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This article will discuss a qualitative, topological and ro-
bust world-modelling technique with special regard to
navigation-tasks for mobile robots operating in unknown
environments. As a central aspect, the reliability regard-
ing error-tolerance and stability will be emphasized. Ben-
efits and problems involved in exploration, as well as in
navigation tasks, are discussed. The proposed method de-
mands very low constraints for the kind and quality of the
employed sensors as well as for the kinematic precision of
the utilized mobile platform. Hard real-time constraints
can be handled due to the low computational complexity.

The principal discussions are supported by real-world ex-
periments with the mobile robot “

 

ALICE

 

”
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1. Introduction & Motivation

 

Based on the idea that an autonomous robot should
have the ability to create and update “relevant” rep-
resentations or models of its current environment
under hard real-time constraints in order to be really
useful, a couple of “world-modelling” strategies
have been introduced. The attribute “relevant” in
this context means: “useful for a certain class of
tasks”. A wide range of symbolic (AI) and functional
decomposition approaches have been already ap-
plied for this class of mobile robot tasks (see e.g.[1],
[3], [6], [10] or [14]), but the success in real environ-
ments depends widely on the quality of the em-
ployed sensors. Handling high-speed, high-preci-
sion sensors means processing high bandwidth
information-streams and results in complex multi-
processor systems and especially in realtime-prob-
lems. Furthermore complex computer-systems limit
the lower size and weight for the autonomous mo-
bile platform and therefore the range of applications.

 

1. The project 

 

ALICE

 

 is supported by the EU-project 
DG XII, F-5 (Teleman)

 

During the last few years some basic tasks like colli-
sion avoidance, kinematic modelling and reflective
navigation have been approximated by much sim-
pler methods such as behaviour-based approaches,
reinforcement learning methods and others. The idea
common to all these techniques is qualitative model-
ling as opposed to high-precision control. Works uti-
lizing qualitative techniques for navigator-world-
modelling include the basic article from Kuipers in-
troducing the term “qualitative map” '88 in [7], the
ultrasonic-clustering techniques published by Kurz
in multiple articles (e.g. [8]), the expansion of the be-
haviour-based approach from Mataric published '92
in [11], and the recently published work of Tani
based on sensor-sequences rather than on explicit to-
pology [12]. One project handling multiple represen-
tation simultaneously, in this case, topology super-
imposed on the geometrical model, is the HILARE-
project published in multiple papers (see e.g. [9]).

Nevertheless, explicit metric world-modelling for
navigation tasks is still being employed in most
projects. Overcoming the well-known problems of
metric mapping, this article introduces a new meth-
od of robust, qualitative and topological world-mod-
elling (a term to be defined in the next section) usable
for navigation-tasks under real-world constraints.

In order to test the real-environment and real-time
assumption, a mobile robot “

 

ALICE

 

” was built. The
performance of the sensor equipment and mechan-
ics, as well as the available computer power, is limit-
ed intentionally to a very low level (i.e. 24 binary
whiskers, 24 passive light sensors, 1 Motorola 680x0
CPU, an omnidirectional platform of 40 cm diameter
and odometry with up to 25% drift).

 

2. Topological World-Modelling

 

The central motivation of 

 

q

 

ualitative 

 

t

 

opological
world models (

 

QT

 

-Models) is the basic mobile robot
task: “Recognize places you have seen before!”. In
this article this task will be approximated by extract-
ing “situations” (i.e. recognized places) together
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with their topological neighborhood from the cur-
rent sequence of sensor-samples, rather than model-
ling the boundaries of the detected obstacles and ob-
jects in a metric manner. Assuming a stable situation-
recognition-process and a technique for moving be-
tween distinct situations, the concept of a qualitative,
topological world model (outlined in figure 1) sug-
gests a human-motivated basis for a navigation. The
main concept has already been proposed by Kuipers
et al. [7], but here the construction process was car-
ried out using explicit rules, not statistical tech-
niques. Therefore the real-world abilities of the
Kuipers approach are, in the opinion of the author,
limited.

