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This article focuses on the problem of balancing between
general and specific modelling in complex system design.
General models allow for more flexibility regarding the
handling of unforeseen situations, while specific models
can consider context conditions usually better. Based on
the background of mobile robot applications, tasks like
navigation, positioning, exploration, homing and others
will be investigated regarding their preferences for an ap-
propriate model. A frame called the 

 

LISA

 

-model, consider-
ing an interaction of global and specific aspects, is
proposed.

Due to the fact that the systems discussed here (adaptive,
dynamic real-world interactions) are, as a whole, out of the
range of analytical methods, real-world scenarios and em-
pirical methods are set up and are discussed.
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1. Introduction

 

In order to design a mobile robot system in a com-
plex, dynamic environment forced to show some ‘in-
teresting’ behaviour, some architectural concepts
could be chosen out of the range of known methods,
which can be classified either as 

 

reflexive, local, and
general

 

 or 

 

context-aware, global, and specific

 

. The at-
tributes 

 

reflexive

 

 versus 

 

context-aware

 

 indicate the fo-
cus of information considered for decisions. 

 

Locally

 

oriented modelling cannot distinguish easily be-
tween similar situations at different times or at dif-
ferent places. Thus such systems will model their en-
vironment and behaviours more 

 

generally

 

 than a

 

globally

 

 oriented model, which can represent any 

 

spe-
cific

 

 situation in an individual instance. The remain-
ing part of this section will increase this perspective
and discusses some critical scenarios.

 

Reflexive, local, and general modelling

 

Examples for the first class of approaches can be
found at multiple schools of robotic control architec-
ture. The behaviour based, highly parallel approach
presented e.g. by Maes in [12] is a classical represent-
ative of that class, but many have followed this idea.
Thus at least references to behaviour based ap-
proaches or the subsumption architecture can be
found in hundreds of mobile robot articles. Nehm-
zow emphasizes the aspect of plasticity on low levels
(employing neural networks) in [15] producing gen-
eral and highly adaptive models of the local environ-
ment. Nolfi discusses structures, which evolve local
and general behaviour and furthermore adapt even
the module structure of behaviours in [16]. A highly
parallel behaviour oriented and genetic approach is
suggested by Steels [22]. Employing the language of
differential equations as a natural way to formulate
behaviours together with their activation dynamics,
Jaeger and Christaller propose a strict and simple im-
plementation of behaviour based ideas in [10].

Common to all these concepts is that they are proven
in real scenarios by physical mobile robots. The ap-
proaches mentioned above are representatives only,
in order to stake out a whole research area. Finally
there exists a lot of work on that field, which has
(when seen historically) bridged the gap between ab-
stract architectural concepts for complex behaviours
and the physical world for the first time.

Essentially, these concepts produce general models
of locally useful behaviours: decisions are based on
local, immediate sensing, and the models reflect the
general constraints of the actual working environ-
ment. In order to be useful in (partly) unknown envi-
ronments the emphasis is on modelling general as-
pects than on modelling the known environment
exactly. These approaches are problematic regarding
the following scenarios:

• In case that local decisions cannot be based on lo-
cal sensing only, these systems are determined to
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fail. These situations occur if either the sensor
equipment is not able to detect the relevant static
feature, or the time course of a feature is relevant.
To give a simple example, the reader could imag-
ine a mobile robot, which is well equipped with la-
ser range finders and cameras, but is still not able
to detect a common book board or a fractal struc-
ture like a plant reliably – not to talk about object
recognition systems, even the simple detection as
obstacles is not obvious. The laser range finder
faces the problem that this structure looks like
pink noise and the vision system has perhaps
problems recognizing all the occurring textures.
Although we are using sophisticated sensing
equipment, a seemingly simple situation will be
handled wrong. And, even worse, the experiment
can be repeated over and over again, without any
hope for improvement. This is not a point against
cameras or laser range finders. It is easy to find
critical scenarios for any other available (or
known) sensor system as well.
One could argue that this robot is wrong config-
ured regarding this environment. But the idea of
adding new feature detectors is misleading in two
ways. First we are far from being able to build a
robot detecting all relevant features in any natural
environment. Therefore it is not very likely to
solve the problem by that means, but we can only
hope to reduce its significance slightly. Second,
even humans (or other biological species) are not
able to detect all relevant features needed for local
decisions. For example a high-voltage cable looks
like a cable without voltage and a hot glass tube
looks a cold glass tube. Moreover a lot of decisions
are based on sophisticated knowledge about cul-
tural and social constraints, which is not detecta-
ble by local sensing, but this problem class will not
be addressed here. Nevertheless we are able to
make up the right decisions in the case of the high
voltage cable or the hot tube (hopefully) without
adding new feature detection modules.

• The second class of scenarios is closely coupled
with the first one, but is still different. Despite the
first problem class, here, the relevant features can
be detected, but not in a reliable way. Assuming an
environment with many almost identical places or
situations. In case that all these situations can be
handled in the same manner, there is no problem.
But assuming that one of these very similar places
needs a specific treatment although the sensing
looks very near to all the other ones, we are forced
to model an exception. Unfortunately, modelling
exceptions based on statistically weak significance
does not fit the needs for reliability and robust-
ness, which are essential here.

While the first class of scenarios highlights the prob-
lem of lacking context, the second one emphasizes
the weakness of general models to react to excep-

tions. Both phenomena can be reduced to the need of
context-aware and specific models, as introduced in
the next section.

