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Self-localization in unknown environments respectively
correlation of current and former impressions of the world
is an essential ability for most mobile robots. The method,
proposed in this article is the construction of a qualitative,
topological world model as a basis for self-localization. As
a central aspect the reliability regarding error-tolerance
and stability will be emphasized. The proposed techniques
demand very low constraints for the kind and quality of
the employed sensors as well as for the kinematic precision
of the utilized mobile platform. Hard real-time constraints
can be handled due to the low computational complexity.

The principal discussions are supported by real-world ex-
periments with the mobile robot “ALICE”™".

Keywords: artificial neural networks, mobile ro-
bots, self-localization, self-organization, world-
modelling

1. Motivation

Based on the idea that a (really useful) mobile robot
should be adaptive in its behaviour regarding its cur-
rent environment, a dynamic world modelling meth-
od is introduced in this article. The “really useful” at-
tribute includes sufficient simplicity, reliability, and
stability, which are therefore considered basic de-
mands for the proposed approach.

High precision, metric approaches ([2], [5], [8], or
[14]) demand very reliably and accurate sensor de-
vices, as well as large computational power. Their
applicability on small, and light weighted platforms
is limited. During the last few years, “qualitative
methods” has been proposed to overcome mainly
problems regarding complexity and stability. Works
utilizing qualitative modelling for self-localization
and navigation include the basic article from Kuipers
introducing the term “qualitative map” in [6], the ul-
trasonic clustering techniques published by Kurz [7],
the recently published work of Tani [11] based on lo-
cal sensor-sequences rather than on explicit topolo-
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gy, and the adaptive, topological models introduced
by Prescott [10].

In order to focus on the main issues on this field, the
robot's world is designed to be simple, but still of
practical relevance. The project as well as the mobile,
experimental platform itself will be called ALICE in
the following. This is not an abbreviation, but just a
name.

1-1. The Assumed World

The world of ALICE is constructed on the basis of
some elementary assumptions. Practical relevance
and sufficient simplicity are two contradictory goals
that have to be unified in order to define a universe
for the present robot. The practical aspects of ALICE's
world should allow real world tests, which include
all relevant problems of mobile robots not having a
possibility of (external) global positioning. On the
other hand a certain degree of simplicity is needed to
allow plausible simulations and to achieve the possi-
bility of generalizing the results to classes of robots
and sensors. Furthermore biologically implausible
features should be avoided. The central, resulting ap-
proach covering all these streams have to be consid-
ered regarding certain categories of the world:

* Position

ALICE is allowed to estimate its relative position
by dead-reckoning. This is biologically plausi-
ble, when the accuracy does not exceed certain
limits. Moreover a system being able to handle
significant errors in the position measurement
contains a wide practical relevance. Another ap-
proach would be to dispense with an explicit po-
sition at all. Thus the self-localization could be
performed on the base of typical sequences of
impressions (sensor-readings) as shown in [11].

* Analog sensor readings
ALICE has access to continuously varying fea-
tures of the outer world, regarding time and
movements of the robot itself. According to the
biological fact that even the mammal eye is not
able to measure absolute physical quantities (in
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this case light intensities), the sensor models ap-
plied for ALICE are not calibrated. Moreover the
sensor models are non-linear, contain a large de-
gree of noise, and can fail completely.

* Binary sensor readings
Some impressions from the outer world are of a
mainly binary nature as for example simple
forms of whiskers or other touch sensors. This is
also included in ALICE's world, in order to dem-
onstrate that spontaneously varying signals can
be handled in the proposed world model.

¢ Error Tolerance

Two kinds of error tolerance have to be dis-
cussed. First the error-tolerance in learning or
adaptation phases. Here any kind of “miss” is
allowed in ALICE's world. Due to the fact that
the sophisticated mechanics of current robots
are not error-tolerance at all in comparison to bi-
ological systems, the robot's world itself has to
be limited to allow learning in trial-and-error
phases. Error-tolerance during the application
phase of the system is the second aspect that has
to be mentioned. ALICE does not distinguish an
explicit learning and application phase, i.e. ad-
aptation to the current situation or environment
is a lifelong ongoing process in a changing
world. This is the first reason for a error-tolerant
world at any time. But furthermore the world
model as it will be described below includes sys-
tem-immanent inconsistencies that prevent any
globally correct “blind” planning. Any plan may
fail in ALICE's world and must then be replaced
by a more recent and probably better plan. In the
opinion of the author, this is not a weakness but
an attribute of the real world, which should be
included in any robot's universe of practical rel-
evance.