The world model proposed in this article is based on
clustering techniques introduced by Kohonen (“self-
organizing-maps”, [5]) and Fritzke (“growing cell
structures”, [2]) together with some previously pro-
posed extensions by this research group [4]. Due to a
couple of specific autonomous robots-constraints,
these structures are modified to cope with realtime-
aspects, lifelong learning, “local forgetting”, and so
on (see section 3 for details).

To make the term “situation” in this context more
precise, figure 2 shows a typical situation generated
in 

 

ALICE

 

's test-runs. The inner circle describes the
distribution of light-impressions received from par-
ticular directions, the outer circle shows the
smoothed touch-values originate from contacts with
obstacles in various directions. The two-number pair
in the centre gives a rough approximation of the geo-
metric position of this “situation”.

 

3. Methods

 

This section will introduce the technical details of the
proposed topological world model. The algorithms
following are expressed in general terms only, ignor-
ing computational details. 

 

3-1. Pre-Processing

 

Following the idea of representing situations, con-
sisting of readings from different kinds of sensors in
a way that they can be compared in one step, and by
employing a simple norm, the sensor-samples have
to be preprocessed to form a vector of unified ele-
ments. In the current system passive light and tactile
sensors as well as an (x, y)-position produced by
odometry are available. Considering the fact, that the
angular resolution of the tactile sensors is very low,
each vector of tactile readings is smoothed by apply-
ing gaussian functions. Finally the sensor samples
from different types of sensors are weighted and con-
catenated to produce a “situation-vector”, or more
briefly a “situation” (consisting of 50 values in the ex-
ample given).

In the following, sensor situations will be indicated
as ; the position or x, y-part of such situations as .

 

3-2. Adaptation

 

As a basis for the network model, the euclidian norm
is applied to calculate distances between sensor situ-
ations, , and distances between positions, , respec-
tively. 

Consider a network  consisting of a number of cells
, which are connected with respect to the topologi-

cal neighborhood of the situations  attached to
each cell. Then at each adaptation step the cell

with the smallest situation-distance  to the
new input situation  is determined according to:

:

(1)

In order to limit the effort for this adaptation to a con-
stant, the search area is limited by the geometric dis-
tance . In the current system this is done by ap-
plying adequate data-structures to the network-
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20 metresnarrow road

road closed?

figure 1 : Qualitative topological map

figure 2 : A “situation”
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management. The selected cell  and all its topo-
logical neighbors are then adapted according to:

(2)

(3)

where  is the adjacency-function of the net-
work. The “classification error”  is then added to
a total classification error  attached to the cell

.

 (after n adaptation steps):

where (4)

In order to decrease the adaptation speed of a well
adapted network, the parameters  and  are con-
trolled by:

where: (5)

and  and  are the initial values of the parame-
ters  and .
In each adaptation step, where  is larger than a
tolerated error , a global counter  is incre-
mented. This counter will be used as a measurement
for the need for change in the network structure. An
update-counter  attached to  is incremented
and will be used as an indicator for the stability of
this specific cell.
In order to use the high speed of this adaptation
process to achieve better adaptation, each situation is
presented 

 

k

 

 times to the network. A constant delay of

 

l

 

 sensor-sample-time-slots before the current sensor
situation affects the network is also found useful (see
section “Correlation” below). Accordingly a learning
set holding  situations is implement-
ed.

 

3-3. Growing & Shrinking

 

At start-up time of the system, there are no cells; the
network is empty. So the common problem finding a
“good” initial state of the network is avoided, but
there is a need for some growing strategy. In the
present system, two growing strategies are applied.
The first is called “

 

spontaneous insertion

 

”, the sec-
ond “

 

statistical insertion

 

”. In the first, new cells, rep-
resenting the current sensor situation, are inserted
when the distance between the current sensor situa-
tion and  exceeds a certain limit  (in the special

case of an empty network this strategy produces the
first cell). In the second strategy a new cell is inserted
in the middle between the cell with the highest “de-
gree of movement”  (measured by the cell at-
tribute ) and its farthest topological neighbor 
every  “miss-classifications” (measured by the
global counter ). The new cell is instantiated
with mean-values of  and  for position and
light-intensity, but with minimal values for touch-in-
formation.
Another aspect of growing relates to the topological
connections between cells. Assuming that  has
just changed from  to  in two consecutive ad-
aptation steps, and that the cell  has 

 

m

 

 other
neighbors  ( ), the following changes
in connection weights are imposed:

with (6)

A connection with a weight 

 

≤

 

 0 is regarded as non ex-
istent. Thus the deletion of cells is now straight for-
ward. A cell or a cell-cluster with no connection is re-
moved.

