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This paper presents a conceptual architecture for autono-
mous robots that integrates behaviour-based and goal-di-
rected action as by following a traditional action plan.
Dual Dynamics is the formalism for describing behaviour-
based action. Partial-order propositional plans, which get
generated by GRAPHPLAN, are used as a basis for acting
goal-directedly; the concept is suitable for using other
planning methods and plan representations, though. The
paper presents the corresponding action and plan repre-
sentations at the plan side and at the behaviour side. More-
over, it describes how behaviour-based action is biased
towards executing a plan and how information from the
behaviour side is fed back to the plan side to determine
progress in the plan execution.

Keywords: Plan execution, agent architectures, per-
ception, reactive systems

1. Introduction

An agent that cannot pursue long-term goals or that
does not act in accordance with these goals whenev-
er possible, is a bunch of reflexes, but not worth be-
ing called an agent. An agent that endlessly ponders
its goals and is unable to react if and when circum-
stances so dictate, is a wise guy, but not worth being
called an agent either. Much effort is currently put
into the direction of building embedded agents that
can do both [16], and the idea itself has a long tradi-
tion in Al, as the classical STRIPS/SHAKEY work [12]
shows.

Taking an autonomous robot for an agent, agent ar-
chitectures typically specify different layers (often,
three of them), with a layer for symbolic reasoning
and strategic planning on top, and at the bottom sits
a control layer of elementary low-level actions (often,
they are called reflexes or behaviours) that can map
sensor signals directly into effector operation. Plans

.’L

ILOG
9, rue de Verdun
92253 Gentilly
France

from the symbolic layer are somehow appropriately
translated into “programs’ in terms of these low-level
actions, whose execution may be flexibly modified to
cope with unforeseen events or facts in the environ-
ment (often, this exibility is demonstrated in obstacle
avoidance in navigation missions). [10], [17] are ex-
amples proving that this architecture can be made
work — there are many more of them.

There seems to be a problem, though. The flow of
control from the strategic planning layer down to the
control layer can be handled, as exemplified by the
research just mentioned. However, the information
flow up to the planning layer is often impoverished.
Ideally, the status of plan execution should be report-
ed, including possible problems and failures, which
should lead to, first, updating the planner's symbolic
world model based on the available sensor and con-
trol information, and, second, plan repair or replan-
ning if necessary. Such a schema does work for navi-
gation, where the world model consists essentially in
a robot position and orientation on a map; it has not
been demonstrated to work generally in domains
that are more typical for action planning, which re-
quire complex facts to be represented, tracked, de-
rived, and sensed.

This paper describes another instance of coupling
strategic planning and behaviour-based action. Its
ingredients are not new, but their combination is,
and so is its result. As a first, technical ingredient, we
are using dual dynamics (DD) as a framework for for-
mulating behaviours. DD is special in that it allows
the target dynamics and the activation dynamics of a be-
haviour to be expressed separately, thereby adding
some exibility to describing the robot's low-level ac-
tions.

Second, more on a conceptual level, we do not treat
an agent's plans like a program that, once embarked
on, should or does literally program its behaving like



Chapter: Dual Dynamics: A Brief Introduction

a C program determines how a computer operates.
Rather, we treat a plan as a resource for acting that is
used as one among several information sources that
together shape the combination of currently active
behaviours. This plans-as-resources rather than plans-
as-programs metaphor has been advocated by several
researchers, e.g., [15].

Third, we do not attempt to sense the environment
separate from acting. Instead, we draw the informa-
tion relevant for action from the respective enabled-
ness or disabledness of behaviours, where it is worth
noting that not each physically enabled behaviour
will get executed — plans help decide which among
possibly many executable behaviours contributes
most to the current overall behaving.

The ingredients just mentioned and their interplay
are technically described in this paper. Presently, our
work is in the state of a concept, with no implementa-
tion on one of our concrete robots available yet. Work
in this direction is underway.