¢ Structured Environment

ALICE's world should be sufficiently “rich” to
enable self-localization at positions or areas of a
certain density. That means that the sensor read-
ings must change significantly in travelling dis-
tances that are small regarding the relative
position corruption. On the other hand the fre-
quency of changing features while moving must
be low enough, in order not to generate stocha-
stic signals regarding the robot's sampling fre-
quency. Actually this frequency have to be much
lower than given by Shannon's sampling theo-
rem, due to the degree of statistically stability
that should be achieved applying fuzzy and un-
reliable sensor models.

These assumptions about ALICE's world lead imme-
diately to the components and structure of ALICE (the
mobile platform) itself.

figure 1 : ALICE

1-2. Platform

The physical realisation of ALICE and its components
will be discussed shortly in this section. For an opti-
cal impression of ALICE please refer to figure 1. The
included features are just sufficient for an autono-
mous mobile robot operating in realtime in a uni-
verse as described in the section above. The plat-
form's kinematics allow an omnidirectional motion
control, i.e. ALICE is able to go directly towards any
direction without any preparatory manoeuvring.
The fact that the platform is round and symmetrical
regarding the employed sensor devices, skips any
movements that would be needed, if certain orienta-
tions or perspectives would result in other percep-
tional or kinematical possibilities. All (six) wheels are
driven and steerable. Thus even the propulsion sys-
tem is completely symmetrical. In order to calculate
a relative spatial position the wheel revolutions
(measured at the gears) are counted. The achieved
accuracy by this dead-reckoning is limited by an
(drift-) error of 20 to 25% (depending on the kind of
performed movements and the condition of the
floor). This position error is “sufficient” to ensure
that any weak position correlation technique will fail
very soon.

The binary sensor system is realized by 24 simple
whiskers mounted symmetrically around the border
of ALICE. Each whisker is 17 cm long and mounted in
a small metal tube, giving a binary signal, whenever
the whisker is sufficiently pushed to establish a con-
tact between the whisker and the tube. This “suffi-
ciently” is very fuzzy and depends on the angle,
force and speed of the pushing object. Therefore the
angular resolution detecting for example a straight
wall is below 15° or in some configurations even be-
low 30°.

The sensor system giving continuously varying sig-
nals is represented by 24 passive light sensors, meas-
uring the light intensity detected from a certain di-
rection, with an angular resolution of approximately
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20°, i.e. every light impressions in a cone of 20° is in-
tegrated into one scalar sensor reading. The light
sensors (passive photo resistors) are mounted to-
gether with the whiskers and are therefore also dis-
tributed symmetrically at ALICE's border. Please refer
to figure 2, giving an impression of the physical real-
isation of the light sensor - whisker combination. The
upper tube hosts a photo resistor, where the lower
tube caries the base and the detector for a 17 cm long
(steel-) whisker. The tubes are 2.5 cm long.

The on-board computer power is limited to one
standard CISC-CPU (currently: MC68040 at 33 MHz
equipped with 16 MB random access memory and
standard I/O). It is intended (and shown in the fol-
lowing sections) that this computer power is suffi-
cient for a full realtime implementation of all world
modelling algorithms. The term “realtime” can be
roughly and pragmatically approximated here by the
demand that the machine should be able to go con-
tinuously at full speed (25 cm/s) where the world
model is adapted continuously without any time-jit-
ter or delay.

The author would like to emphasize that the low re-
liability and resolution of the employed sensor de-
vices together with the low relative position accuracy
and the limited computer power is not a weakness of
the system but is chosen intentionally. A low-preci-
sion system like ALICE is an adequate experimental
platform for any world modelling and control tech-
nique, which is intended to be stable and reliable in a
real world. Any sensor and kinematic system with
features superior compared to ALICE (i.e. almost any
sensor system) promises a further improvement in
terms of speed and precision but not with regard of
the discussed, principal abilities.