 

3-4. Correlation

 

Three degrees of freedom out of the internal repre-
sentation ((x, y)-position and orientation) will be cor-
rupted by drift effects or other errors, if they are not
continuously correlated to the world model. Even a
stable and error-tolerant network structure will not
be able to produce stable world models, if the robot's
position is corrupted. The obvious approach is to
correlate the internal position continuously with the
world model build up so far. On the other hand the
robot's position is integrated in the world model.
This mutual stabilizing technique is very useful
when applied to local world models. But, in fact,
each representation is updated with the faults, errors
and noise from the other. This principal problem pre-
vents a globally consistent world model of arbitrary
size including position when only local information
is available.
One strategy, used to stabilize the internal position, is
to delay the integration of the current sensor situa-
tion  by a number of adaptation steps 

 

l

 

 (see section
“Adaptation” above). In this way the internal posi-
tion is correlated on the basis of the formerly inte-
grated world-knowledge at this point, and not on the
base of , which would not make any sense. An esti-
mation of the current position is produced using
the sensor-distances  (to ) and the number of up-
dates  of all cells in the immediate topological
neighborhood of . The estimates produced in this
way, are not necessarily near to the “correct” position
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in every case. Thus the internal position is not
changed to , but is only “moved” towards this
point by a fraction . The fact that these estimation
errors are normally distributed in the long term, to-
gether with the fact that the remaining position-er-
rors are integrated into the world model after a cer-
tain delay, leads to a stable behavior of the local
world model.

The third degree of freedom, the orientation of the
robot, is also corrupted by drift and other effects. In
order to correlate orientation with the internal repre-
sentation and the world model, it must be assumed
that the current position is correct to within a certain
tolerance. Based on the geometric distance, the near-
est cell  is determined by:

:

(7)

To obtain a comparable measurement for the orienta-
tion based on sensor impressions including position,
we interpret the sensor values as polar coordinates:

(8)

where  are the light-readings,  are the tactile read-
ings and . A possible derived measure-
ment for the orientation (modulo 180°) is a linear re-
gression O on the 2s polar “sensor-points”. The
angular difference between the orientation of the re-
gression of the current sensor scan , and the orien-
tation of the regression  of the nearest cell ,
is interpreted as the current orientation-error. As in
the case of the position correlation above, the inter-
nal orientation is only “moved” by a fraction  to-
wards the estimated orientation. In the current sys-
tem only the light sensors are employed to determine
the orientation estimates. The internal orientation is
continuous and not quantised according to the angu-
lar sensor-resolution. Thus the incoming sensor-
readings are interpolated linearly and rotated ac-
cording to the current orientation of the robot.

Due to the fact that the remaining position-drift is in-
tegrated with the world-model, a global drift of the
whole model may occur. This is not necessarily a
problem if the world model is drifting as a whole, but
as the world model expands and some areas are vis-
ited in a sporadic manner, different areas will drift in
different ways, resulting in an inconsistent world
model. Therefore a cell-specific slow-down of the ad-
aptation speed is introduced when cells are “con-
firmed” at least  times (i.e. ).

3-5. Results

In the current configuration, 3 sensor-samples per
second are employed to build up a stable world
model for a mobile robot moving at a speed of 25
cm/s. All computations are completed in realtime on
one CPU from the 680x0-class so that the robot does
not need to stop in order maintain a consistent world
model. Even where each sensor-sample is used 10
times, i.e. 30 adaptations have to be completed each
second. Figure 3 shows a network-part of approxi-
mately 1 by 1 metre as result of a test-run in an envi-
ronment measures 3 by 3 metres. The information
represented here shows only the position-part of
each cell together with their topological relations and
the light-distribution associated with.