The paper, then, is structured as follows. The follow-
ing section 2 gives a brief introduction into the basic
concepts of DD. It also introduces en passant the
demo domain of this paper, namely, an errands task,
which is stripped of to a didactic micro version. The
next section 3 gives the representation of the demo
domain as it is employed in the planner. We are using
GRAPHPLAN [2] as a planner and, accordingly, a pro-
positional representation language on the planning
level. It should be understood from the outset, how-
ever, that GRAPHPLAN was chosen to demonstrate
that no specially designed planner is required for our
purposes. The framework that we are presenting is
neither restricted to using classical planning nor to a
propositional representation language. In fact, hav-
ing a richer language, such as ADL [13], might be
helpful, but that is no issue in this paper.

Section 4 contains the heart of the paper, describing
first, how the behaviours that correspond to opera-
tors in the plan mix into the overall behaviour of the
agent, and, second, how information from the execu-
tion can be fed back into the planning representation.
Section 5 concludes by discussing our approach in
the light of previous work.

2. Dual Dynamics:
A Brief Introduction

This section sketches some basic features of DD. For
details, see, e.g., [9], [8]. It also introduces the demo
domain of this paper, as seen from the DD side.

Dual dynamics is an approach to put behaviour-
based robotics [3], [14] on a formal basis in terms of
self-organizing dynamical systems. DD models an
agent's complete behaviour control system as a con-
tinuous dynamical system, which is specified by or-
dinary differential equations (ODE's). The various
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figure 1 : The environment in the errands domain

behaviours are modelled as subsystems. The theoret-
ical contribution of DD is to explain how these sub-
systems are coupled, by sharing certain variables
and by inducing bifurcations on each other. DD spells
out several restrictions on which couplings are ad-
missible. This results in an overall system behaviour
which is transparent although subsystems undergo
bifurcations. From a practical point of view, this
transparency allows to design and debug complex
behaviour systems. The approach is being used with
mobile robots in the VUB AI Lab [7] and at the Uni-
versity of Bielefeld. Implementations of controllers
for behaviour-based robots in terms of DD exist, us-
ing PDL [19], [18] as a particularly handy program-
ming language.

In general, DD behaviour systems are hierarchic,
with comprehensive, long-term behaviours (like
work or replenish-energy) at higher levels and ele-
mentary, short-term behaviours (like turn-left) at
lower levels. Much of DD theory is concerned with
interactions between levels. For the purpose of the
present paper however, an elementary single-level
system is sufficient. Therefore, we here omit all that
DD has to say about level organization.

Before we proceed with explaining DD, we shall in-
troduce a demo arena including a simple robot. The
arena is an enclosed area with obstacles and three
distinct locations a, b, c. These locations are marked
by acoustic beacons which emit different sounds.
Some books and coffee mugs are distributed in the are-
na, not necessarily at the distinct locations. A variety
of errand tasks can be formulated in this setup. Fig-
ure 1 sketches that instance of the scenario, which
will get used for planning later.

The robot has two propulsion wheels which are inde-
pendently controlled by motor signals m,, m;, where
m, = 1 means full speed forward of the right motor,
and m, = —1 means full retract (analogously for m; ).
Thus, the robot can move forward and backward and
turn with different speeds (even on the spot). Fur-
thermore, the robot has a gripper, which it can use to
gather and dump a book and a mug. For simplicity,
we assume that the gripping system is in itself quite
sophisticated. It can be triggered to gather the book
and put it in its payload space, simply by setting a 0-
1-valued control input g,,,; to 1 for some seconds.
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Analogically, the gripper is triggered to gather the
mug, dump the book, and dump the mug by raising
gmug/ dbook/ and dmug tol.

The robot can sense obstacles with two active range
sensors mounted to its left and right front, whose ar-
eas of perception overlap in front of the robot. They
return continuous values o0, 0,&€[0,1]. It reads
0, = 1 oro, = 1 if an obstacle is very close to the left
resp. right, and o, = 0 resp. o, = 0 if no obstacle is
seen on the left or the right.

The beacons in places 4, b, ¢ can be perceived by an
acoustic sensor which returns three values
P O, 9. E[-1, 1] where ¢, = -1 means that a's
sound comes at 90° from the right, a reading of
¢, = 0 means that a is straight ahead, and ¢, = 1
implies a lies exactly left. Distance to 4, b, ¢ is meas-
ured by binary variables §,, 8,, 8, which usually read
0 but jump to 1 when the corresponding beacon is
reached.

