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Preface.

The design of a product is based on the assumption of how it will be used. Conversely,
the product is usually good for only such usage as was assumed during its conception.
In a classical sense, the implicit assumption brings an explicit specification from which
the design is derived. More often than not, the specification is therefore the starting
point of a hopefully structured and well-behaved, but eventually mechanical design ef-
fort. Where the customer tends to learn from the design and mandates to change and/or
augment the specification during the process, the project planning gets invalidated.
Current practice is therefore to fix the specification in advance, for instance by contract.

The interest in Artificial Neural Networks (ANN) is founded on their ability to learn
from examples, as derived from the environment in which the product will operate,
instead of being designed from an hypothesis about the operation. It is commonly
agreed that learning is basedoemorizationassociating or mapping a set of questions

to their answers) argkneralization(the ability to answer new questions about the same
problem). As such, ANNs promise a perfect fit to their intended usage. But circumstan-
tial evidence still does not equal a witness observation. Despite its historic fame, an Ar-
tificial Neural Network will not learn all, let alone under all circumstances. This is prob-
ably the most striking difference with a designed product: there will never be a proof
by construction!
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Figure 1: Overview of real-world neural applications.

With the coming of age of neural technology, an impressive number of neural products
have found their way to the market place [88]. Some popular applications are indicated
in figure 1, which position them in the area spanned by computational complexity and



model correctness. The bars indicate the achieved performance: the patterns within the
bar indicate the widely achieved results, since the white part stands for the best results
in the area. Clearly, none of them achieves a 100% correct functionality. It appears, that
for each application a bottom level of functionality can be reached almost without any
effort. However, to go beyond requires special attention and has therefore spurred a lot
of research to develop new algorithms, to construct alternative architectures, to provide
different settings of input parameters or to preprocess input data.

To achieve a product of ultimate performance, two methods can be devised: (a) its function
is based on a provably correct algorithm, and (b) an effective redundancy is to be incorpo-
rated in the underlying algorithm. As far as ANNs are constructed from analysis of noisy
data, they can entirely be considered as systems of the second type. Because statistics is
concerned with data analysis as well, there is a considerable overlap between the fields of
neural networks and statistics. To analyze learning and generalization of neural networks
from noisy/randomized data, statistical inference can also be used.

Performance enhancement can be created by a kind of majority voting. This principle
suggests that, instead of providing one neural network solution to a problem, a set of
neural networks can be combined to form a neural net system which performs better
than any of the networks on its own [116] [138]. The conclusion made in [112] is that
mere redundancy does not necessarily increase reliability. Empirically it is common
practice to train many different candidate networks to select the winner on basis of pre-
defined criteria. A disadvantage of this method is that training of the losing networks
does not help in a further development. Another weak point is that the criterion for
choosing the best network is usually the performance on a validation set, which can not
guarantee the modeling quality of the underlying data generator. But when the networks
are incomplete versions of the same functionality, the combination might raise the func-
tional correctness to a higher level (Figure 2).
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Figure 2: A typical character recognizer (from [28]).



The committee arrangement generalizes this idea. It can have significantly better pre-
dictions on new data at an acceptable increase of the computational complexity. The
performance of the committee can be much better than the performance of each single
network in isolation. The committee contains a set of a trained networks diversified in
a distinct wayDiversity can appear in the number of hidden neurons, in the kind of net-
work model, in the mixture of networks, in the optimization criteria, in the initial weight
configuration, training parameters in the training samples, etc. The extent to which reli-
ability can be improved by combining neural net solutions depends on the type of diver-
sity, present in the set of nets.

All such technigues assume that the basic neural network is optimally trained. However,
we have noticed that training algorithms are often slow and sometimes unable to con-
verge, even though the underlying techniques often perform very well on other prob-
lems. In other words, even though an ANN can be trained to some functionality, there
appears to be an underlying problem that causes unreliability in learning. This thesis
will therefore be devoted to unravel such circumstances and to contribute ways in which
reliable learning can be achieved. By large, the neural paradigm problem is represented
as a stream of examples (data) and that guides the learning algorithm to adapt the net-
work parameters until the network is “trained” to give the right answers to the posed
guestions. Thus the success and the reliability of this training depends to a large extent
on the content and composition of this data stream.

