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Abstract

The composition of the example set has a major impact on the quality of neu-
ral learning. The popular approach is focused on extensive preprocessing to
bridge the representation gap between process measurement and neural pre-
sentation. In contrast, windowed active sampling attempts to solve these
problems in an on–line interaction between problem selection and learning.
This paper provides an unified view on the conflicts that may pop–up within
a neural network in the presence of ill–ordered data. It is marked that such
conflicts become noticeable from the operational learning characteristics.
An adaptive operational strategy is proposed that closes the representation
gap and its working is illustrated in the diagnosis of power generators.

Keywords: neural networks, backpropagation, active sampling, reliability,
symmetry. 

1: Introduction.

The reliability of neural learning is not a widely discussed topic.  Instead, particular failures
to learn have been researched for decades [1], [4] and led to countermeasures in  learning algo-
rithm, network topology, network initialization, and training set construction. The problem de-
pendent nature of these work–arounds defies a general–purpose learning strategy and still re-
quires an in–depth analysis into the cause and nature of various bad learning phenomena.

This paper focuses on the low reliability of learning behavior, as caused by restrictions on the
back–propagation  algorithm in combination with a specific training set structure.  As a result
of the presentation of training sets, whose elements have the potential to provoke  long–term
changes in the network state with comparable but opposite impact, the learning does not have
a guaranteed convergence.  Random equidistant sampling of some signals as well as some selec-
tive sampling strategies can make this restriction ostensible, which because of its nature we
call cancelation. An extreme case of this phenomenon, when convergence never  occurs, is
often noticed in situations, where realization, topology and target signal fully satisfy the sym-
metrical conditions under which error backpropagation breaks down [12].

Our contribution is, that we show how the cancelation phenomena, generally known as an
artifact and unlikely to occur in practice [12], affects real–life situations. Most of the time,
its effect will be that the learning time becomes not reproducible or that the final approxima-
tion is less accurate. The analysis made in the paper shows, that the prolonged learning time
indicates potential failure of the number of consequent learning trials. A windowed sampling
strategy will be suggested that guarantees high–quality results in the presence of cancelation
conditions, as inobtrusively satisfied in actual measurements.

First,  in section 2, we review the techniques and notions in example set construction. Then,
in section 3, two typical applications visualizing the major occurrences of cancelation phe-
nomena are shown. Later on, after analyzing the reasons which can bring the training algo-



rithm to convergence problems and giving a brief framework of example set construction,
we are applying in section 5 an windowed sampling algorithm that eliminates the cancelation
effect. The results of applying this algorithm on real–life data, taken from the emergency
working mode of a power generator, are shown in section 6.  A discussion on the obtained
results and their potential application is presented as an open–end for future work.

2: Example set construction: Arbitrary or Selective.

A substantial problem in neural computing is that except for the trivial problems they fail
on a small percentage of subsequent tests. There exists a number of systematic exceptions
in which neural networks always generalize in a wrong way. The performance of a trained
network is dependent a lot on the function, that the network should map and thus on the train-
ing set used. Creating the training set which will ensure optimal functionality of the learning
algorithm has many aspects. Overall it can be defined as finding the optimal ratio between
the number of training samples and their distribution over the signal to learn.

In the absence of any tangible rules relating the signal to be learned and the nature of train-
ing patterns, presenting equidistant samples in a random way gives in most cases a satisfacto-
ry result. One of the  main advantages of random selection is its easy implementation. More-
over, the random factor is crucial for the work of all learning algorithms of a stochastic
nature. The creators of the backpropagation algorithm have suggested in [16] that not only
the network parameters but also the training examples should be chosen randomly. The rea-
son is that error back–propagation stresses the differences over the various paths through the
network. When these differences are not present, clearly nothing can be stressed. In contrary,
the more factors able to break the symmetry in the network are present, the higher the chance
on success for the learning process. Some authors [9] suggest even adding noise on the inputs
for a better learning performance.