Finally, we assume the robot is equipped with a spe-
cial book-and-mug detector (presumably relying on
books being bright red, mugs being green, and the
rest of the world coming in shades of grey). This de-
tector yields two binary variables Yy, , ¥mug Which
jump to 1 when a book or a mug are perceived within
a distance which is near enough for the object to be
gripped.

Now we return to explaining DD, by discussing a
simplistic DD behaviour system for this robot. This
system consists of the behaviours (1) approach,, (2)
approachy, (3) approach,, (4) roam, (5) gather,;, (6)
gather,,,,, (7) dumpy,,, and (8) dump,,,,. (We will
sometimes refer to the behaviours by the numbers
just given.)

When no plan is present, these behaviours interact
and produce the following default, global behaviour
pattern. The robot randomly alternates between ap-
proaching the beacons, and roaming about the arena.
While manoeuvring, obstacles are avoided. Whenev-
er a book is passed near enough for gathering, the ro-
bot first dumps a book (if it had none, it will perform
a void dump motion), then loads the book freshly en-
countered. The same occurs when a mug is encoun-
tered. We will now describe the DD specification of
the approach,, behaviour in some detail.

The first thing to note about DD is that an elementary
behaviour is specified as a compound system con-
sisting of a target dynamics and an activation dynamics
subsystem — hence the naming, ‘dual dynamics’.

The target dynamics subsystem of a behaviour speci-
fies the target trajectories of all actuators relevant for
the behaviour. In the case of the approach, behav-
iour, the relevant target variables are m; and m, (see
figure 2), since for approaching 4, only the drive mo-
tors are relevant. Thus, the target dynamics of ap-
proach, consists of two ODE's for m; and m,..

3
Behaviour 1: approach,
Target dynamics

) 1,1 1 1

m; = kl<§+ iol_éor_icpa_ml> 1)
+ka(01+0,)(0—my) +ksd,(0—m,)

o, /1,1 1 1

m, = kl(é + éol_éor_écpa_mr) (2)

+kz(0,+0,)(0—-m,) +k30,(0—m,)

Activation dynamics

Gy = k4(1—0(2ai) —ocl) + ksd,(0—aty) 3)

+ noise+ operator-coupling terms

figure 2 : Definition of the approach, behaviour

Let us consider the equation for m;. We assume that
the reader is familiar with the basics of ODE's. Equa-
tion (1) has three additive components. The first
component tells the left motor to take on a default
forward speed of 1/2, which is accelerated when an
obstacle is sensed to the left, decelerated when an ob-
stacle is sensed to the right, and accelerated / deceler-
ated according to the a-direction sensor reading. The
second component pulls a break on the motor pro-
portionally to overall distance to obstacles, resulting
in a slowdown near obstacles.! The third component
breaks when a is reached. The equation for the right
motor target m, is analogous.

If k5 is considerably greater than k; (which it should
be), equations (1) and (2) should make the robot gen-
erally drive toward 4, avoiding obstacles (and walls)
on the way, and slow down almost to a standstill in
the direct vicinity of a.

The k; are time constants that have to be suitably
chosen for the dynamics to work as desired. Much of
the DD designer's know-how concerns the suitable
selection of such time constants. In this article we
shall not further discuss this hairy issue.

Now we explain the activation dynamics subsystem.
This subsystem regulates a single variable o, the be-
haviour’s activation. Generally, every DD behaviour
owns an activation variable, whose dynamics should