There is sufficient computational power remaining
to run the control-loops of the robot as well as the ex-
plorator (see next section) using the same CPU. The
navigator is not yet tested under realtime-con-
straints, but considerations based on the computa-
tional effort of the navigator in simulated environ-
ments suggests that a realtime-integration using the
same CPU seems feasible.

3-6. Evaluation

In this section the features of the qualitative topolog-
ical world model described above, is compared to the
metric modelling technique as applied in the MO-

pest

εpos

cnear

ci N∈∀
g S cnear( ) Sx,( ) g S ci( ) Sx,( )≤

li li i 360°
s

-----------⋅ 
 sin⋅ li i 360°

s
-----------⋅ 

 cos⋅, 
 ⇒

ti ti i 360°
s

-----------⋅ 
 sin⋅ ti i 360°

s
-----------⋅ 

 cos⋅, 
 ⇒

li ti

0 i s 1–≤ ≤

Oc

Onear cnear

εor

n fix uopt n≥ fix figure 3 : Topological map (light situations)



Chapter: Exploration Page: 5

BOT-project [3], a typical representative from the
range of exact geometric modelling techniques.

Computational effort

In the QT-approach one standard CISC-processor
(680x0) supplies all the computational power needed
under realtime constraints, while multiple CPUs are
required for the exact geometric modelling in the
MOBOT-project. The amount of energy needed for
the CPUs, can be also critical, since the weight of the
batteries needed has a significant impact on the con-
struction of the robot-chassis. Moreover the control-
effort increases with higher weights, leading to a
need for further computational power.

More details about the realtime-abilities of the ALICE-
project can be found in [15].

Stability

In the exact geometric approach, every sensor-sam-
ple has to be evaluated for every disturbance. The
only possibilities after such an evaluation are to “ac-
cept” or “reject” the sample. Due to the fact that the
exact world model is very sensitive to noise, every
slightly disturbed sensor-pattern must be rejected,
resulting in a very low noise tolerance. On the other
hand the QT-model integrates all sensor-samples
and smooths the errors by utilizing many sensor-
readings in a short time/distance. Assuming that
systematic errors are reproducible, they do not lead
to system failures in the QT-approach.

Reliability

The benefits of statistical techniques for achieving
stability may constitute problems in terms of reliabil-
ity. A specific situation which occurs only once, for
example, finding a useful pathway through a narrow
corridor, is ignored by the QT-technique, but not nec-
essarily by the metric modelling process. The second
source of problems originates from the technique of
using mean-values instead of stored sensor readings
in the QT-model. This may lead to inconsistencies,
because these mean values may not correspond to
real points in the environment. If there is a need for a
“totally correct” world model, the metric modelling
is called for, although even here nothing is guaran-
teed. The reliability of the QT-approach can only be
expressed in statistical terms. On the other hand the
reader should keep in mind, that the real world, or at
least the gathered sensor-reading, is inconsistent.
Therefore eliminating the inconsistencies in the ro-
bot's world model is always a process of approxima-
tion. Error-tolerance on the other hand should, in the
opinion of the author, be a basic requirement for eve-
ry useful mobile platform.

Local correlation
The correlation of position- and orientation-drift ef-
fects is carried out on a statistical basis in both mod-
els (see [13] for a geometric correlation), achieving
some compensation for drift effects in both cases.

Sensor Requirements
The differences in the sensor-requirements are obvi-
ous. For an exact geometric model we need exact dis-
tance measurements, as produced by laser-range
finders, radar devices, or large-scale video-signal
processing. In order to build QT-Models, any kind of
short-range sensor may be considered. In the case of
ALICE, simple passive photo-resistors together with
primitive touch sensors prove sufficient. It should be
noticed that most topological models in the literature
are built “on top” of a geometric model and therefore
use the same sensor-information.

4. Exploration

The proposed topological world model since it is
build up continuously and supports livelong learn-
ing depends on an “exploration”, which has the fol-
lowing three requirements:

•Knowledge should be accumulated efficiently
in terms of speed, number of rotation or others.
This requirement is of course true for all world-
model.

