done by one processor and all the execution-times are exactly predictable.

b.

This model implies a high reliability because of:

b-1

The implementation of the communication-controller is trivial, where the execution-phase is ad-
dressed here only –

not

 the calculation of the scheduling-plan.

b-2

The communication-controller is completely independent from other processors.

c.

A global time is available and completely embedded in the whole communication-structure. The global
time is exact just at the moment of each update-event on this global-time-channel (see [Levi90] for gen-
eral time accuracy estimations).

What is the problem of time-rigid transfers?

The global time is quite inaccurate, because the distribution frequency cannot be higher than the maximal
frequency from the scheduling-plan. In order to enlarge the accuracy of the global time the local tasks need
timers synchronized to this global time. No interrupt is triggered at the update-event on the global time
channel. Therefore the tasks are forced to stay in busy-waiting loops on this update-event from time to time
(depending on the accuracy of the local timers).
The direct and easiest way to overcome this problem is to implement an asynchronous way of making the
global time available – either by an extra hardware or by spending some amount of communication-capac-
ity for this asynchronous time transmission. The second version would lead to a massive violation of the
introduced communication paradigm and is not examined here any deeper. The hardware version is pro-
posed by [Kopetz87]. It is assumed that there is no access to a special hardware and the questionable version
of asynchronous transfers in the background should not be employed. Thus an alternative synchronization
scheme will be shown in the next section.

12.2.4-2 Position-Synchronized Transfers

Assuming that the different correlations between the sampled information in the system are either done by
a global time or by a global available position in space (depending on the task), the above synchronization
scheme implies two main problems:

•The position-producing task must be synchronized on the global time.

•The position information itself is subjected to an unpredictable time jitter.

In order to overcome these problems two changes in the synchronization-mechanism are necessary:

•The global time and the global position have to be produced by the same task.

•The whole communication system must be synchronized with the combined time-position informa-
tion.

When the time and the position are produced by the same task, they are correlated automatically, and in the
best case this is all done by the communication-controller itself. If the global position cannot be produced
by the communication-controller itself for some reason (e.g. no direct connection to the outer world), the
communication-controller has to be synchronized on the position-producing task and is therefore no longer
independent.

114 Chapter 12 – Realtime Aspects

114 Chapter 12 – Realtime Aspects

114 Chapter 12 – Realtime Aspects

114 Chapter 12 – Realtime Aspects

114 Chapter 12 – Realtime Aspects

114 Chapter 12 – Realtime Aspects

12.2.5. The Blackboard Communication Scheme

Up to this section, the author has shown that the

ALBATROSS

-communication-system is sufficient and effi-
cient with regard of hard realtime constraints. Unfortunately the communication-semantic of a pure electric
wire is not satisfying for all the communication demands of the highly distributed

SPIN

-system, even when
these communication channels fit perfectly in a hard realtime environment. Thus a whole family of com-
munication protocols is implemented on top of the realtime communication scheme. This is being done
without loss of any assurances for the tasks employing the “pure” realtime port concept only. The offered
protocols include flow-control, execution-control, broadcasts, client-server-structures, automatic segmenta-
tion of infinite data-flows, sliding windows, semaphore, and remote procedure calls. As one example out
of this protocol-pool, the blackboard communication scheme will be discussed short in the rest of this sec-
tion. The blackboard communication scheme is a typical protocol-family employed by multiple entities of
the

SPIN

-project. As the name already associates the main concept is a that of a blackboard where multiple
clients can read and write simultaneously. The detailed list of feature of this communication schema is
shown below:

•Arbitrary number of clients operating simultaneously

•Mutual exclusion (semaphore) in critical operations or operation-sequences

•All operations are client-defined remote procedure calls

•Arbitrary number of types of remote procedure calls per server

•A single remote procedure call is treated as an indivisible unit

•Several status channels per server are offered

•Flow control is applied on all communications

The typical application of the blackboard communication is given by each model out of the “model-bar” of
the

SPIN

-project as introduced in chapter 7.2. For a closer discussion of these higher protocols please refer
to [Nölke92] respectively [Tebuckhorst92].