Overall unreliable learning can be considered to result from the interaction between
three factors: network, problem, and algorithm. In an attempt to answer questions like
why and when the learning process will become unreliable and when a systematic fail-
ure can appear, backpropagation (still the algorithm with highest practical significance)
has been used. The restricted class of architectures it is supposed to be used for and the
feedforward architecture allow us to elaborate in more detail on the problem with re-
spect to the chosen architecture and algorithm.

As we found that the conventional focus on network, problem and algorithm leaves
much to be desired, we propose here to base the discussion ratjemoetryrandom-
ness(as basic network design principles), &mdwledge(the problem to be learned)

as the basic ingredients of the universe of discourse. A high degree of symmetry in the
initially designed network is historically viewed to favor the learning algorithm in pro-
viding an equal chance to move in several directions. However, this has also a draw-
back: the freedom of choice may lead to indecisiveness. Admittedly, randomness may
in turn help the network escape from such a dilemma. But then again, randomness may
wipe away the knowledge; hence a working balance should be found.

Symmetry can be dominant in the beginning of, but also at specific moments during,
learning. Randomness (for instance as stochastic variable in the learning algorithm or
as additional noise at the network input, output or internal parameters ) is then required
to force the presentation of examples to follow alternative itineraries. When the amount
of randomness is not sufficient to counteract symmetry, learning will not be completed:
instead of being adapted to ensure the right mapping between input/output data strings,
the initial parameters will eventually become zero. If the noise (the randomness) of the
system is dominant, learning will also be unsuccessful, because the network will rather
learn the noise than the exemplified knowledge. The fundamental issue of learning is



therefore the creation of a functional balance between symmetry and randomness di-
rected by the examples (the knowledge).

To bring this idea into tangible borders, the interaction between learning components
is represented in thegror surfaceparadigm. The network will be able to extract the nec-
essary information by adapting itself to map the questions posed to the right answers.
This adaptation is in fact an optimization procedure and is thus equivalent to finding
the minimum energy state on an error landscape. The steps, that the learning algorithm
takes on this landscape, are directed by the presented examples anig&snimg tra-

jectory on this surface. Directing this itinerary properly can help to escape some diffi-
culties to pass surface areas, at which the learning algorithm normally spends a lot of
time on or from which it can never escape. For finding an optimal trajectory on the error
surface, the so—called regularisation methods have been used. An alternative effect has
the introduction of extra noise during training. Our objection here is that the task com-
plexity or the convergence accuracy may be changed in an unwanted direction. The in-
vestigation of the statistical long—run effects of example presentation when traveling
on the difficult forms of the global error surface brings us to a constructive algorithm
which helps in escaping them.

Therefore, the work in this thesis takes an alternative route to ensure reliable learning
by focussing osample diversity116]. On basis of the instantaneous characteristics of
the current training set we will conclude on learnability, reorder the set if necessary to
establish the best sample sequence and train eventually a single network with success.

In conclusion, this thesis aims to give directions on how learning can be guaranteed so
that its duration will be short and stable and its success unquestionable from the outset.
In this respect, we aim to contribute to move neural technology from the realm of
“Learning by Examples” to “Design by Examples”.

Groningen, march 1999.



Contents.

Introduction. . ..... ... ittt it ittt 1
1.1  Neural networks. ....... ... . i 2
1.1.1  The network structure. ............. ... .. 3

1.1.2 The network operation. ................... ... ... 4

1.1.3  Successful applications. .............. ... . ... ... 6

1.2 Deriving the neural model. ................ . ... .. ... ... 7
1.2.1  Formalization of neural learning. ..................... 7

1.2.2  Computational drawbacks of ANNs. .................. 10

1.2.3  Network optimization. .................... ... ... 1

1.3 Creating an intelligent system ............................... 12
1.3.1 Learning from reactivity . ............. ... .. ..o 12

132 Dataorsamples? ... 13

1.33 Thisthesis ... 13
Learning Reliability. ..........ciiiiiiiiiiiiiiiiiiiiinnrnrnnnnns 15
2.1 Reliability in neural learning. . ................ . ... . o L 16
2.1.1 Notions and definitions. ............................. 17
2111 Sensitivity. ...l 18