L In this equation and others to follow, factors (0 —v) oc-
cur in definitions of O for variables v. We use them instead
of writing -v to make clear that the respective term pulls v

towards 0 in the same way that a factor (1 —v) pulls v to-
wards 1.
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Behaviour 4: roam Behaviour 5: gathery,,
Target dynamics Target dynamics
m; = k6<1'+1'01—1‘0,—ml> 4) Zroot = 1,
2 2 2 gmug = dbaak = dmug = ml = mr = 0 (7)
+kq(01+0,)(0—m)
Auxiliary variables (for behaviours 5 and 7)
. 1.1 1
m, = kg(=+Z0,—=0,—m, (5) .
6<2 2" 2 ) Br = ko(0—B1) + KioVpoor(1—P1) (8)
* ka0 +0,)(0=m,) BZ = kllaﬁl(l—ﬁz) +kip(1—B2) )
Activation dynamics Activation dynamics
Gs = kyal(1=0(P2))0a(~P2) — ts) (10)

Gy = kg(l—O(Za,) —oc4> (6)

+ noise+ operator-coupling terms

figure 3 : Definition of the roam behaviour

result in a variation range between 0 and 1. An acti-
vation of 1 means that the behaviour is ‘enabled’, i.e.,
the target values produced by the target dynamics
subsystem are passed on to the actuators. An activa-
tion value of 0 means that target values are not
passed on, but are ‘inhibited’. Thus, the activation
variable of a behaviour can be viewed as a gatekeep-
er, which decides when the behaviour influences the
actuators.

Although the activation dynamics subsystem has to
rule only a single variable, this subsystem can be-
come surprisingly complex. In the case of approach,,
the activation dynamics consists of 4 kinds of addi-
tive terms. The function o appearing in the first is a
suitable thresholding function (e.g., a sigmoid),
which rises to 1 when its argument surpasses some
threshold, and is about 0 otherwise. The first term
thus states that o, rises to 1 unless some other be-
haviour’s activations are noticeable, in which case
o, is pulled to 0. The second term pulls o, to zero
when 7 is reached. Some small amount of noise is
added to avoid deadlocks. Finally, a number of “op-
erator-coupling terms’ further shape the activation
dynamics to enable plan execution. They will be ex-
plained in section 4.

The remaining behaviours shall be described more
briefly. approach;, and approach. are analogous to
approach,. The equations for behaviour (4), roam
(figure 3), resemble those of approach,. While this
behaviour is active (i.e., while a, is big), the robot
simply should drive forward with default speed 1/2,
slow down before and turn away from obstacles, and
resume standard forward motion in a new direction.

+ operator-coupling terms

figure 4 : Definition of the gather;,,; behaviour

Behaviour 7: dumpy,

Target dynamics

dbook = 1/

gbuuk = gmug = dmug = ml = m, = O (11)
Activation dynamics

d7 = ku(oiB2—ay) (12)

+ operator-coupling terms

figure 5 : Definition of the dumpy,,; behaviour

Since the activation dynamics basically only says,
‘unless any other behaviour is active, roam’, roaming
is the fallback behaviour which takes over whenever
nothing else is going on.

The target ‘dynamics’ of the gather and dump behav-
iours (figure 4 and 5) are simple constants and thus
need not be specified by ODE's. The activation dy-
namics are a bit more involved. The rationale is that
after spotting a book (i.e., after y,,,; jumps to 1), for
some fixed time interval dumpy,,, becomes activat-
ed, after which in another time interval gathery,
gets active. This involves a timing mechanism which
is triggered by v, . There are many ways of imple-
menting such a timing. We used auxiliary variables
B1, B2 to this end. We include the equations without
going into details. (The two time windows are deter-
mined by the thresholds for o, and ©,, where the
latter is smaller than the former.)
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3. Plans in the Errands Domain

We are now very briefly looking at the errands do-
main from the planning side, starting with its repre-
sentation for the planner. This planner happens to be
GRAPHPLAN. Note, however, that this choice was ex-
clusively guided by the desire to keep simple the
planning representation and the planning process
for investigation and explanation. Other planners
with their respective representations should be usa-
ble as well, but have not yet been studied.

The domain signature, start situation and goal condi-
tions as appropriate for GRAPHPLAN are given in fig-
ure 6. The original robot location is 4; the goal is to
have both the book and the mug at location a. We have
three operators GOTO, LOAD, and UNLOAD, all with
the intuitive interpretation. Figure 7 defines them in
GRAPHPLAN syntax. Finding a plan for solving the re-
sulting planning problem is straightforward. This
plan is given in figure 8a and 8b.