These are the reasons why most neural networks are studied by means of random sampling.
Random sampling assumes that training examples are arbitrarily chosen, and that the net-
work learning process evolves under its own dynamics. In this case, it can be said that the
neural network is a passive learner. This approach is generally referred to as “Learning from
examples”. Analytical examination of this problem for neural networks is done by Baum and
Haussler [5],  the generalization properties are empirically investigated by Cohn and Tesauro
[6], while Le Cun [13] attempts further improvements. A complete description of this ap-
proach for analyzing neural networks generalization is given by Poggio et al. [8].

In the context of the passive learning framework, the ordered presentation of examples pre-
sumes that also the relation between subsequent presentations is of importance. This happens
for instance when the natural order of presentation must be preserved (as in time–series pre-
diction tasks) or when this is the only possible way of obtaining the examples. Often the or-
dering is combined with a degree of filtering to remove spurious detail. As reported by Mor-
gan and Boulard [14], one can produce results by using only a small fraction of the available
examples, that are close to those obtained when all available data are used. Another reason
for using a specific strategy of pattern selection is that network performance can be drastical-
ly improved (Cloete and Ludik [7]).

This latter result, together with [2], [15], etc. establishes  neural active learning as an alter-
native for passive learning from random examples. Active learning presumes some control
over the way of selecting training examples. Active algorithms applied to neural networks
aim to assure success of the neural learning process by optimizing the information coming
from the environment. They are either oriented towards the strategy of pattern presentation
or to the selection of the best training set. Accordingly, there are two distinct groups of tech-
niques for choosing training examples. The first group assumes that the network is partially
trained on a set of previously acquired examples. This group of techniques is known as active



sampling or progressive learning and can be defined as the task of adding new examples to
the set of available examples. The second group of active learning techniques is known as
active selection or informative learning and implies selection of training exemplars from the
set of available examples. Properly selected, these actions can drastically reduce the amount
of data and computation time required for learning to be completed. Fig. 2 summarizes the
above discussion.
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Fig. 1: Classification of the learning process with respect to example presenta-
tion.

This paper suggests to base active selection on the detection and elimination of notoriously
bad learning conditions. It has its counterpart in the preprocessing of measured data by filter-
ing and ordering as applied successfully in passive ordered learning. Though this has the ad-
vantage of using pre–knowledge, its disadvantage of a potentially extensive preprocessing
stage precludes the potential usage in real–time applications.

With active selection we rather aim to improve the learning quality by on–line adaptation.
By a rigorous windowing of the available data, it extracts a behavioral hierarchy that by rapid
application is guaranteed to have the proper representation. Our analysis of the reasons for
bad convergence suggests several possibilities for active selection. The choice we made
tends to preserve the advantages of random pattern presentation in the local window range,
while the size and position of the windows are determined by active selection strategy. This
allows for an easy introduction in current practice.

3: Examples of Cancelation Training Sets.

The cancelation training set, that visualizes a fundamental drawback of the back–propaga-
tion algorithm, can be constructed in many ways. The following examples will give a more
clear indication how and why cancelation can appear in practice. We focus largely on illus-
trating that the cancelation can be easily introduced in a number of ways, ranging from the
problem definition to the applied intermediate representation. In a later section we will pro-
vide some analytical considerations, by which one can check whether a problem can suffer
from cancelation.

3.1 Sampled Symmetry.

Although it is proven in [10] that feedforward networks with one hidden layer can approxi-
mate an arbitrary function, practice shows a number of systematic hindrances to achieve this
goal. One example for monitoring potential convergence problems in training
backpropagation networks is the approximation of a signal, when the selected training set
is either near to or fully symmetrical. As shown in Fig. 2 a symmetrical target set can be ex-
tracted from a large class of functions. Thus, sampled symmetry sets can be created by choos-
ing not–equally spaced contradictory patterns. We have created such training sets artificially
(Fig. 2a,b), but a number of pattern selection methods or practical sampling recommenda-
tions, efficient otherwise, can also end up with creating a cancelation example set (Fig. 2c).