2112 Tolerance. ..........ovviiiiiiiiiinaa.. 18

2113  Redundancy. ............ ... oo 19

2.1.2  Neural system reliability. ............................ 19
2.1.21 Performance aspects. ...................... 19

2.1.22  Reliability assessment. ..................... 20

2.1.3  Fault tolerance in neural networks. .................... 21
2131 Faultmodels. ........... ... .. ... . ... 21

2132 Failuremodels ............... .. ... . ... 23

2.1.3.3  Suitability of reliability analysis. ............. 24

2.2 Reliability as optimal trajectory. .............. .. ... ... ..... 24
2.2.1  The error landscape paradigm. ....................... 25
22.1.1  Reliable learning trajectory. ................. 26

2.2.1.2  Influences on neural reliability .............. 27

2.2.1.3  Correspondence with learning factors. ........ 28

2.2.2  Different views on the error relief. ................. ... 31
2221  Learning process is a trajectory. ............. 32



2222 Effects of randomness ..................... 34

2223  Distributed representation .................. 35

2.3 Reliability enhancement .............. ... ... ... 35
2.3.1 Functional redundancy for enhanced generalization. ... .. 35
23.1.1  Generalization diversity and committees. ..... 36

23.1.2  Votingnetwork. .......... ... . ... o 37

2.3.2  Regularization methods for reliability enhancement. .. ... 38

2.3.3 Adaptable learning trajectory. .............. .. ... .. 40
23.3.1  Criteria for reliability estimation ............ 42

23.3.2  Towards an optimal learning trajectory ....... 44

3  Symmetry and indeciSion. .........coiiiiiiiiiii ittt 45
3.1 Inmitial symmetry. ... 46
3.1.1  Structural symmetries. ..............ciiiiiiiii.. 46
3.1.1.1  Permutation transformation. ................ 46

3.1.1.2  Sign transformation. .................. . ... 47

3.1.1.3  Repeatedness. ...............iiiiiii.. 48

3.1.2 Symmetries in the network parameters. ................ 48
3.1.21  Overparametrization. ...................... 49

3.1.22  Range symmetries. ...................oo... 50

3.1.3  Statistical mechanics view on symmetry breaking. ....... 51
3131 Spin—glassmodel. ............. ... . .. 51

3.1.3.2  Soft committee machine. ................... 52

3.1.3.3  Shortcomings. ............ ... oo 52

3.2 Flatness by subsequent learning ..................... ... ..... 53
3.2.1 Looking at adaptation .................... ... ... .. 53
32.1.1  Weight adaptation in time .................. 54

3212 Theroleoftransfer ........................ 54

3.2.2 Incomplete adaptation .............. . ... .. 56
3221  Saturation effects. ............ .. ... . . 56

3222  Numerical influences. ...................... 57

3.22.3  Badly balanced training set. ................. 57

3.3 Learning scenarios, causing degradation. ...................... 58
33.1 Symmetries in the patterns .......................... 59
33.1.1  Spatial symmetries in patterns. .............. 59

33.1.2  Temporal symmetries in patterns. ............ 61

3.3.2 Symmetry in the error surface .............. ... ... .. 61
33.21 Extrema .......... ... ... .. i 61

3322 Thesaddle point........................... 62

3.3.3 Symmetrical signals on problematic regions ............ 64

Vi



33.3.1  Training two identical networks. .............
3.3.3.2  Error landscape symmetries and degradations. .

3.4 Knowledge, Symmetry and Randomness. ......................

3.4.1 How things came to bear. ..

3.4.1.1  Taking a different view. ....................
3.4.1.2  Learning stages and reliability. ..............
3413  Towardsa KRS measure. ...................

3.4.2 The KRS model. .........

3421  Looking into the mirror. ...................
3.422  The role of the qualifier. ...................

4 Example selection ....................

4.1 The basics of sampling ...........
4.1.1 Sampling techniques ......
4.1.1.1  Random sampling

4.1.1.2  Alternative sampling schemes ...............

4.1.2 Neural active learning . . . ..

41.2.1  Active selection (Informative learning) .......
4122  Active sampling (Progressive learning) . .......
4123  Active learning implementation principles . . . ..