2. Topological World-Modelling

The central motivation of qualitative topological
world models (QT-Models) is the basic mobile robot
task: “Recognize places you have seen before!”. In
this article this task will be approximated by extract-
ing “situations” (i.e. recognized places) together
with their topological neighbourhood from the cur-

figure 2 : Light sensor - whisker combination

rent sequence of sensor-samples, rather than model-
ling the boundaries of the detected obstacles and ob-
jects in a metric manner. Assuming a stable situation-
recognition-process and a technique for moving be-
tween distinct situations, the concept of a qualitative,
topological world model suggests a human-motivat-
ed basis for a navigation. The main concept has al-
ready been proposed by Kuipers et al. [6], but here
the construction process was carried out using ex-
plicit rules, not statistical techniques. Therefore the
real-world abilities of the Kuipers approach are, in
the opinion of the author, limited.

The world model proposed in this article is based on
clustering techniques introduced by Kohonen (“self-
organizing-maps”, [4]) and Fritzke (“growing cell
structures”, [1]) together with some previously pro-
posed extensions by this research group [3]. Due to a
couple of specific autonomous robots-constraints,
these structures are modified to cope with realtime-
aspects, lifelong learning, “local forgetting”, and cor-
relation.

To make the term “situation” in this context more
precise, figure 3 shows a typical situation generated
in ALICE's test-runs. The inner circle describes the
distribution of light-impressions received from par-
ticular directions, the outer circle shows the
smoothed touch-values originate from contacts with
obstacles in various directions. The two-number pair
in the centre gives a rough approximation of the ge-
ometric position of this “situation”.

3. Methods

This section will introduce the technical details of the
proposed topological world model. The algorithms
following are expressed in general terms only ignor-
ing computational details.

3-1. Pre-Processing

Following the idea of representing situations, con-
sisting of readings from different kinds of sensors in
a way that they can be compared in one step, and by

figure 3 : A “situation”
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employing a simple norm, the sensor-samples have
to be preprocessed to form a vector of unified ele-
ments. In the current system passive light and tactile
sensors as well as an (x, y)-position produced by
odometry are available. Considering the fact, that the
angular resolution of the tactile sensors is very low,
each vector of tactile readings is smoothed by apply-
ing gaussian functions. Finally the sensor samples
from different types of sensors are weighted and con-
catenated to produce a “situation-vector”, or more
briefly a “situation” (consisting of 50 values in the ex-
ample given).

In the following, sensor situations will be indicated
as S; the position or x, y-part of such situations as p.

3-2. Adaptation

As a basis for the network model, the euclidian norm
is applied to calculate distances between sensor situ-
ations, d, and distances between positions, g, respec-
tively.

Consider a network N consisting of a number of cells
¢;, which are connected with respect to the topologi-
cal neighbourhood of the situations S(c,) attached
to each cell. Then at each adaptation step the cell
¢,with the smallest situation-distance d,, to the
new input situation S, is determined according to:

Oc,ON: d,, = d(S(c,,).5) <d(S(c).S,) (1)

In order to limit the effort for this adaptation to a con-
stant the search area is limited by the geometric dis-
tance g_ . . In the current system this is done by ap-
plying adequate data-structures to the network-
management. The selected cell c,, and all its topo-
logical neighbours are then adapted according to:

new —

opt T Co;at_ (80 Diopt) (2)
Oc | a(c,c,,) >0: ¢ =¢, - (g 0,) (3)
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where a(-,-) is the adjacency-function of the net-
work. The “classification error” d, , is then added to
a total classification error d,,,,, attached to the cell

Copi-

Oc; ON (after n adaptation steps):

n
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In order to decrease the adaptation speed of a well
adapted network, the parameters € and ¢ are con-
trolled by:

D (80 |}A’ O) l (dopt S ducc)
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where: 0<¢g, <1

i
and £"" resp. €
eters € and € .

i"" are the initial values of the param-
In each adaptation step, where d,, is larger than a
tolerated error d,_, a global counter n ,  is incre-
mented. This counter will be used as a measurement
for the need for change in the network structure. An
update-counter u_, attached to ¢, , is incremented
and will be used as an indicator for the stability of
this specific cell.