 

Context-aware, Global, and specific modelling

 

The second class of mobile robot approaches can be
highlighted by a couple of different examples, too.
For instance in [4], Elfes states a sophisticated model
of sonar sensing and a grid-based mapping process,
in order to construct a geometric, Cartesian represen-
tation of the space around the robot. This work has
triggered dozens of others, which have tried to re-
duce algorithmic complexities by the inclusion of
some heuristics, or to find special system parameters
for specific environments. All these works are based
on the idea of mapping an obstacle-probability dis-
tribution of sonar cones to a grid-map. A very well
founded sensor and environment modelling can by
found in [23], where Triggs describes a precise math-
ematical model of ultrasonic range measurement
and its relation to localization tasks. The problems
and chances of ‘high precision’-approaches are dis-
cussed in some detail here. As far as known to the au-
thor, none of these ‘high-precision’ approaches has
ever left the simulators or has been applied in an
even slightly dynamic environment. A geometric
mapping approach with an interesting low degree of
sensor data interpretation is applied to a physical
mobile robot equipped with high precision range
finders by Edlinger and von Puttkamer in [3]. The re-
sulting world model lacks the precision, which could
be expected when looking at the employed equip-
ment, but nevertheless (or even though) the explora-
tion and navigation-behaviour of the whole system
is stable. In [11], Kuipers and Byun introduce the idea
of qualitative reasoning to this problem field and re-
sult in a qualitative, topological rather than in a pre-
cise, geometrical description of the world. In this
model, instances are predefined situations, which
have to be recognized in the actual environment,
what makes the architecture rather hard to adapt to
real world experiments. Kuipers’s idea has inspired
further work, even in real world scenarios, focusing
on adaptability and lower levels of feature interpre-
tation (e.g. [24]). In [5], Engels and Schöner employ
dynamic neural fields for the representation of obsta-
cles in the environment and (and that’s the important
new aspect) for the behaviours themselves as well.
Thus behaviours and representations are modelled
in one common structure (Amari’s dynamic fields
[1]) and can be correlated straightforward to each
other. Nakamura et al. [14] utilize the sequences of
sensor readings in order to build up a graph, where
the nodes represent different typical behaviours (lo-
cal movements), where the arcs state transition prob-
abilities between these states.
A common feature of all these approaches is the con-
struction or definition of a global world model, what
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does not mean a geometrical and Cartesian map nec-
essarily, but just a structure, which the robot can cor-
relate itself to, in order to get a meaning of a global
time, place, or state (the following structures were
applied in the examples: grid maps [4], geometric
modelling [23], map of raw range data [3], qualita-
tive symbols in a graph [11], qualitative, topologic
maps [24], neural fields representing position and
obstacles [5], and a behaviour oriented graph [14]).
Therefore any experience in the actual working envi-
ronment can be ‘labelled’ by a global or relative time-
stamp or position information. The structures are
providing possibilities of concatenating sensor im-
pressions at neighbouring places or in time-sequenc-
es, and the resulting robots have an understanding of
time and/or place beyond reflexive behaviours. By
employing this information, the problems from the
first class of approaches can be overcome or reduced.
On the other hand some other critical scenarios can
be identified:

• Due to the fact that it is not possible in general to
guarantee a consistent position information at any
time during the robot’s operation, the case where
the correlation between the position and the cur-
rent internal world model is getting weak or lost
has to be considered carefully. Systems that do not
provide a ‘reflexive backup-system’ for that case
will fail here.
This problem could be overcome by introducing a
global observer (for example an observing camera,
or even satellites) providing this information at
any time. This is of course a legitimate solution for
an actual, specific application, where this can be
considered. On the other hand, one cannot expect
to learn anything about the orientation and move-
ment in space of all those creatures, which are not
triggered and supported by an external observer
(which is as far as known almost any creature on
earth). For this scientific reason beyond actual ap-
plications the system is considered not having ac-
cess to these possibilities.

• By concentrating on modelling specific places in
space or specific moments in time-sequences, the
aspect of generalization is getting critical. Consid-
ering a partly known and explored environment,
the robot still needs a general answer to new situa-
tions. Generating general behaviours that can be
applied to classes of situations which don’t need
to be neighboured in time or space, is not straight-
forward based on a global and specific modelling.

The need for a combination of local and general
models is obvious, but the actual interaction or rela-
tion between them or their integration is not. The ap-
proach presented in this paper, is trying to overcome
the gap between the general and the specific method-
ologies. It gives a common frame integrating these
models in a harmonic way. The integration can also

result in a selection of a specific approach for a class
of tasks or situations, but in this case some reasons
will be available for this decision.

 

2. The considered system

 

This section will give the frame for concepts and
models presented in the sections to follow. The work-
ing environment, the mobile robot and the interac-
tions between them (called behaviours in the follow-
ing), are considered to be a closed system. Because of
the complex interactions of the robot with its envi-
ronment, the system has to be understood as a
whole. Neither investigating the robot itself nor the
behaviour isolated from the environment is seen as a
promising possibility.

The design and analysis of such highly dynamic and
complex systems which include ‘real-world abili-
ties’, opens up a couple of traps and problems. For
instance, the understanding of the scientist’s integra-
tion in the life cycle of complex systems design and
evaluation is getting more critical. Aspects of the
awareness of implicit assumptions and especially the
double role of the scientist as the designer and the
evaluator of highly complex systems is discussed
nicely in [18].

 

The environment

 

The working environment includes static and dy-
namic features. Static features are given by a couple
of different objects, places, and light distributions,
which are described in more detail in the experimen-
tal section 6. Important aspects of the static features
concern their detectability:

• Most of the static features are detectable with at
least one of the sensor systems employed by the
mobile robot.

• Some of the features can be detected by a correla-
tion of different sensor sources only.

• A limited amount of features cannot be detected
by local sensing at all, but only by taking into ac-
count a global situation or a certain set of previous
values.

All these features are assumed to be relevant for
some requested behaviours (introduced later in this
section). The environment is considered dynamical
in different aspects:

• The majority of detectable features in the environ-
ment will change systematically by rates signifi-
cantly slower than given by the internal timing of
the moving robot, especially the sampling rate of
the sensor system.

• A minority of detected features changes at speeds
that are equal or higher than given by the internal
timing of the robot.
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All features are subject to disturbances, most of
which are considered to be Gaussian, sporadic, or
systematic in nature.

 

The mobile robot

 

The mobile platform has the ability to move in two
dimensions , where the orientation of the plat-
form  is relevant for some sensors and actuators,
leading to a total of three degrees of freedom. The
platform is assumed to be able to accelerate in a giv-
en direction up to a given speed without further
planning. By using an adequate kinematic, i.e. a sym-
metric platform and synchronous drives, the prob-
lem of local manoeuvring is ignored. Thus the mo-
bile robot can drive towards any direction
immediately, without further planning steps, and
without considering a traktrix

 

1

 

, steering limitations
and other restrictions.