Handwritten Word Recognition is a typical example of when sampled symmetry can creep
in through the choice in intermediate representation. Handwritten Word Recognition, also
called Isolated Handwritten Word Recognition (HWWR), deals with the problem of ma-
chine reading of handwritten words, generally with the assistance of a lexicon of all valid
words.  A handwritten word is typically scanned in from a paper document and made avail-
able in the form of a binary or grayscale image to the recognition algorithm for Off–line
HWWR. The problem differs from On–line HWWR where the writing surface is frequently
an electronic notepad or a tablet, and where temporal information (the trajectory of the pen
as it traces the word) is available to the recognition algorithm, which attempts to recognize
the writing as it is being written.
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Fig. 2: Functions from which a symmetrical training set can be extracted.

An often used approach takes the handwritten word as an on–line signal and stores it as
a sequence of “strokes”: line segments between two sign changes in the writing direction.
Each stroke is characterized by a 5–tuple: the starting point, three equally spaced intermedi-
ate samples and the end point. Ensembles of strokes can be identified as characters, which
in turn can be assembled to words of fuzzy segmentation. Our critique here is on the normal-
izing storage of strokes by 5–tuples, that blurs away the differences in angular writing. As
a consequence, the first character of the word in Fig. 2c will be found from an upgoing and
a downgoing line on different angles, but with a symmetrical representation on stroke level.

So far we have focussed on a symmetry that is directly visible in the training set.  Even
when the symmetry is not ostensible a lack in reliable training performance may easily ap-
pear, as it will be discussed further.

3.2 General Cancelation.

After we have reached a basic understanding of the internal mechanisms that cause the can-
celation phenomenon, predicting the range of signals, that can cause bad approximation and
too long learning time is an easy task. Not only a sampled symmetry set makes the gradient
algorithm to oscillate into stationary areas of the error surface, but also training sets as shown
in Fig. 3. In Fig. 3a the entire signal is subject to cancelation by symmetry; moreover the
phenomenon affects also sub–training sets (Fig. 3b,c), where only the global tendency or
other dominant input feature of the signal can be approximated.

A general cancelation signal can be constructed by choosing at random, equally spaced pat-
terns of a periodic signal, that is symmetrical in itself or contains additive symmetrical com-
ponents. Sometimes the symmetrical component is not obvious, because of additive noise
with a normal distribution (Fig. 3a,b). Moreover, signals as the one shown at Fig. 3c also
shows cancelation nature. The signal, shown in Fig. 3c is recorded during the emergence
working mode of a power generator. It contains a large percentage of cancelation examples



and its approximation usually fails when a random equidistant sampling is done on it. It is
a typical example of a general cancelation signal, as it will be shown further on.
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Fig. 3: Examples of general cancelation signals.

4: Analysis.

Analytically, the properties of  a generalized cancelation set can be understood by the fol-
lowing reasoning. The single output network with one hidden layer is equivalent to the
nested sigmoidal scheme as shown at eq. (1):

fj(x, w) � �(�
i

wji�(�
k

wikxk)). (1)

After one full presentation of the entire training set Dn, output f (x, w)1 depends on Dn and
the development of a learning process, i.e. from the previous weight values. The generalized
delta rule for updating the weights wji(n) is:

�wji(n) � ��wji(n� 1)� ��j(n)yi(n) (2)

In order to see the effect of the sequence of patterns on the synaptic weights it is useful to
represent eq.(3) as a time series with index t (Jacobs [11]).