4.2 Alternative example selection schemes. ......................
42.1 Example presentation order and learning success. .......
42.1.1  Impact on the learning success. ..............

42.1.2  Resampling schemes. ......................

42.1.3  Bootstrap resampling ......................

422  Example stream features ..

4221  Definition of a cancelation training set .......
4222  Symmetrical signals and cancelation ..........
4223  Cancelation criterion ......................
4.2.3 Reliability of cancelation signals ......................

4231  Periodicity .....

42.3.2  Mean and variance of training duration .......

43  Sampling strategy. ...............
43.1 Windowed sampling strategy

43.1.1  Formalization of sample selection techniques . .
43.1.2  Experiments with sample selection orderings ..
43.2 Summary and further suggestions. ....................

5 Algorithms for windowed sample selection

5.1 Cancelation Signal Groups........

67
70

72
72
73
74
77
77
78
79

81

83
83
84
85
86
86
87
89

90
90
91
92
93
93
94
97
99
103
104
105

107
109
110
112

115

120

vii



5.1.1 Second—order problems .................. .. ... 120

5.1.1.1  Some elementary observations. .............. 120
5.1.1.2  Influence of sampling ...................... 122
5.1.2  Cancelation and Periodicity. ......................... 123

5.1.2.1  Least squares optimization for periodic signals. 123
5.1.22  Cancelation effects by the periodical signals ... 124

52 Improved learnability. ......... ... ... ... i 127
5.2.1 Improved learnability for second—order problems. ...... 127

52.1.1  An algorithm for active training ............. 128

5212 Algorithm 1. ... . ... . ... .o il 130

5.2.2  Coping with periodicity and general cancelation. ........ 131

5221 Algorithm 2. ... . ... .. ... .. i 132

5222  Experiments with interval size ............... 134

5223  Constructing input streams. ................. 137

53 Tworeal-life problems .............. . ... . ... ... 140
5.3.1 Diagnosis of turbo—generator ........................ 141

532 QRSdetection. ........ ... il 143

53.21  Physiological facts about ECG............... 143

53.22  Artificial sample generation................. 144

5323 Towardsasolution ........................ 145

53.24  Approximation by windowed sample selection . 146

54 DISCUSSION. ..o\ttt 148

6 Closing remarks. .......coviiiiiiiiiiirnsnensreesensnsnsososnsns 151
6.1 Justification. ........ ... 151

6.2 Contributions of this thesis. ................... ... ... ... .. 153

6.3 Suggestions for future research ............... .. ... o oL 156
References. .......oiiiiiiiiiiiiii i it ittt ittt 159
Listof Tables. .. ...cotuiii i it i it ittt iiiieeeenans 171
List of Figures. ... ovvviitiiiiiiiiiiiiiiitiroesreenrnsesnsasosnsns 173
List of Symbols. . ..ovvuitiiiiiiiiiiiiiiiiiiitiererernrssssnsesosnsns 175
List of Abbreviations. .......... .ottt it 176
APPENdiCeS .o i ittt i i it e ittt e 177
Appendix A: KRS—experiments ............. ... . .. i i 178

viii



Al Signal No 1 ... .. 178

A2 Signal No2 ... oo 179

A3 Signal No3 ... .. 179

A4 Signal No4 ... .. 180

A5 Signal No 5 ... o 180

A6 Signal No 6 ... i 181

A7 Signal No 7 ... 181

A8 Signal No 8 ... .. 182

A9 Signal No 9 ... .. 182

Appendix B: The Randomwalk ............. ... .. ... . ... ... 183
B.1 The random walk in one direction .................... 183

B.2 Generalizing the randomwalk . .................... .. 184

B.3 Interpretation ............ ... ... il 184

Appendix C: Software ......... ... i 185
Ci1 The Permutation procedure. ......................... 185

Indexof Terms. ......ouuiiiiiiiiiiiiiiiii ittt iiiiietiineenennns 187
Samenvatting ......ovititiiiii it ittt 190
Acknowledgements ...........coieiiiiiiiiirttttiiiitietttttasnonoans 194