With energy and computational power carried on
board, the platform is assumed to be autonomous.
Energy needs to be loaded regularly, which is moreo-
ver a part of the requested behaviours of the robot.
Besides its energy supplement, the robot knows
some internal states representing its current curiosi-
ty, the correlation to the current environment, and a
‘feel-good’ value. All of them are triggered by the en-
vironment and employed by the behaviours de-
scribed in the next section.

The sensor system is set up in a way to fulfil the de-
mands of detecting the majority of relevant static and
dynamic features according to the previous section.
Some important information like receiving pain or
getting rewards is delivered by dedicated sensor sys-
tems.

 

The expected behaviours

 

In the given context, the mobile platform has to show
multiple different and concurrent behaviours that
are interpreted as biologically motivated behaviours
like ‘survive’, ‘find food’, ‘avoid danger’, ‘find the
nest’, etc. and are determined by evaluation func-
tions judging the success of the several efforts. Spe-
cifically, the discussed behaviours are:
•

 

Avoid dangers

 

 – avoiding static as well as dynamic
situations, where physical damage could be ex-
pected or experienced. This includes the classical

 

collision avoidance

 

 task.

•

 

Localization

 

 – moving in a way that enables or in-
creases the correlation between the specific world
models and the current sensor situations. This be-
haviour should especially increase the consistency
of the internal world models.

 

1. 

 

a traktrix describes the curve left by e.g. a wheel on the 
floor during manueuvring of the mobile platform. Usually 
the traktrix of the outer form of the robot is considered for 
security reasons.

 

•

 

Homing

 

 – accessing an fixed place in space in a
regular manner.

•

 

Exploration

 

 – finding new places in the environ-
ment.

•

 

Energy collection

 

 – finding and localizing energy
sources in the current environment.

•

 

Feel-good 

 

– finding places, which are described by
an arbitrary optimization function.

•

 

Navigation

 

 – finding places which are given by an
external observer.

The structure and the dynamics of the intended be-
haviours are considered as being far too complex to
be solved by applying analytical methods. This is not
a principle argument, but concerns the state of the art
of analytical methods in control theory, dynamical
systems and related fields.

 

3. The LISA-model

 

The previous section introduced the context and the
attacked problem class. In this section a model is de-
scribed which is suggested to address the problem of
balancing between general and specific modelling.
After being aware of the constraints which were ap-
plied in constructing the 

 

LISA

 

-model (section 3-1),
the influence of the experimenter onto the system is
discussed by explaining all the implicit and explicit
parameters of the model (section 3-2). Based on these
‘cornerstones’ of design, all components of the 

 

LISA

 

-
model are described in detail (section 3-3).

 

3-1. Constraints

 

The philosophy of the 

 

LISA

 

 system is introduced by
highlighting all major issues in the design space
briefly. The evaluation procedures discussed in sec-
tion 6 are based on these decisions.

 

3-1.1 Excluded features

 

In order to make the intentions of the designer very
clear and obvious, the aspects that are 

 

excluded

 

 from
the constraints of the 

 

LISA

 

-model, are mentioned
first.

 

Precision

 

Absolute precision is not an optimization parameter
here. The tasks are regarded as being solved, when
the robot shows a certain behaviour measured in
qualitative terms. Precision is required in specific
tasks like picking and placing applications in manu-
facturing environments, which can be isolated and
solved individually. In addition, the meaning of pre-
cision is not very clear. This is especially true when
combining contradictory tasks, in which the robot
has to reach some goals, but the actual trajectory is
usually of no interest. Assume a scenario where a ro-

x y,( )
α
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bot has to reach the end of a corridor in time and
without significant damage. All these goals are given
as qualitative measurements. Whether the robot
moves exactly in the middle, or more to the right of
the corridor is usually of no relevance for this task.

 

Fail-safe

 

A ‘fail-safe’ or ‘1-secure’ system is not assumed to be
realistic in any natural environment. This includes
any environment that hosts humans or any other
species. This point is related to the next one, because
even the definition of ‘fail-safe’, would request a
complete knowledge of the whole system.

 

Complete knowledge

 

Any natural or slightly dynamical environment (not
to talk about environments, which include other
moving artifacts or even biological species), cannot
be described fully and realistically by a complete and
fixed model at any point in time. This statement can-
not be proven in a sense, but it seems to be very obvi-
ous regarding any biological species.

 

3-1.2 LISA-constraints

 

The 

 

LISA

 

-system is based on some central con-
straints, which are assumed to be important in many
natural mobile robot scenarios.

 

Multiple models

 

Hosting more than one model for the same instance
in the environment is a central idea of the proposed
system. A critique leading to the need of such multi-
model systems was given in section 1, where espe-
cially general and specific aspects of the same envi-
ronment feature were found to be relevant and
should be treated simultaneously.

 

Adaptation

 

The working environment of the mobile robot is seen
as the most important and especially most reliable
knowledge source available. Thus the robot’s world
model should be generated through continuous in-
teraction. On the other hand, some a-priori knowl-
edge is required for quickly gathering first relevant
information about the environment. In order to be
useful in significantly differing opening-scenarios,
the a-priori knowledge has to be kept on a general
level, i.e. for instance, any kind of a-priori given envi-
ronment ‘map’ is not considered here.
Continuous and life-long adaptation is a central as-
sumption in the designed model.

 

Failure exploitation

 

In contrast to building a fail-safe system, the inten-
tion here is to build a failure-exploiting system. Fail-
ures are regarded as a normal part of operation and
they are included in the adaptation process as any

other experience. Furthermore they are welcome as
explicit negative examples in the learning process,
which can be speed up the adaptation significantly.

 

Cooperative action selection

 

The control structure is not intended to include a rig-
id scheduling of tasks or priorities. Instead of using
such a scheduler, a competitive self-organizing sys-
tem is considered to give better adaptability under
changing conditions. This also includes the chance to
do the wrong thing in a critical decision. But for the
sake of flexibility, such failures are tolerated and seen
as a part of the adaptation process (see above).