•Each sensor-situation has to be stabilized using
multiple sensor-samples taken from different
positions. To achieve stability, the gathered data
must have a certain degree of redundancy.

•Due to the need for position- and orientation-
correlation, the explorator must return the robot
regularly to well-established regions of the net-
work.

The last two points limit the amount of exploration-
efficiency, which can be expected using the QT-ap-
proach.
In the current version, only local information is used
to determine a promising exploration-direction.
Therefore the current  and its immediate neigh-
bors  ( ) are used to extract the following
features:

•Degrees of cell-confirmation  and .
•Number of neighbors of 
•Best explored neighbor of  with 

 | : (9)

•Worst explored neighbor of  (analogous to
(9))

•Unknown directions leading away from  (ex-
tracted from the topological structure and mem-
orized as a local attribute at )
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Based on these features the following “instincts” are
evaluated:

•Stochastic movements

•Efficient movements (smallest number of rota-
tions)

•Wall-following (follow an obstacle-border).

•Network-stabilizing: If there are more than 
neighbors and the current  is well explored,
drive towards the least explored neighbor.

•Position-stabilizing: If the current  is only
less explored, drive towards the best explored
neighbor.

•Network-growing: If there are less than 
neighbors try to create a new neighbor, by driving
towards an unknown direction.

By using a kind of subsumption-architecture, the
several instincts are fused to produce a final explora-
tion strategy. In figure 4 the still unexplored direc-
tions from the net-fragment shown in section 3 are
indicated.

Tests have shown, that an unknown environment of
3 by 3 metres can be explored (i.e. a stable world
model, usable for navigation purposes generated) in
approximately 15 minutes. Keeping in mind that no
range-measuring devices are used in this experi-
ment, this result is (in the opinion of the author) of
some significance.

5. Navigation

The navigation module is split into two layers, one
concerned with the path-planning task and the other
with the problem of translating the planned path into
appropriate motor actions. 

5-1. Path planning
Path planning is being done on the topological map
(graph) by steepest gradient methods and a modified
A* algorithm. Depending on the complexity of the
environment both methods produce adequate re-
sults. The most important criterion is the evaluation
speed rather than finding the best way, because small
changes in the environment may lead to failure when
trying to drive along a planned path. For this reason
the path planning component is employed each time
a plan fails. Since we are using inaccurate sensors
and dynamic environments this may happen quite
often. On the other hand this re-planning can be
done quickly, because from the perspective of the
path-planner the topological map is overspecified
and offers a lot of alternative routes.

5-2. Adapting motor actions
In order to navigate a planned path, we have to find
a mapping from a pair of nodes in the topological
map (temporary start and destination points) to ap-
propriate motor commands constrained to a certain
accuracy. The kinematics of ALICE are quite simple,
because we have an omnidirectional platform and
high accelerations. The system is able to learn then
required mapping even taking account of drift ef-
fects, which themselves depend on the actual envi-
ronment as well as on tolerances in the driving/
dead-reckoning part of ALICE.
The adaptation of the mapping is done in parallel
with the topologic-map-building using a reinforce-
ment learning scheme (figure 5), where supervised
dynamic feature maps (introduced in [2]) are applied
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figure 4 : Exploration hints
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in the associative memory module. Later on, the
learned translation is applied to areas of the map that
were not available during the learning phase (gener-
alisation).

6. Conclusion

As the reader may have expected, the choice of world
model will depend significantly on the task, but
some guidelines may be derived from the discussion.
One aspect is reliability, for example, in a non-error-
tolerant environment. If that is to be a central aspect
of the robot-task, an exact model may be required to
be able to plan safe paths. Similarly, if a guarantee of
accuracy when following a path is needed, the exact
geometric information may be necessary.

On the other hand, if the main focus is on simplicity,
stability or qualitative aspects of the task, the qualita-
tive topological map techniques may be the first
choice. In particular, the small requirements for com-
putational effort and sensor equipment together
with a high degree of robustness is an unique feature.
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