In order to use the high speed of this adaptation
process to achieve better adaptation, each situation is
presented several times k to the network. A constant
delay of I sensor-sample-time-slots before the current
sensor situation affects the network is also found
useful (see section “Correlation” below). According-
ly alearning set holding (k O(I + 1)) —1 situations is
implemented.

3-3. Growing & Shrinking

At start-up time of the system, there are no cells; the
network is empty. So the common problem finding a
“good” initial state of the network is avoided, but
there is a need for some growing strategy. In the
present system, two growing strategies are applied.
The first is called “spontaneous insertion”, the sec-
ond “statistical insertion”. In the first, new cells, rep-
resenting the current sensor situation, are inserted
when the distance between the current sensor situa-
tion and c,, exceeds a certain limit p_ (in the special
case of an empty network this strategy produces the
first cell). In the second strategy a new cell is inserted
in the middle between the cell with the highest “de-
gree of movement” ¢, (measured by the cell at-
tribute d, , ;) and its farthest topological neighbour
c,, every n, . “miss-classifications” (measured by
the global counter #, . ). The new cell is instantiated
with mean-values of c,,,,., and ¢, for position and
light-intensity, but with minimal values for touch-in-
formation.

Another aspect of growing relates to the topological
connections between cells. Assuming that c,, has
just changed from c‘o’;‘f to c,,; in two consecutive ad-
aptation steps, and that the cell ¢, has m other
neighbours c; (a(c,,, ¢;) >0), the following changes
in connection weights are imposed:

a(cyd e =1 @)
0, (1<j<sm):
q"e® (C:;T;), C]-) =q (C;l;’;“, C],) - (ared/ m) (8)

with 0<a,,,<1

A connection with a weight < 0 is regarded as non ex-
istent. Thus the deletion of cells is now straight for-
ward. A cell or a cell-cluster with no connection is re-
moved.
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3-4. Correlation

Three degrees of freedom out of the internal repre-
sentation ((x, y)-position and orientation) will be cor-
rupted by drift effects or other errors, if they are not
continuously correlated to the world model. Even a
stable and error-tolerant network structure will not
be able to produce stable world models, if the robot's
position is corrupted. The obvious approach is to
correlate the internal position continuously with the
world model built up so far. On the other hand the
robot's position is integrated in the world model.
This mutual stabilizing technique is very useful ap-
plied to local world models. But in fact each repre-
sentations are updated with the faults, errors and
noise from the other. This principal problem pre-
vents a globally consistent world model of arbitrary
size including position when only local information
is available.

One strategy, used to stabilize the internal position, is
to delay the integration of the current sensor situa-
tion S, by a number of adaptation steps I. In this way
the internal position is correlated on the basis of the
formerly integrated world-knowledge at this point,
and not on the base of S_, which would not make any
sense. An estimation p,,of the current position is
produced using the sensor-distances d; (to S.) and
the number of updates u; of all cells ¢,in the immedi-
ate topological neighbourhood of S.. The estimates
produced in this way, are not necessarily near to the
“correct” position in every case. Thus the internal po-
sition is not changed to p,,,, but is only “moved” to-
wards this point by a fraction €, . The fact that these
estimation errors are normally distributed in the
long term, together with the fact that the remaining
position-errors are integrated into the world model
after a certain delay, leads to a stable behaviour of the
local world model.

The third degree of freedom, the orientation of the
robot, is also corrupted by drift and other effects. In
order to correlate orientation with the internal repre-
sentation and the world model, it must be assumed
that the current position is correct to within a certain
tolerance. Based on the geometric distance, the near-
est cell c,,,, is determined by:

O0c,ON: g(S (60):5) $8(5(e).S) (9

To obtain a comparable measurement for the orienta-
tion based on sensor impressions including position,
we interpret the sensor values as polar coordinates:

360° 360°
L0 (0 Gin (107 ), 0, os (107 ) (10)

360° 360°
t,0 (t, Gin (i %),t,. Cros (i DT)) (11)

where [, are the light-readings, ¢, are the tactile
readings and 0 <i<s-1. A possible derived meas-
urement for the orientation (modulo 180°) is a linear

regression O on the 2s polar “sensor-points”. The an-
gular difference between the orientation of the re-
gression of the current sensor scan O, and the orien-
tation of the regression O,,,, of the nearest cell ¢,,,,,,
is interpreted as the current orientation-error. As in
the case of the position correlation above, the inter-
nal orientation is only “moved” by a fraction ¢ , to-
wards the estimated orientation. In the current sys-
tem only the light sensors are employed to determine
the orientation estimates. The internal orientation is
continuous and not quantised according to the angu-
lar sensor-resolution. Thus the incoming sensor-
readings are interpolated linearly and rotated ac-
cording to the current orientation of the robot.