 

Realtime

 

Participating in a scenario, which includes any dy-
namics that cannot be controlled by the mobile vehi-
cle fully (e.g. the speed of moving objects is given by
masses, gravity), results in the necessity of keeping
track with the speeds given by the environment or
the interactions. Thus the central parts of any system
taking part have to limit their computation times be-
tween the stimulus and the response by a constant
(i.e. O(1)), which is given by the occurring speeds
and accelerations. Usually the actual reaction time
depends on the current scene complexity (typically
O (log (n)), O (n·log (n)), or O (n)), but even so a max-
imal reaction time needs to be assumed.
On the other hand the speeds of the mobile robot
should not be significantly faster than anything else
around it, otherwise the environment could be treat-
ed as being static for some time-span. Of course, this
is not the major problem for state-of-the-art mobile
artifacts.
These real-time problems have to be attacked in mul-
tiple areas in computer science (operating and com-
munication systems, search algorithms, planning,
etc.). What matters finally is that the whole control
loop including all the extraction, planning, mapping,
correlating, integrating, fusing, action selection and
other modules has to show the demanded (constant)
timing behaviour.

 

3-1.3 Other aspects

 

The final couple of aspects are not completely ex-
cluded but not used as principles in constructing the

 

LISA

 

-system. In order to complete the picture of con-
straints they are just mentioned.
Sophisticated planning and reasoning methods are
not a part of the 

 

LISA

 

-system. Furthermore some crit-
ical real-time aspects of planners should have to be
considered. When regarded as an ‘off-line part’ of a
robotic control structure, i.e. when the robot is al-
lowed to stop for some deeper reasoning, it can be
considered as a meta level employing the 

 

LISA

 

-sys-
tem, and thus it is not excluded. Nevertheless it is not
part of the inner design.
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Explicit cooperation with similar or other robots is
not discussed in this article, although a correlation
between several behaviour-modules on different ro-
bots could be considered. Otherwise any other robot
is included in the models as a part of the operating
environment, without exploiting the possibility of
cooperation.

A high-level (symbolic) man-machine interface is not
in the inner focus of the system. No kind of commu-
nication is included in the spectrum of investigated
behaviours yet, but an expansion to some communi-
cation oriented behaviours seems to be a field of dis-
cussion.

 

3-2. Parameters

 

In any robotic real-world problem, the set of behav-
iour relevant features is not fixed or known in ad-
vance. Therefore, it is not possible to equip a robot
with precise feature detectors delivering all the in-
stances relevant for the task. The idea applied here is
to use either ‘raw’ sensor data, or to categorise the in-
put space by applying self-organized clustering
methods, which are controlled by a fixed or an adap-
tive 

 

metric

 

. The choice of this metric is the first main
parameter to control the cognition capabilities of the
robot.

The next class of parameters is the 

 

set of appraisal
functions

 

 (the 

 

appraisal system

 

) determining the
presetting and optimization of behaviours. The de-
gree of adaptivity depends strongly on the design-
er’s ability to formulate the appraisal functions in a
simplistic way and on a general basis.

Finally there are a couple of parameters regarding
the adaptation processes. Depending on the struc-
tures chosen, adaptation speeds, growing and
shrinking rates, adaptation delays, etc. are to be con-
trolled. The relevant parameters can be classified
into 

 

local adaptation parameters

 

, which influence
the plasticity of the individual modules, and

 

 cooper-
ative adaptation parameters

 

, which control the cou-
pling between the modules and their collective be-
haviour.

 

3-3. Components

 

The components of the 

 

LISA

 

-system are shown in fig-
ure 1 and discussed individually and in detail in the
sections following this introduction.

At the right hand side of figure 1, raw sensor data is
introduced to the architecture, followed by a first 

 

pre-
processing and compressing

 

 (P&C) stage. The remain-
ing five grey areas mark the basic 

 

LISA

 

-modules. The

 

categorization

 

 employing the results from the P&C
module, abstract the sensor data on different levels,
in order to prepare them for their integration in the
general and specific behaviour modules. In the 

 

specif-

ic behaviour module

 

 all information at a given place in
space is collected and processed in order to generate
an optimal behavioural answer to any specific spatial
situation. Whereas the 

 

general behaviour modules

 

 gen-
eralized the experiences and the structures in the
data stream without any respect to the global spatial
situation. The 

 

appraisal system

 

 influences both in or-
der to optimize the overall behaviour by means of a-
priori given evaluation functions. Finally the 

 

action
selection

 

 shown at the bottom of figure 1 collects and
coordinates the different suggestions from the specif-
ic and global behavioural modules, producing the fi-
nal output given to the actuators.

 

3-3.1 Categorization

 

Due to the high bandwidth of some sensor systems,
preprocessing and compression (P&C) preceding the
categorization modules becomes necessary. Any
kind of compressor or feature extraction can be con-
sidered. The methods range from simple normaliza-
tion and smoothing (e.g. in the case of whiskers, sim-
ple range measurements, or photo resistors) to
complex image compression methods. Following the
idea of keeping the system as adaptive as reasonable,
general compression methods should be preferred to
specialized feature extraction methods. The criteria
for the selection of such methods is the preference to
keep the general structures rather than the specific
details. Due to the fact that these compression meth-
ods are usually an elimination of information, it has
to be kept in mind that the ability to define metrics in
order to recognize ‘similar’ sensor impressions has to
be assured. Thus there is a trade-off between general-
ity and precise feature extraction at this early stage of
sensor data processing already.
In order to reduce the bandwidth of the sensor data
stream even further, unsupervised clustering meth-
ods are employed. Metrics are defined separately for
each kind of sensor data thus keeping it simple and
avoiding preferences regarding one or multiple sen-
sor modes. In systems with a limited number of sen-
sor modes, a metric can be defined including the
complete sensor data stream [24], but the model pre-
sented here is designed to be more flexible by apply-
ing new or removal of sensor modes. Thus the clus-
tering is being done in separate self-organized maps.
First results with this concept are presented in [25].
The employed method follows the dynamic topolog-
ic clustering presented in [24]. There, the number of
clusters is adapted according to the current working
environment and does not need to be given in ad-
vance. The neighbourhood topology is not limited to
an a-priorily chosen structure, but is continuously
adapted by the data stream. The method is discussed
in the remaining part of this section. Each sensor
mode is classified independently. Their fusion into a
global representation is done at the stage of global
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topologic mapping producing the specific behav-
iours described in section 3-3.4.