Planning operators may, but need not correspond di-
rectly to behaviours in the DD representation. In the
errands domain, there are the obvious correspond-
ences between LOAD and gather, UNLOAD and
dump, and GOTO and approach, where the behav-
iours need not mention the current or past locations.
In more complex domains, the planner may work
with operators that correspond to higher-level be-
haviours, or it may work with macros that get ex-

(mug OBJECT) (book OBJECT)
(a LOCATION) (b LOCATION) (c LOCATION)

(preconds (at mug c) (at book b) (at robot a)

(effects (at mug a) (at book a))

figure 6 : Types, initial, and final situation

(operator GOTO
(params (<11> LOCATION) (<I2> LOCATION))
(preconds (at robot <I1>))
(effects (del at robot <I1>) (at robot <12>)))

(operator LOAD
(params (<o> OBJECT) (<I> LOCATION))
(preconds (at <o> <I>) (at robot <I>))
(effects (del at <o> <I>) (has-robot <o0>)))

(operator UNLOAD
(params (<o> OBJECT) (<I> LOCATION))
(preconds (has-robot <o>) (at robot <I>)
(effects (at <o> <I>) (del has-robot <o0>)))

figure 7 : Planning operators, in GRAPHPLAN syntax

panded before plan execution into elementary opera-
tors corresponding to behaviours of some level. We
have not investigated that yet, but we assume it is
practical. The point is: In any case, the designer of the
complete plans-plus-DD domain representation has
to make sure that the operators make connection to
the behaviours in the technical sense explained next.

4. Coupling Symbols and Dynamics

4-1. From symbols to dynamics

This subsection explains how operators, which are
symbolic entities, are executed by the DD system,
which is dynamic. As will become apparent soon,
‘executed’ is a somewhat misleading term. The DD
system is not strictly commanded to carry out an ac-
tion. Rather, it is biased more or less strongly in its
natural ongoing activity such that the operator's ef-
fects are likely to be achieved.

We assume that a single operator is picked for execu-
tion at every point of time. Usually, this is one of the
next executable operators of the current plan. Alter-
natively, the robot can be given from a user single op-
erators to execute.

We shall demonstrate the biasing mechanism using
an example. Assume that plan execution calls on the
operator GOTO(L, b) for some location L. From our

GOTO_a_c
LOAD_mug_c
GOTO_c_b
LOAD_book_b
GOTO_b_a
UNLOAD_mug_a
UNLOAD_book_a

0N B WN —

figure 8a: A four-action plan in GRAPHPLAN’s format

| Goro@aq |
| LoAD (vmug, o |
| GoTov (c,b) |
| Loap (vbook, b) |
| c,orov (b,a) |

‘ UNLOAD (mug, a) ‘ ‘ UNLOAD (book, a) ‘

figure 8b: A four-action plan in the standard graph repre-
sentation of partial orders
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Behaviour 2: approachy,
G, = ...+ SGato(L,b)C(ZSoto(L,b)(l —ay) (13)
Behaviour 4: roam
Qg = ...+ sGU,U(L,b)cé(,m(w(l —ay) (14)
Behaviour i: all others

G = oo ¥ SGono(L, 0)Cootor, (0 — ;) (15)

figure 9 : OCT’s for GOTO (L, b)

observer's perspective, this intuitively means that
the robot should go to b. But as it is intelligent and the
world is hardly predictable, the robot should not just
quit doing whatever it was doing before, and push
its way toward b regardless of circumstances. If, for
instance, the robot's battery is going down, it should
take a break in going to b, and recharge for a while.
Or, if the robot was just UNLOADing a mug when the
operator GOTO(L, b) was called, the unloading
should first be finished. For reasons like this, calling
the operator GOTO(L, b) should result in a general,
persistent tendency for the robot to proceed toward
b, yet leave some freedom to do other things if cir-
cumstances so require.

This kind of ‘operator-oriented biasing’ of the DD
system is effected via the operator-coupling terms
(OCTs). In every behaviour’s activation dynamics,
there is an OCT for the operator GOTO(L, b). These
OCTs should result in the desired persistent tendency
to move toward b.