Due to the fact that the remaining position-drift is in-
tegrated with the world-model, a global drift of the
whole model may occur. This is not necessarily a
problem if the world model is drifting as a whole, but
as the world model expands and some areas are vis-
ited in a sporadic manner, different areas will drift in
different ways, resulting in an inconsistent world
model. Therefore a cell-specific slow-down of the ad-
aptation speed is introduced when cells are “con-
firmed” at least n, times (i.e. Uy 21 ﬁ_x).

4. Experiment

In this section the author tries to emphasize the real
world aspect of the ALICE project, i.e. the world mod-
elling should be stable regarding the assumed world
introduced above. The behaviour of ALICE is docu-
mented under a couple of critical conditions, like in-
adequate parameters, certain sensor weights, lost
correlation, and dynamic environments. The most
important, observed feature during the test-runs is
the internal position of ALICE. Whenever ALICE loses
its position respectively orientation correlation, the
world model is obviously useless for the intended
purpose. Furthermore some heuristics regarding the
quality of the network can be applied and evaluated
(in case of a stable internal position):

* Generalization
The number of generated cells in the network
should be small. Thus requirements regarding
realtime, memory capacities, and generalization
can be fulfilled. Moreover only a sufficiently low
density of cells enables the correlation abilities.

* Topology
The generated network should have a topologi-
cal equivalent in the real world. Moreover only a
low degree of interceptions between the connec-
tions should be accepted. Otherwise the graph
search methods of the navigator's planning com-
ponent will fail.

* Consistency
The cells as well as the generated connections
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figure 4 : Test scene

should remain in areas, reachable for ALICE. The
adaptation of the network in the form of repre-
sentation through mean values given no general
guarantee for this feature. Situations represent-
ed by the cells in the network are not necessarily
observable or existing in the real world. Espe-
cially the neighbourhood adaptation plays a
critical role in the generation of inconsistent net-
work areas.

The tests are performed in a polygonal (roughly rec-
tangular) environment of approximately three times
three metres with a round pillar (diameter: 45 centi-
metres) slightly asymmetrical in the centre. The bor-
ders are straight wall segments, each of a length of
one metre. Two respectively three light sources are
mounted at the border of the test environment pro-
ducing any kind of reflections and shadows. De-
pending on the time of the day the sunlight gives a
fourth light source, with completely other character-
istics than the spots with their artificial light. Espe-
cially the continuous change of the sunlight makes
the test environment dynamic without further en-
gagement. Figure 4 gives an impression of the actual
real world environment. The bright spots at the left
are light reflections.

The shown results depend critically from the strate-
gy and order of gathering sensor readings from the
actual environment. The set of applied strategies
(called “exploration”) for these experiments, is dis-
cussed in [13].

4-1. Critical Network-Parameters

As one representative out of the group of network
parameters, the critical influence of the parameter €
is shown. € controls the adaptation speed of the cells
(g, is changed proportional to €, in this test, i.e.
e, = 10[k)). First, € is set to a large value (three
times larger then the usual value of 0.03). The result-
ing world modelling performed by ALICE shows a
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Figure 5b: € = 0.005

very “lively” behaviour (figure 5a). The cells are
moving quickly and only a small number of cells is
required to represent the whole environment. But the
connections are too muddled to be useful for a navi-
gator and the representation is not consistent for ex-
ample regarding the pillar in the centre. The counter
test of reducing the adaptation speed of the network
to one sixth of the usual value results in a even worse
situation. A huge amount of cells is inserted, due to
the fact that the slowly moving cells cannot integrate
the quickly changing, sampled situations. Even the
position and orientation correlation fails, when the
test as shown in figure 5b is continued.