 

Metric

 

Assuming an input space of  in each sensor mode
after preprocessing and compressing, a metric for
‘similarity’ has to be defined. The basis for causality –
the ability to act similar under similar conditions – is
set here (what is a definition if ‘intelligence’ given in
former times). Thus the performance of the whole
system depends critically on these metrics. The met-
ric for a sensor mode  will be denoted as  in the
following. The influence of the preprocessing stage
(e.g. a shift to the frequency space) should be kept in
mind.

 

Adaptation

 

A set of cells  together with weighted connections
 is considered as the network . A

sensor sample prototype or a ‘sensor-situation’
 is attached to each cell . The input set

the network is adapted to, is considered as an infinite

stream of data. Thus the input data can be stored
temporally only, i.e. procedures assuming a fixed set
of input data cannot be applied here. This does not
imply that the input data lacks any structure. It is as-
sumed that the characteristics of an input data
stream in a closed (nevertheless dynamic and rich)
environment can be described by a limited amount
of prototypes and their relations.

A sensor sample  will change the network struc-
ture in the following way. A cell  with the smallest
distance to the input signal  is determined accord-
ing to:

:

(1)

The optimal matching cell  together with neigh-
bours defined by its connections are adapted by:

(2)

:

(3)

  DTM

P&C
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Applying a gaussian kernel on the neighbourhood
radius and a sigmoid function on the adaptation rate,
an alternative version for (2) and (3) can be formulat-
ed:

(4)

(5)

where  scaling the sigmoid function and the
gaussian kernel respectively;  and  are parame-
ters for the adaptation speed adjusted according to:

(6)

(7)

where  is an accuracy limit, which triggers the
full adaptation speeds , ;  is a saturation
limit stopping the adaptation of the neighbours.

; ; (8)

The total adaptation movement  for each cell
 is accumulated over all adaptation steps following

(9)

:

(10)

and indicates the need for a change in the network
structure. Finally an update counter  is incre-
mented for the cell  in each adaptation step. In
connection with , it describes the reliability

 of the prototype :

(11)

where  and  are the total number of network
updates, and the total amount of movements, respec-
tively:

(12)

with  is the total number of updates on the net-
work. In order to achieve a better stability each situa-
tion  is presented to the network multiple times.

Moreover a delay between the correlation process
(described later) and the actual adaptation in the in-
dividual sensor modes has been found useful. This
delay leads to a learning queue, which is more fre-
quently sampled for the adaptation process than be-
ing shifted by inserting a new sensor reading.
The adaptation discussed up to now requires a well
defined network. In general, an appropriate initiali-
zation is hard to be determined in advance. Growing
and shrinking techniques starting from an empty
network can construct adequate network structures. 

Growing and Shrinking
Two kinds of insertion and two kinds of deletion of
cells are introduced. They are characterized by the
following terms/situations: insertion due to a miss-
classification (spontaneous insertion), insertion due
to a long term under-representation (statistical in-
sertion), removal due to a multiple mismatch of local
expectations (local removal), removal due to limited
resources (overflow removal).
For the discussed kinds of insertion, two cells are im-
portant. The best matching cell  of the
previous adaptations and the second best matching
cell  from the current adaptation step:

:

(13)

Spontaneous insertion: Regarding the degree of
miss-classification indicated by  exceed-
ing a certain limit , the cell  and their neigh-
bours are not adapted to the new situation but a new
cell  is introduced representing the new input val-
ue (in case of an empty network, this routine will
generate the first cell). Thus equations (2), (3) and (6)
will be replaced by

; if (14)

Furthermore the cell  is treated as  in the fol-
lowing. The connection weights are adjusted now, in
order to use the coincidence of activities or the order
of appearance as an indicator for neighbourhood or
similarity. If activation coincidence is a measurement
for similarity (Hebbian style adaptation), the connec-
tion to the second best matching unit is emphasized:

(15)

(see [8] for an introduction concerning systems based
on this neighbourhood definition).
Alternatively, if the time-sequence of activations is
typical for a specific sensor mode (e.g. position meas-
uring devices), the connection between two consecu-
tive best matching cells is strengthened:

(16)

Local Removal: All other  connections diverting
from  are reduced accordingly. Assuming that the
chance of an neighbouring cell to become the second
best or the best matching cell is reduced by the
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number of neighbours , the reduction term  is
scaled by .

:

(17)

In case that a cell loses its only connection in such a
step, it is removed. This occurs, if the environment
changes more quickly than is the adaptation proce-
dures, or the feature represented by that cell has dis-
appeared completely.
Statistical insertion: Observing the amount of
movement of the cells in the network (measured in
terms of ), areas in the input space which are
not represented adequately by prototype cells can be
identified. Thus the total adaptation movement

 is checked against a limit  for  and all its
direct neighbours. If a cell  is found where

(18)

a second cell  with  and

(19)

is determined. A new cell  is generated and
equipped with connections to  and :

; (20)

The attached sensor situation  is assigned to a
value between  and :

(21)

The actual value for  depends on the a-priori
knowledge about the characteristics of the sensor
mode as well as the metric chosen.
Overflow removal: In case that the search on the cells
in the network cannot be limited to any local area
around the cell , the total number of cells must
be limited in order to keep real-time constraints.
Thus if the number of cells exceeds a number ,
the cell  with the smallest reliability  will be
deleted.
In the other case that a correlation between the time
sequence of sensor readings and their neighbour-
hood in the sensor space can be found, the search
area can be limited by means of the topological
neighbourhood around the last active cell .
Thus the total number of cells in the network need
not to be restricted.