Figure 9 presents suitable OCTs for GOTO(L, b). As can
be seen from these examples, OCTs have a simple
common format (16):

& = ...+ SopChp(Z —a)) (16)

where s, is a switch variable which jumps to 1
when the operator OP is called and is otherwise 0,
chp is a non-negative constant, and Z € {0, 1} .

These OCTs work by superimposing an influence on
the dynamics of the dynamics of a; . This influence is
apull toward 0if Z =0, i.e., a “discouragement’ of the
corresponding behaviour. It is an encouraging pull
toward 1 if Z = 1. The strength of this dis- or encour-
agement is determined by the time constant cpp . If it
is low, the behaviour's activation dynamics is only
mildly modified by the OCT. If it is much higher than
other time constants in the rest of the behaviour's ac-
tivation dynamics equation, then the behaviour is
mandatorily activated (Z = 1) or deactivated (Z = 0)
by the OCT. The influence is switched on or off by
sop. This switch variable yields the causal connec-
tion between the symbolic plan execution mecha-
nism and the DD system: whenever the plan execu-
tion calls an operator OP, the switches s,p jump to 1
in all behaviour's activation dynamics.

Returning to the example (fig. 8), we now see that
when GOTO(b) is called, behaviours ap?roachb and
roam are encouraged with strengths cGoro.;,) and
Ctoroy, Tespectively. Since the behaviour ap-
proachy, in this case rather directly does what the op-
erator is intended for, the encouragement should be
strong. It seems reasonable to also encourage roam a
bit, just in case approach; does not get active for
some reason. The other behaviours do not apparent-
ly contribute to the operator's intention. Therefore,
the corresponding OCTs feature Z = 0.

Using this metaphor of dis- and encouragement, and
the mechanism of OCTs, it is not difficult to spell out
plausible OCTs for the other operators used in our er-
rand scenario. For instance, an operator LOAD(book,
L) should encourage the behaviour gathery,, rather
strongly, discourage dumpy,, strongly, and discour-
age all other behaviours mildly.

This kind of designing OCTs might seem a bit vague
or unprincipled. We do not really ‘control” the behav-
iour by plans this way. Nor do we oversee all eventu-
alities, and account for them. We believe that this is
all right for autonomous robots working in unpre-
dictable environments - it is hard anyway to fully
control action in the face of unknowable external cir-
cumstances, or in the face of a complexity of behav-
ioural interactions which cannot be premeditated.

4-2. From Dynamics to Symbols

Both the planner and the plan execution monitor are
working on the symbolic level, as specified in section
3. So the gap must be closed between the information
that is available on the DD side and the information
that is required on the symbolic side.

Obviously, making symbolic world descriptions
from sensor readings — or ‘turning pixels into predi-
cates’, as the buzz word goes — is no easy task. In our
approach, we make a strong methodological com-
mitment at this place: we do not use sensor readings,
but only actions of the robot to obtain world descrip-
tions. The motto is: ‘“Turn interactions into predi-
cates!” Sensor readings help build the world descrip-
tions only indirectly, due to the fact that actions are
sensor-based. This is one of the central points of our
proposal. We shall now proceed, first, by giving our
epistemological reasons for this commitment, and
second, by explaining how it can technically be real-
ized in our DD-based robot.

From an epistemological perspective, we believe that
agents cannot perceive the world per se. Pure, objec-
tive sensing does not exist, and observation yields no
such thing as a “true’ world description. This nega-
tive statement is probably uncontroversial. The ques-
tion is, by which positive statement can it be re-
placed? We propose to make upworld models from
interaction experiences. Simply put, we should allow
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in our world models concepts like tables and mugs
only in terms of our interactions with these objects —
if we can walk toward them, touch them, lift them up
to feel their heaviness, move them around, drink
from them, scratch their surface. Furthermore, we
should allow in our world models propositions like
‘the mug is on the table’ only in terms of our doings —
because we actively put the mug on the table, or told
another person to put it there (where telling is an ac-
tion). The only exception from this rule is that we
may add/delete propositions to/from our world
model if we are being told by an agent whom we be-
lieve. Again, however, this does not rely on sensing!