4-2. Sensor Weights

The influence of the sensor weight concerns mainly
the kind of produced map. The influence of light and
touch information to the sensor situation is given by
the distribution and strength of these readings in a
typical working environment, but the weight for the
position has moreover an additional meaning. This
weight controls (beside other parameters) the topo-
logic equivalence of the network and real world re-
garding the robot's spatial position. If the position
weight is chosen to small, the topologic neighbour-
hoods in the network are controlled by the light and
touch information only and the test results in wide,
intersected connections, without any geometric
equivalence. On the other hand, if the meaning of the
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figure 6 : large position weight

position for the sensor situation is set too high (figure
6), the geometric equivalence seems perfect, but the
number of cells needs to be rather high, and even
worse, the position correlation is getting very critical.
Due to the fact that the internal position is mostly
correlated on the base of other (network-) positions
(i.e. not on the base of complete sensor impressions)
this world model must fail after a certain time.

The actual setting of the position weight depends on
the robot's dead-reckoning precision as well as on the
degree of needed geometric consistency.

4-3. Correlation

The importance of the position- and orientation cor-
relation for the world modelling (and of course for
the navigator and explorator) can be shown by two
test-runs, where one of the correlation processes is
deactivated in each case. The results are shown in fig-
ure 7 for a test-run without orientation correlation.
Due to the fact, that these experiments without corre-
lation are completely instable, the shown qualitative
topologic maps are arbitrary but representative.
None of these test-runs could be completed without
a total loss of consistency in the world model. This is
not surprising, with ALICE's position drift-error of 20
to 25% and rotational drift of up to 0.5°/metre in
mind. But the principle loss of consistency does not
depend from the actual drift rate — as long as there is
any drift at all (as in all real world systems) the effect
will occur sooner or later.

curr ex: 1600 breakpointat: 1600

figure 7 : ...without orientation correlation

e jnmnQ
: 5000 breakpointat: 5000

figure 8 : static, 5000 samples

4-4. Static and Dynamic Scenes

The final section of the experiments will discuss the
development of working qualitative, topological
world models in static and dynamic environments.
The world model in a static environment reaches an
equilibrium state after sufficient exploration of all
available features. ALICE needs approximately 15 to
20 minutes to build up a QT-map of the static test en-
vironment as demonstrated in figure 8. The final
state (after gathering 5000 sensor situations) repre-
sents the geometric features, the light distribution as
well as a network graph well suited for the navigator.
As introduced in section 3, the network holds much
more information than shown in these figures. The
cells contain whole sensor situations together with
statistical values about their history, where the con-
nections are attributed by degrees of confidence. All

Figure 9b: dynamic, 4331 samples
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this information can be employed by the planning or
execution (driving) phase of any navigator.

The second world model developing example shown
in figure 9a and figure 9b demonstrates the abilities
to adapt to a changing world. In order to make the ef-
fect obvious, the formerly closed circle in the envi-
ronment is cut off at the lower end until the gathering
of sensor situation 3500 (figure 9a). Up to this situa-
tion, the world model shows a clear gap in the lower
part. Although the absolute position error between
the two sides of the gap is larger than it would be
without the splitting wall, then gap is closed smooth-
ly after another 1500 training steps (and of course af-
ter removing the introduced obstacle). Due to the
careful and smooth removal routines, the two worlds
coexists for a certain time, until the world with the
gap is completely “washed-out”. The navigator may
take advantage from the fact that the confidence val-
ues of the connections distinguish between most re-
cent and established information.

5. Conclusion

As the reader may have expected, the choice of a
world model will depend significantly on the task,
but some guidelines may be derived from the discus-
sion. One aspect is reliability, for example in a non-
error-tolerant environment. If that is to be a central
aspect of the robot-task, an exact model may be re-
quired to be able to plan safe paths. Similarly, if a
guarantee of accuracy when following a path is
needed, the exact geometric information may be nec-
essary.

On the other hand, if the main focus is on simplicity,
stability or qualitative aspects of the task, the quali-
tative topological map techniques may be the first
choice. Especially the small requirements for compu-
tational effort and sensor equipment together with a
high degree of robustness is an unique feature. The
experiments have shown real world abilities offering
sufficient information for navigation purposes as
well as a stable self-localization method.
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