Principal Component Analysis
The prototypes  are applied furtheron as primi-
tives for the specific world model discussed in sec-
tion 3-3.4. The underlying sensor space  is still the
same as at the end of the P&C stage. In order to get a
higher level of abstraction (and a further bandwidth

reduction) as needed for the general behaviour mod-
ules, a further reduction of dimensions is required.
Due to the fact that the general behaviour modules
will fuse the different sensor modes once again and
thus add up all the dimensions from the different
sensor categorization systems, the bandwidth reduc-
tion becomes an important factor, regarding realtime
abilities.

Assuming that the actual structure and topology in
the data of a specific sensor mode can be represented
in a subspace , the following extension of the pre-
sented structure will lead to a principal component
analysis of the data stream (concerning the  most
important eigenvectors) and deliver the topology
preserving projection of the prototypes  to

. The idea is to keep the topographical rela-
tionships in  consistent to the one . Thus the
relative distances between cells in  should be
equivalent to the distances in .

An additional prototype  is introduced for
each cell .  is generated and updated in paral-
lel to . Thus extensions are needed for the statis-
tical (21) and spontaneous insertion techniques (14)
and the adaptation step (2) and (3).

In each statistical insertion step,  is initialized
equivalently to :

(22)

Assuming that an explicit projection function be-
tween  and  is not available (on-line), (22)
is implemented by employing a mean value: 

(23)

In case of an spontaneous insertion,  is initial-
ized as:

(24)

and is adapted by determining the immediate neigh-
bours of  and employing them for the adaptation
of :

:

(25)

Finally  is adjusted by  itself:

(26)

where  is defined analoguous to  in (6).

The additional prototypes introduced above are
adapted furtheron in parallel to the procedures de-
scribed in (2) and (3). For any adapted cell , the low
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dimensional prototypes are adjusted according to
the distances in :

:

:

(27)

Routines for deleting and manipulating connection
weights are not needed, because the criteria for dele-
tion and insertion are delivered by the main net-
work, i.e. from cells in .
The low dimensional prototypes  serve as a
base for the topology-preserving reconstruction of
the original data-space in . Including neighbours
of  in the reconstruction process and applying
Gaussian kernels lead to:

(28)

where 
and:

(29)

i.e. the mean distance of  to all its neighbours.
The compression function

(30)

defined piecewise with (28) and (29) is employed by
the general behaviour modules, assuming that the
reduced bandwidth allows for short reaction times
and keeping the characteristics of the current sensor
situation.

 can also be generated directly, employing for
instance single layer networks with Hebbian style
learning applying the adaptation rules suggested by
Oja [17] (symmetrical update) or Sanger [21] (hierar-
chical update). The resulting networks are simple
and converge quickly, but each sensor sample re-
quires updates at all network units, which is a major
drawback under hard realtime constraints. Improv-
ing the convergence speed, lateral, inhibitory con-
nections between the output units are introduced by
Rubner and Schulten [20] for the asymmetrical and
by Brause [2] for the symmetrical case. The adapta-
tion speed was improved, but the amount of re-
quired weight updates was incremented as well (due
to the new weights at the lateral connections). Never-
theless this direct generation of  can be consid-
ered here, for sensor modes where the dimensions 

and  are both small and the main characteristics of
the sensor data stream can be extracted continuously.
The benefit would be a globally consistent PCA-
function instead of a piecewise defined version given
by the approximation method introduced (22)-(28).

3-3.2 Appraisal System

The appraisal system influences on the behaviour of
the robot significantly. It is a pre-coded non-adaptive
part of the system. In a sense it can be regarded as its
‘instincts’ or ‘genes’. For any desired behaviour a
current state of evaluation and a gradient of this state
are delivered, which can be utilized by reinforcement
schemes in the optimization of the general as well as
of the specific behaviours. Some of them (e.g. colli-
sion avoidance) can even be pre-trained based on the
relevant appraisal module.

An evaluation  given for a specific behaviour  is
determined following the form:

(31)

where  is the current system input (the set of all sen-
sor inputs after being preprocessed and com-
pressed), and  is the current status (all inner states
like the energy reservoir or the pain-value). In order
to keep the appraisal results comparable,  is limit-
ed to the range of , where ‘1’ means that the be-
haviour is completely satisfied. For each appraisal
function correlating to a specific behaviour, only a
small subspace of  needs to be considered.

3-3.3 General Behaviour Modules

The general behaviours are formed given an evalua-
tion from the appraisal system. Each behaviour is
modelled separately. Therefore representations are
evolved for very individual instead of general pur-
poses. Besides the appraisal signal, a behaviour
module gets information about the current sensor
situation, which can include a short sequence of sen-
sor impressions if that is adequate. The output is a set
of  probabilities reflecting the tendencies of differ-
ent steering directions to increase the value from the
appraisal system and a value representing the indi-
vidual wish or urgency to control the robot in order
to improve the local behaviour’s performance. 

(32)

These modules will behave in a similar way in simi-
lar situations, despite the fact that similar situations
can occur in different global contexts. Many different
implementations of this association problem are pos-
sible. The main constraints that have to be fulfilled
are quick adaptation, small computational complexi-
ty in the association (forward) path and a continuous
learning ability.
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The supervised radial basis function clustering net-
work shown in figure 2 offers many more potential
solutions than described here (see e.g. Moody and
Darken [13] for a general discussion on rbf-networks
and related concepts). The sensorial input  from
(28) is clustered together with the evaluation signal
in an unsupervised preprocessing step. The ‘posi-
tions’ of the cell-clusters and ‘distances’ between
them are employed as the position and variance pa-
rameters of Gaussian functions. A supervised output
layer sums up the product of the activation values
and the associated weights in the input space. By ap-
plying the structures described in section 3-3.1 for
the clustering part, the number of Gaussian kernels
as well as their relations can kept dynamical. Of
course, the metric has to be different, in order to
avoid to reproduce the clustering from the categori-
zation, but to get a more general one. The similar
concept of counterpropagation introduced from
Hecht-Nielsen in [9] can be considered as an alterna-
tive. Standard competitive learning with a fixed
amount of categories instead of dynamic clustering
is applied there, but the overall structure is identical.
The unsupervised clustering in the first layer is driv-
en completely by the input stream, i.e. it is especially
not controlled by the intended outputs. Thus this
first layer can be shared between the different gener-
al behaviour modules, reducing the computational
complexity significantly.
The cascade correlation architecture introduced by
Fahlmann and Lebiere in [6] offers another potential
effective implementation. Their structure starts with
a simple perceptron, and adds hidden units (which
are pre-trained ‘off-line’ i.e. without a connection to
the output layer) sequentially whenever the required
accuracy is not fulfilled. The resulting structure is
compact and fast, but cannot shrink down again. The
applied adaptation is out of the family of perceptron
adaptation methods, i.e. the error is never propagat-
ed through multiple layers, leading to a significantly
faster adaptation than standard multilayer back-
propagation systems. Due to the fact that anything is
controlled by the supervised output layer, none of