�wji(n) � ��
n

t�0

�n�t��(t)yi(t). (3)

   The equality of the product �j(t)yi(t) to ���(t)��wji(t) can be seen from the derivation
of the backpropagation algorithm. Then the equation (3) can be rewritten in the following
way:

�wji(n) � � ��
n

t�0

�n�t ��(t)
�wji(t)

. (4)

Here, �wji(n) is an exponentially weighted sum. When subsequent partial derivatives
��(t)��wji(t) have the same sign �wji(n) grows in magnitude, thus weights are adjusted by
1. The index j in equation (1) is a notation for the j – th neuron  from the output layer. Indexing the only
neuron of the output layer  we consider as not necessary and further on  it  will be used only if necessary.



a large amount. When the partial derivatives ��(t)��wji(t)  have opposite signs on conse-
quent iterations,  �wji(n) shrinks in magnitude, which presumes a small adjustment of the
weight values. Random equidistant sampling of some signals presumes altering of the sign
of ��(t)��wji(t) at a very small intervals, and correspondingly almost smooth shrink of the
borders of the weight changes. To make more clear this statement let us look in detail at the
derivative ��(t)��wji(t).

��(t)
�wji(t)

�
��(t)�ej(t)�yj(t)�vj(t)

�ej(t)�yj(t)�vj(t)�wji(t)
. (5)

This equation represents in fact the dependence of the network state change from the cur-
rent value of the error (��(t)��e(t) � e(t) � d� y) , the derivative of the network output
to its input or indirectly from the network input �y(t)��v(t) and the output of the neuron i
from the hidden layer (�v(t)��wji(t) � yi(t)). The term �e(t)��y(t) contributes only with a
negative sign.

The derivative of the network output to its input �y(t)��v(t) � ��(v) has always a small
positive value, as can be seen at Fig. 4  for both: nonsymmetrical and zero–centered sigmoid.
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Fig. 4:  a) Nonsymmetrical sigmoid �n(�) � 1�(1� e��) and its first derivative
�n�(v) � �n(v)[1 � �n(v)] . b) zero–centered sigmoid �z(�) � (1� e��)�(1� e��) and its first
derivative �z�(v) � [1 � �2

z(v)]�2.

The values of �v(t)��wji(t) � yi(t)  and ��(t)��e(t) � e(t) � d� y are going to be ana-
lysed in combination. When consider the 1–N–1 architecture, the hidden neuron outputs are
in fact  scaled values of the input examples. The hidden neuron output yi(t) is always positive
in case of a nonsymmetrical sigmoid. This way the only component, able to change the sign
of the weight value is the calculated error e(t) � d(t)� y(t). When the network is
constructed from neurons with zero–centered transfer, yi(t) changes its sign either because
an input example with a different sign was introduced or (quite rarely in fact) because of al-
tering the sign of its weight to the input neuron. Both changes can not happen only to one
hidden output, but to all the hidden neurons at once, which will provoke the corresponding
change in the networks output, relevant in our case with the calculation of e(t) � d(t)� y(t).

In the both cases have to be looked at the error value e(t) � d(t)� y(t). In the beginning
of the training process only a small area in the middle of the activation function �(v) is active,
because of the initialization with small random weights and  scaling of the examples. Then
at the very beginning we can consider yj(t) as a linear function with a little slope, biased at



the average of the target2:

fj(x) � �(�
i

(wji�(�
k

(wikxk � Qk))� Qi)) � Qj. (6)

Then the summed difference between the network target and output has approximately
zero impact for the period of one complete presentation of a symmetrical pattern set:

E(n) ��
t�n

t�1

(dt � yt) � 0. (7)

  Moreover, random sampling of such a function provokes the zero summed effect of pre-
senting  parts of the input–target set. Fig. 5 depicts the sum of all previous  output errors for
a certain step while learning to approximate respectively nonsymmetrical and symmetrical
functions. The error sum graph for the symmetrical function is plotted with a solid line. The
dashed line follows the error sum for non–symmetrical function. Random sampling of a
symmetrical function helps in this case to obtain zero summed effect also for subsets.
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Fig. 5: The sum of the output error for the sampling steps up to one full pattern pre-
sentation. The dashed line shows the error sum development for non–symmetrical
target. The solid line corresponds to a symmetrical target.