Technically, we propose to make the symbolic world
model from the activation history of behaviours. The
history of the activation variables o; contains the es-
sence of what the robot did. For instance, At (mug, b)
holds in the current world model if the approach,, be-
haviour was recently active and uninterrupted, fol-
lowed by the dump,,,, behaviour. There is a caveat,
however. Since the activation dynamics of a behav-
iour obeys different rules at different times, accord-
ing to which sy, are switched on, we must also con-
sult the history of the switch parameters in order to
interpret the activation variables properly.

Thus, as the experiential source of information from
which we distil a world model, we take the past his-
tory of all o; and all spp. Additionally, we allow the
robot to be told propositions by other agents whom it
believes (presumably, its human operators).

Deriving propositions from activations requires
some care. We will illustrate this now with a concrete
example. The errands domain involves just two
types of propositions: For objects O and locations L,
these are Has-Robot (O) and At (O, L); At (robot, L) is a
special instance of At. To start with Has-Robot (book),
the only way of having the book physically on board
is having gathered it in the past, and not dumped it
later. If we write o,(t) for a; in the past time point ¢,
we have

Has-Robot(book) < (17)
At {os(t) =1 A Vi {t, >t = ~(04(t2) = 1)}}
At (robot, a) is somewhat clumsier. Let A be a con-
stant denoting an upper limit of the duration that it
takes to deactivate approach,. Then we have

At(robot, a) (18)

<« Htl, t2

{t1<t2/\ tz—t1<A

A al(tl) =1Aa al(tz) = 0

A Vt, i{t2<tA a,(t)z1—>1${2, 3, 4}}

A HL{Vt (= [tl, tZJ{SGOTO(L,u)(t) = 1}}}
Let us explain this line by line. t; was less than A be-
fore t,; approach, was active in {;, and it was inac-
tive in t,; none of the behaviours that would have
destroyed At (robot, a), i.e., none of the behaviours 2,
3, and 4, was active after t,; and the robot was deter-
mined to go to a within the critical time interval [¢;,

t,], i.e, approach, has not been switched off by
chance, such as by gathering a book just spotted
when executing an approach, behaviour.

Before defining At (O, L), notice first that we cannot —
neither want to — guarantee that the robot knows the
locations of all objects, not even of all those that it has
dumped in the past and not touched later. If such a
dump did not take place at one of the distinct loca-
tions that the robot explicitly knows about and
knows how to approach, then the object is simply
lost. (Note that it may find it again while roaming
about the arena; in this case, it may gather the object
and thus bring it back into focus.) O, then, is known
to be at L if at some time At (robot, L) in the sense of
the definition (16), within a small, user-defined time
window A' after deactivation of approach,, if O was
then dumped, and O was not gathered later. The cor-
responding formalization is simply technical.

Using these predicate definitions, the robot can make
available a situation description at every moment in
time, which is formulated in terms of the planner's
vocabulary. It may be practical to update the situa-
tion description incrementally rather than comput-
ing it from the complete available activation history
all the time. Finally, there may be another way for the
robot to learn information for this description, name-
ly, by being told. We do not go into this issue here,
but we assume that the ability of learning by acquir-
ing symbolic terms and to respect this knowledge in
future acting, is something that suits well an intelli-
gent agent.

5. Concluding Discussion

The contribution of this work can be seen from two
perspectives. From the behaviour-based action point
of view, it offers a way of sequencing behaviours to
achieve longer-term goal-directedness, yet keeping
intact the basic ideas and principles of behaviour-
basedness. The current plan is used as an important
source of information — no more and no less. It mod-
ulates ongoing action rather than enslaving it. We
feel that this is an adequate way of putting the plans-
as-resources metaphor [15] to work.