the elements from the cascade correlation architec-
ture can be shared with other general behaviour
modules.

3-3.4 Specific Behaviour Module

The specific behaviours produce the same output
structure as the general ones, but they are based on a
different kind of information. The global context,
which is the topological relation to all other recog-
nized situations as well as the accumulated experi-
ence made in the current situation is considered. 
The specific world model of the system is built up
similarly to the dynamic clustering techniques pre-
sented in [24]. Extending the formally discussed
method, local specific behaviours are attached to
each situation in the topological space. The cluster-
ing in the topological space is triggered completely
by the clustering systems from the different sensor
modes, i.e. each time when a significantly different
situation is found in any of the sensor modes, a new
geometric cluster is assumed for the global model.
The technical details of this idea are discussed in the
remaining part of this section. As a first step ap-
proaching this specific behaviour module, it can be
regarded as a dynamic topologic clustering system
for the position information. The adaptation steps (2)
and (3) as well as the growing and shrinking meth-
ods are applied analogous to the clustering process
in the categorization modules, but a new cell inser-
tion strategy, the external insertion, is introduced.
Without that additional growing method, the posi-
tion clustering would result in a homogeneously
filled up, two dimensional free space area, which is
not suitable for self-localization or any other correla-
tion process.
Assuming categorization networks  to  and a
topologic, position clustering network , a refer-
ence function  is defined for each cell :

; 

; (33)

with .  approximates the func-
tion  defined by

(34)

at any time, i.e. it is tried to keep a correlation be-
tween all sensor modes including the dead-reckon-
ing information.  is initialized with  in
any spontaneous insertion or statistical insertion
step.
Whenever in a sequence of  adaptation steps the in-
tended value of  is mismatched and  is stable:

(35)

an external insertion is triggered and treated analo-
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gous to the spontaneous insertion steps (14), (16).
 is never changed for a specific cell. Whenever the

environment changes at a certain spatial situation,
new topologic cells are introduced and the old ones
are ‘washes out’ after a certain amount of time.

Correlation (Self-Localization)
The basis for the position clustering network are the
mobile robot’s three degrees of freedom. Due to the
influence of drift effects and other errors, the dead-
reckoning information has to be closely correlated
with the internal spatial model (including all the ref-
erences to the categorization modules), in order to
keep it locally consistent. This mutual stabilizing
technique is very useful when applied to local world
models. But, in fact, each representation is updated
with the faults, errors and noise from the other. This
principal problem prevents a globally consistent
world model of arbitrary size including position
when only local information is available.
One strategy used to stabilize the internal position is
to delay the integration of the current sensor situa-
tion  by a number of adaptation steps (see section
3-3.1). In this way the internal position is correlated
on the basis of the formerly integrated world-knowl-
edge at this point, and not on the base of , which
would not make any sense. 
The correlation of  and the orientation  with
the accumulated world models is performed inde-
pendently. First the correlation of the Cartesian

 information is discussed.
A position estimation  is calculated as a mean value
of all position estimations  relating to the sensor
modes :

(36)

where  is defined as:

(37)

(38)

(39)

with:

(40)

(41)

(42)

 accumulates all cells and their positions of similar
sensor situations in the (sensor space ) surrounding

 in a radius of . The current internal position
 is then adapted towards  by:

(43)

where  reflects the reliability of the estimation  in
relation to the dead-reckoning information.

Assuming a stable  information, the correlation
of the robot’s orientation is done on the basis of the
cell  only. Otherwise different perspectives of the
same place would be considered in order to re-cali-
brate the orientation at a certain place, which would
not make sense. The measurement of the actual ori-
entation estimation has to be defined for each sensor
mode individually. For rotation-symmetrical sensor
systems a cross correlation or a method suggested in
[24] could be adequate. Finally  is corrected analo-
gously to the Cartesian information in (43).

Specific Behaviours

The function  represents specific experiences re-
garding behaviour  for any unit in ,
with:

(44)

Identical to the general behaviour modules, a set of
 steering direction probabilities and a value repre-

senting the individual wish to control the robot for
this specific behaviour is delivered. Thus the results
can be compared, coordinated, and integrated imme-
diately together with the results from each general
behaviour module in the action selection phase de-
scribed next.

3-3.5 Action Selection

The action selection problem has to be solved in two
stages. First and for each behaviour the outputs of
the general and the specific world model have to be
processed. Due to the fact that the output formats of
the general and the specific models are identical both
could be superimposed. An obvious criterion for the
degree of influence from each module is the individ-
ual amount of experience their suggestions are based
on (which is encoded in the activation-[wish]-output
attached to every suggested set of steering direc-
tions). 

Second the appropriate behaviour for the current sit-
uation has to be chosen. The selection is done by a
winner-take all system on the activation values with
some integrating and thresholding components add-
ed. Once a behaviour is selected, its chance to be se-
lected in the next step again is enhanced thus gener-
ating some continuity in the overall behaviour of the
system.
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4. Adaptation

The adaptation method is a central aspect in any mo-
bile robot scenario, which is characterized by a high
degree of dynamics and flexibility. 