As mentioned before, the learning problems have a distinct similarity to a statistical long
run effect of which the run length is by definition finite but varying. In the simple experi-
ment, concerning Fig. 6, cancelation  leads to bad approximation – the network gives a
straight line output, if a random equidistant sampling is done. In training more complex sig-
nals, the cancellation can be expected to produce a wider range of learning times or poor
approximation. Poor approximation appears most often as learning only the global signal
structure.

Our theoretical conclusions are inspired by and coordinated with the mathematical analy-
sis of Wiegerinck and Heskes [18]. Elaborating on how dependencies between successive
examples affect on–line learning they suggest that the reason for bad convergence is the exis-
tence of flat areas in a global error surface (or also called plateau). Plateaus cause an extreme-
ly long training time and a bad generalization. After the network reaches such a flat area the
weights hardly change anymore. Consequently good approximation becomes extremely dif-
ficult if uncorrelated input patterns are used.

It is important to point out, that networks with zero–centered sigmoid neurons suffer much
more from cancelation phenomena than nonsymmetrical sigmoid networks.  The reason is
the larger influence of the error parameter when forming the weight correction value, if both
networks are initialized  in the same way and trained to learn the same function on the same
input interval.
2. In presence of learnable bias, equation (1) will be as (6),  where Qk ,Qi ,Qj are correspondingly the
biases of input, hidden and output neurons. Changes of the bias term will be the same as weight changes,
because they are updated with the same adjustment factor. Finally the hidden and input biases will also ap-
proach the zero point. This causes the network output to be equal to the output bias value, which is quickly
adapted to the middle of the learned function, a fact as observed in all made simulations.
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Fig. 6: Weights and error time behavior when a cancelation and noncancelation sig-
nals are to be approximated.  Choosing a cancelation training set in this case can be
done simply by randomizing equidistant samples from the function.

So far we have elaborated on symmetrical training sets, because in this case random sam-
pling orders the training examples in a way, that propagated back updating coefficients are
canceling each other  and make the network parameters become zero. There are a lot of non-
symmetrical training sets as well which presentation can have zero summed effect, both in
the long run as during shorter intervals. Thus, the cancelation can appear during training an
arbitrary function if for a long time the cancelation examples, provoking a symmetrical
phase in the learning process, are supplied long enough to bring the network parameters to
zero values. The way it can be detected will be discussed in the following paragraph.

5: Cancelation detection.

Cancelation training sets either lead the learning process to a dead–end, or (in the case
when the percentage of patterns with a cancelation potential is less than 100 from all the
training examples) in slowing down the convergence process and in bad reliability. In other
words, approximation may fail on a small number of consequent tests. First in this section
will be shown how the learning quality can be damaged by the different content of cancel-
ation examples in the training sequence. The possible damages range from not reproducible
training duration and inaccurate final approximation until total crash of the learning process.
Later on we will propose a method for detecting the cancelation in an arbitrary signal. De-
creasing the possibility of training failure or low quality learning can be done in many ways,
after the cancelation is detected. The particular way can be adapted to the problem to solve.
We are suggesting a windowed active sample selection algorithm, which solves the cancel-
ation problem and in the same time preserves the advantages of the positive impact of ran-
domization inside the selected windows.



5.1 Impact of the cancelation content on the learning quality.

The risk of entering a cancelation situation exists for example when a periodical signal is
sampled. Because of the stochastic nature of neural learning the exact borders of appearance
of  cancelation  effects  can probably never be determined, but a long statistical investigation
over the signal shown at Fig. 3b gives quite informative results. This signal is artificially
created to allow easy control over the content of cancelation examples in the training set.
The percentage of cancelation examples in the extracted training sets varies within wide bor-
ders. For every particular number of cancelation examples 200 different training sets are
extracted. With so created training sets two groups of experiments are made.