From the planning point of view, our work contrib-
utes a principled way of coupling the plan level and
the action level. It has been obvious from the begin-
nings of planning research that operators must be
‘implemented” in terms of executable procedures,
and this has been done in each and every practical
planner let loose on a real domain. Plans intended for
helping humans organize their work - like, say, in
job-shop scheduling — have never suffered from this
coupling problem, because the human in the loop
maps plans to actions and action results back to the
planning representations. Our work is obviously un-
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necessary and not intended for this case of planning
applications.

In the case of autonomous robots, no humans are in
the loop, and no homunculi should be replacing
them. While there are quite a number of examples for
systems translating plans successfully into physical
action - see, e.g., [12], [1], to name just one classical
and one recent work — it seems that attempts to feed
back information about the world into the planning
representation were less successful. This does not
seem to come by chance as turning sensor readings
into symbolic descriptions poses all sorts of prob-
lems, from technical to epistemological ones.

We are tackling the problem by perceiving the world
through the history of activation values. This is dif-
ferent from interpreting the sensor data directly in
that it sees the world filtered through action, thus re-
ducing information sucked out of the environment to
that part, which is relevant for acting by the very def-
initions of the behaviours. We are not aware of a like
approach in the context of planning for autonomous
robots.

As another feature of our framework, the planning
level and the behaviour level are to some degree de-
coupled in time, and they are meant to work in paral-
lel. This idea is not new, the ATLANTIS framework [5]
being another instance.

At the present state of work (and within the limits of
this paper), many issues remain unaddressed and
many problems unsolved. The first and foremost is
to implement on a real robot the concept that we
have described, the most plausible robot candidate
being a RWI B-14, which we have available.

The choice of GRAPHPLAN as a planner and, accord-
ingly, its domain language as a representation lan-
guage was primarily guided by the desire for sim-
plicity in the beginnings of our work. We do not want
to suggest that classical, propositional partial order
planning is the planning tool of choice for autono-
mous robots. As for the planning process, some any-
time [4] flavour would suit a robot planner well — and
it seems that this would fit nicely into our frame-
work. As for the domain representation language, a
somewhat higher expressivity, e.g., in the ADL direc-
tion, would be convenient; it remains to be seen,
however, how such a language connects with the
perception in terms of activation values — this neces-
sity constrains our choice among the representation
languages that we like best.

On the other hand, we have come to like the simplic-
ity of the GRAPHPLAN approach for autonomous ro-
bots. The point is: The fact that the world is partially
unknown, unknowable, and chaotic to the robot
does not necessarily mean that this lack of knowl-
edge must be reproduced and handled in the plan-
ner's domain representation. If the robot is able to

change its current view of the world quickly and rep-
lan fast enough for the new situation, then it might
be as well off with many, rapidly-changing, simple
plans as with few, relatively stable, sophisticated
plans that handle planning uncertainty. We are not
sure about where a robot planner within our frame-
work should best be positioned in the menagerie of
Al planning methods, but it does not come by chance
that we have not used anytime uncertainty planning
methods available.

Turning to a technical problem, remember that a plan
is coupled with the behaviours by using OCTs, where
it is assumed that the planner picks the current oper-
ator for execution. While this is a clear scheme, it is
not completely satisfying. It should be the whole
plan that biases behaviour, thus allowing to take fa-
vour of serendipity, to fix exogenous goal destruc-
tion, and to jump ahead in the plan opportunistically
[6] — all on the behaviour-based execution side. De-
signing plan-coupling terms instead of OCTs is a
point of further research.

To end with a more general issue, the overall world
information, as described, is obtained by the activa-
tion value history, the switch variables, and possibly
symbolic information given right away. This is a
whole lot of information. In particular, there will in
general be more of it than a planner — be it GRAPHP-
LAN or something fancier — can handle fast. So a
mechanism seems to be needed for filtering the infor-
mation that looks relevant ‘in the moment’ out of the
overall information, in order to tailor the planning
problem that is given to the planner. While this idea
is far from new (it is the background for the infamous
qualification problem [11]), the problem is obviously
unsolved. Our framework allows to tackle the ques-
tion from a new perspective.

In sum, we feel that the approach just presented has
some potential for merging in a principled way the
best of the behaviour-based and the plan-based
world for controlling autonomous robots.
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