As a result of the adaptation, the robot should be-
have according to his appraisal system, the actual en-
vironment and the robot itself. This includes the ro-
bot’s static and dynamic characteristics, but also his
behaviour during the learning phase. Assuming that
the adaptation is not a straightforward gradient de-
cent but a process overcoming local minima, there is
a (usually strong) stochastical component included.
One should be aware that most models are construct-
ed on the basis of this stochastic decisions, which are
taken during the adaptation. Thus the result can be
optimal in sense, but is usually not unique. This phe-
nomenon has some parallels to the way how human
beings explain concepts using the metaphors and
ideas made before, where a lot of these terms are
build up occasionally and with strongly individual
backgrounds. Furthermore neurobiological observa-
tions suggest that the same behaviour is represented
by different activation patterns in the same species.
For instance, Freeman [7] reports that each time a
change is made in the olfactory memory store by
adding a new stimulus or changing the reinforce-
ment contingency of a stimulus, the central patterns
for other stimuli also change. Finally, to say it with a
philosophical citation: ‘All that we are is the result of
what we have thought: it is founded on our thoughts,
it is made up of our thoughts.’ – Dhammapada I.I.

Adaptation is accomplished with respect to both the
individual behaviours, and their coordination.
Whereas the behaviours themselves can be adapted
applying reinforcement learning methods, coordina-
tion produces a further complex level of dynamics.
Assuming a distributed architecture, the coordina-
tion is performed in terms of cooperative decision
making, i.e. every module tries to estimate its own
current significance with respect to the whole system
(expressed in the activation-value delivered by each
behaviour-module). A kind of global significance is
delivered by the appraisal system, where some gen-
eral relations are introduced by applying the same
metric for all behaviour evaluation functions. The ac-
tual significance of an individual behaviour depends
on both these global relations and the current situa-
tion (or the history leading to that situation) as well.
The influence of this second part is adapted in every
behaviour module individually.

Adaptation to the actual environment is implement-
ed in similar ways regarding pre-training and on-line
learning in the general models. The specific models
are not pre-trained, because they need to know the
real situations before they can adapt to them. Never-
theless the adaptation criteria are the same for the

specific and the general models, namely the individ-
ual appraisal function for each intended behaviour.

Pre-training
Applying dynamic clustering methods with super-
vised radial basis functions or similar systems in the
output layer (see section 3-3.3), these modules can be
pre-tuned together with the categorization networks
employing noisy, arbitrary input data and the preset
appraisal function for each behaviour. Pre-training
does not make sense for every kind of behaviour.
Thus some behaviours have to be left open for arbi-
trary exploration during the on-line phase.

On-line-learning
During the real-world tests, the general as well as the
specific behaviours are continuously adapted ac-
cording to the appraisal functions and the impres-
sions and interactions with the environment. The
evaluations are the same for specific and general
modules, because they model the same behaviours.
With general models, the adaptation is identical to
the pre-training phase, except that the data comes
from the actual environment now. In the specific
model, the adaptation depends on the general be-
haviours, the neighbourhood values in the topologi-
cal layer, the history at the specific place in space, and
the appraisal functions.

5. What could be shown?

One of the main purposes of the proposed model is
to get a closer insight into the meaning of general and
specific models in the context of several intended be-
haviours. The behaviours based on local or global
world models can be faded or switched. Therefore,
significances in different behaviour modes could
lead to a better understanding of how specific and
general knowledge about the world is organized.
The second aspect of the model is the superposition
of behaviours, the combination or selection process
itself. The bottleneck of the need to execute parallel
actor sequences in a strictly sequential manner is an
open question. This model could serve as a basis for
structured experiments regarding this problem.

6. Intended Experiments

The main purpose of the suggested model is to inves-
tigate how specific and general world models can be
combined in different tasks. Thus some well defined
test scenes with a limited but relevant number of fea-
tures is to be constructed. The basic elements in these
test scenes are:

• The nest: A static place in the environment where
the robot should move to in a regular manner. It is
regarded to be a safe place, i.e. if a certain amount
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of pain is being accumulated at the robot during
it´s travels, it is recommended to find the nest and
stay there for a while.

• Obstacles: Passive objects, which cannot be elimi-
nated, but some of them can be moved. Thus the
robot can actively change its geometric environ-
ment.

• Energy sources: In order to survive, the robot needs
energy in a regular manner. The robot can accu-
mulate energy up to a certain limit, whereas any
action (including calculations) consumes energy.

• Pain sources: They can reduce the on-board energy
or lead to other long term effects. Moreover they
can move and even follow the robot.

• Fun sources: Some places should be preferred for
some reasons (given by the feel-good value func-
tion). This idea is introduced in order to have an
instrument for further structuring the test environ-
ments.

• Partners: This kind of objects is introduced as an
externally given navigation goal. The partner can
be other robots or is just placed by the experiment-
er as an unforeseen behavioural goal. Moreover,
these objects are a gateway to practical applica-
tions in the mobile robot field.

All experimental environments are a configuration
of these elements. Features not detectable locally, but
essential for some behaviours are appreciated.
Therefore the need for a context-aware, global, spe-
cific behaviour can be forced. Moreover some situa-
tions and the appropriate behaviours should differ
significantly from the typical case for the same rea-
son.
The set of appraisal functions will not change over
different environments. They are regarded as spe-
cies-typical pre-programming.

7. Conclusions

It has been argued in this article that neither a purely
local, reflexive, and general nor a global, context-
aware, and specific model of a complex system con-
sisting of a mobile robot, its environment, and an a-
priori given appraisal system is promising to face
problems in open and dynamic scenarios. Overcom-
ing the drawbacks of both approaches, a system
which is explicitly built on the combination or coex-
istence of both methods is suggested.
As a central point, this article likes to promote the
discussion about principles and categories on world
models in the context of global and specific behav-
iours. A physical robotics environment supporting
(or rejecting) the proposed ideas will be set up. 
The author likes to thank Bärbel Herrnberger, Ralf
Möller, Rolf Pfeifer, and Herbert Jaeger for fruitful
discussions supporting this work.
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