In the first group of experiments the percentage of cancelation examples is varied and at
every step the average learning duration and the number of successful trials are recorded.
Fig. 7 summarizes the learning performance of a network, trained with example sets ex-
tracted from the signal at Fig. 3b with different percentages of cancelation examples. Aver-
aging is made over 200 training sets. In Fig. 7a the results of a statistical investigation over
the effect of cancelation pattern sets on network reliability are depicted. The performance
of the network on the subsequent experiments with differently randomized training set is
plotted against the percentage content  of the cancelation examples. It can be seen, that once
a certain amount of cancelation patterns is present in a training set, the experiment becomes
non–reproducible. Correspondingly, the necessary training time increases drastically. This
is shown in Fig. 7b after all the non–learnable examples are discarded. These results concern
networks with zero–centered sigmoid transfer functions.
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Fig. 7: a) Network generalization performance: Percentage of successful trials from
subsequent tests decreases quadratically once a critical number of cancelation ex-
amples is present in the training set. b) Number of iterations during training in-
creases once the number of cancelation examples exceeds certain limits.

The second group of experiments shows the replicability of the training duration for 4
groups of training sets, correspondingly with 40%, 60%, 80% and 100% of cancelation ex-
amples. The results of training with a network, build with zero–centered sigmoid neurons
(�(x) � (1� exp(� x))�(1� exp(� x)) are not shown, because they are implied more or
less in Fig. 7. Instead, the unstable learning duration with nonsymmetrical transfer network
is exhibited.

As commented before, the result of approximating cancelation signals with networks com-
posed by nonsymmetrical transfer neurons (�(x) � 1�(1� exp(� x)) has not so big con-
vergence problems. The reasons for that were explained in section 4. In this case the effect
remains as not reproducible learning duration, if the  training set contains a high percentage
of cancelation examples, as shown in Fig. 8. In case of 100% cancelation there is a small
percentage (about 2%) of experiments, that fail.
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Fig. 8: Convergence behavior of network with nonsymmetrical transfer learning the
signal from fig. 3b with differently constructed training sets.  a) exhibits the distribu-
tion of convergence time normalized for 100 experiments, done with training set
which contains 40% cancelation examples. While increasing the amount of cancel-
ation (60% in b, 80% in c, and 100% in d) we observe that the spread in learning time
increases considerably, leading to not reproducible learning behavior long before
the effect becomes noticeable as a  stand–still.

From the shown empirical results we can conclude that the example selection can be de-
rived from observed changes in runtime results. We are therefore suggesting the windowed
active sampling strategy based on the analysis and the observations made so far. Moreover,
we are tending to create an easy to implement method, preserving the advantages of random-
ness on the sub–training set level.

5.2 Windowed active sample selection algorithm.

To support the description of the algorithm itself we will illustrate the cancelation detection
quality criteria. The illustration is made for training sets, that are not symmetrical themselves
but can provoke cancelation. If the training set contains examples which in the order of their
presentation have the sum of the direction coefficients equal to zero, �Wij  will be zero after
a full presentation of this training set. At the following pictures the  two different training
sets ( as shown at Fig. 9a,b) from the same signal and the graph of  the mean of the training
set direction coefficients as shown at Fig. 9c,d.

Fig. 9c clearly shows that the training set from plot 9a will not be learned if presented at
random. On the contrary, the plot of the direction coefficients mean, corresponding to ran-
domized training set 9b, approaches the value quite different from zero. This shows that the
training set has no cancelation nature and can be easily learned. The here proposed algorithm
implies this calculation for adaptation of the window size.

In the beginning we use a large portion of the signal and check by prototype learning on
the evolution of the mean values of the direction coefficients. If cancelation is present, it will
sharply move to zero and the experiment can be stopped. In sequence we try smaller portions
till finally we find a window–size that shows no cancelation behavior. Then, in assembly,
we can train from the small windowed segments and build in an hierarchical fashion upwards
to finally obtain a full signal coverage. The detection algorithm takes the following steps:

1.  The data set Dn � �(xi,yi)�
N

i�1
 is extracted from the signal S(x,y) by random

equidistant sampling.

2. Divide the data set Dn � �(xi,yi)�
N

i�1
 on equidistant windows Dnm � �(xl,yl)�

m

l�1
.

3. After randomization, the training subsets for the first few epochs

Emp � �(xl,yl)�
pm

i�1
 are obtained from the data subsets Dnm � �(xl,yl)�

m

l�1
.
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Fig. 9: Two training sets, extracted from the signal, shown at Fig. 2b correspondingly
a) possessing  and b) missing the cancelation property. c),d) – evolution of the mean
value of the direction coeficient for the constructed training sequences.

4. Calculate the direction coefficient mean evolution, for the current training set

Emp � �(xl,yl)�
pm

i�1
.

5. If detected existence of the cancelation, decrease the size of the window. Go to 3.

6. If evolution curves as calculated in 4 stabilize to show absence of cancelation the
learning can be left on its internal dynamics. End.

6: Some practical experience.

We have presented active selective sampling as the on–line alternative for passive ordered
sampling. The causes for network–internal conflicts are related to the presentation of the ex-
amples and an analytical justification is provided. Then a procedure is outlined that is based
on the interactive reconstruction of the hierarchical structure as implicitly present in the ex-
ample set.

The importance of this contribution is illustrated by the observation that even learning net-
works can be unreliable in its performance. Reliability is hereby taken as the ability to per-
form learning in a stable, reproducible way. For applications in an industrial setting, such
a reliability should ensure real–time, hazard–free behavior. A typical example can be found
in the diagnosis of power generators, as discussed next.

Destabilization of a turbogenerator by shaft torsion can be estimated during its operational
lifetime by vibroacoustic measurements. The practical significance of a classical vibration–
based fault monitor and report AI–system is limited as:

1. the amount of on–line information is too large for comfortable handling,

2. the count of all probable failures is too high for simultaneous monitoring, and

3. only known faults can be classified.

The first of these arguments stresses the need for on–line data processing, while the latter
two state the case for a Connectionist Expert System as reported in [3].
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Fig. 10: a) Signal, recorded  during the emergence working mode of a power genera-
tor. c) weight changes during cancelation–free training, leading to the signal approx-
imation shown in b). e) weight changes during cancelation training leading to the
signal approximation shown in d).

The signal, shown in Fig. 10a is recorded during the emergence working mode of a power
generator. In order to discover in one training whether this signal has the cancelation poten-
tial it is divided into parts, defined by its odd and even local extrema. So created training set
leads to poor approximation (Fig. 10d). The approximation quality will not improve with
time, because the weights are oscillating in a small areas, as shown in Fig. 10e, and this can
not be changed by repetitive presentation of the same training set. In this case the network
output is governed by only 3 hidden neurons, which can successfully learn the periodicity
of the signal. Fig. 10c illustrates the weight changes when a non–cancelation training set is
extracted. In this case the learning quality is quite satisfactory, as shown at 8b.

The number of weights are the same in both cases, but in Fig. 10e they are graphically over-
lapping. Also the interval, from which the initial weights have been chosen, is the same. This
is not clear from the subplots, because after the first dataset presentation the weights from
Fig. 10c are changing noticeably, but this change is represented in very small plotting space
(in the scale of 1147 dataset presentations).

A typical facet of this application of a neural network in an industrial environment is the
occurrence of new frequency contributions from new failures as well as the shift in existing
frequencies because of wear and ageing. For the diagnosis it is required to perform the above
learning at regular intervals. These on–line requirements make extensive pre–processing im-
possible, while on the other hand reliability is of utmost importance to guarantee hazard–free
operation

In our experience, we frequently encounter the cancelation phenomenon. Often there is an
easy work–around by introducing pre–knowledge on the problem to be solved [17]. Here,
hierarchical design to isolate the signal symmetry in pre–designed subnetworks has distinct
advantages. In general, nonsymmetrical initialization is the keyword. Despite all this,



comparing a number of learning attempts to verify the reliability of the product remains re-
quired to provide for a final quality guarantee. Under circumstances, and especially when
no quantifiable understanding of the natural process is available, windowed active sampling
provides for an attractive alternative.
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