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Calculating smooth trajectories of bounded curvature has received a very wide attention in the robotic literature of the last 40 years.
Most results focus on the study of wheeled non-holonomic vehicles and are concerned with 2D path generation algorithms. The
problem of smooth and least curvature 3D path planning is addressed with a variational approach and the general 3D Euler-Poisson
equation is derived. The 2D solution is calculated as the plane projection of the general 3D solution and some special 2D cases are
analyzed. It is shown that if some special conditions are satis�ed along the 2D path the optimal solution is approximated by the
well known Cornu spiral; moreover in these same conditions the optimal solution (and the Cornu spiral) are approximated by the
more familiar cubic polynomial. Applications to rigid body underwater dynamics are discussed.

1 Introduction

The problem of �nding a smooth and minimum curvature
trajectory between two given con�gurations (a con�gura-
tion is a point and direction in the plane) has received a
wide attention in the robotic literature, specially regard-
ing the steering of non-holonomic mobile robots, but has
also been discussed within other �elds such as civil en-
gineering or computer graphics. Minimizing the path's
curvature is a very interesting planning criterion also for
rigid bodies moving in a 
uid environment, as objects
grasped by underwater manipulators or underwater ve-
hicles. Pressure drag (sometimes called form drag) and
added mass hydrodynamic loads are proportional to the
surface of attach of the moving body, thus if the velocity
vector is kept parallel to the major body surface, min-
imizing the curvature will minimize 
uid forces applied
on the body during curves. From the pioneering work
of Dubins 1 who calculated the shortest path of bounded
curvature among two con�gurations, many other authors
focused their attention on the generation of bounded cur-
vature 2D paths. In synthesis Dubins' results state that
the shortest 2D path of bounded curvature between to
�xed con�gurations may be traced joining straight lines
and circular arcs of curvature smaller or equal to the
maximum allowed. More recently these results have been
discussed and elegantly re�ned by J.D.Boissonnat et al.2,
X.N.Bui et al. 3 and A.M.Shkel et al. 4. Kanayama et

al. 5 suggest the use of paths generated joining cubic spi-
rals and arc of circles to minimize two cost functions re-
lated to curvature and jerk energies while A.M.Hussein et
al.6 generate smooth paths optimizing the integral of the
square acceleration instead of curvature. One of the cost
functions used by Kanayama et al. 5, and that is at the
center of the present paper, is the integral over the path's
lengths of its square curvature. The minimization of such
quantity with �xed boundary con�gurations is a problem
with an interest of its own as such cost function can be
physically interpreted as proportional to the elastic en-
ergy of the curve. Due to this fact the sought plane path
is sometimes called the least energy curve in literature.
Indeed this interpretation makes the problem appealing
also to researchers of other �elds as A.M.Bruckstein et
al. 7, B.K.P.Horn 8 and M.Kallay 12 who addressed a very
similar problem to the one here discussed within a dif-
ferent framework and formulation. It will be shown that
Horn's 8 and Kallay's 12 2D results can be viewed as the
projection on a plane of a more general 3D Euler-Poisson
equation. In Section 2 the problem is formally stated and
underwater applications are explicitly discussed. In Sec-
tion 3 the general 3D solution is derived through varia-
tional calculus and some 2D special cases are discussed.
In Section 4 the main 2D solution properties are dis-
cussed while in Section 5 some 2D examples and results
are shown. Section 6 focuses on the concluding remarks.
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2 Problem statement

Given a rigid body underwater moving in the horizontal
plane z = constant its dynamic equations with respect
to the local reference frame with origin in the center of
mass can be theoretically deduced under some standard
hypothesis 9: the 
uid is ideal, i.e., of constant and uni-
form density, irrotational and inviscid, unbounded and
of in�nite extent except for the rigid body itself. The
kinematics variables surge u, sway v and yaw r = _� are
velocities respect to the 
uid. Neglecting time varying
currents the hydrodynamic load in deep water (� 5m)
where wave e�ects are virtually absent is due to drag, lift
and added mass forces. Drag is anti-parallel to the veloc-
ity and drag coe�cients are proportional to the surface
of attach. Lift is normal to the velocity direction, pro-
portional to its value and to the angle of attach provided
it is small enough (� 12o as an order of magnitude, stall
occurs for higher values). Added mass forces are pro-
portional to accelerations du

dt ;
dv
dt ;

dr
dt through added mass

coe�cients which depend on the body's shape. To avoid
large sway drag forces and surge added mass forces that
cause major hydrodynamic load on an elongated body
the lateral sway velocity v and the linear acceleration du

dt
should be kept null. Note that the constraint on null
sway makes the present problem very similar to the well
known non-holonomic car-like path planning problem.
Yaw velocity r and acceleration dr

dt should be minimized
as the large lateral surface produces strong moments
along the z axis. Lift forces can be controlled through
the value of surge velocity u. Thus assuming that v = 0
and that surge u velocity is kept constant and small to
avoid added mass stresses and limit lift e�ects, the ma-
jor dissipative force acting on the body will be caused
by drag rotation moment in the z direction that is lin-
ear in r. The energy associated with such drag moment
is proportional to

R
rd� =

R
r d�dsds =

R
rkds = u

R
k2ds

where s is the curvilinear coordinate, k = r=u the paths
curvature and u the constant surge velocity. Indicat-
ing from here on with a dot the derivative respect to
s and with (x(s); y(s)) the unknown path of length L,
unit tangent vector T(s) = ( _x(s); _y(s)) and curvature

k(s) =



 _T(s)


 =p�x2(s) + �y2(s) the following cost func-

tion to be minimized with relative boundary conditions
is de�ned

" �
Z L

0

k2ds (1)8<
:
x(0) = x0 ; y(0) = y0
x(L) = xf ; y(L) = yf
_y(0)
_x(0) = tan(�0) ;

_y(L)
_x(L) = tan(�f )

(2)

Where �0 and �f are the initial and �nal angles between
the curve and the x-axis. Notice that L is not �xed and

Figure 1: In�nite length solutions

if L ! 1 it is always possible to �nd a path for which
" ! 0 as can be understood from �gure 1. The cost on
line segments is null and its value on the arc of circle dP1P2
is ��

r , so if points P1 and P2 tend to in�nity also r will
and " will tend to zero. The junctions between straight
lines and the arc of the circle where curvature is not
de�ned can be made smooth with a Cornu spiral10 which
will not a�ect the cost when P1 and P2 tend to in�nity.
Solutions of in�nite length as the one shown in �gure 1
can not be found by variational calculus as they belong
to the closure of the open set of curves in R2. It will be
demonstrated that if j�(s)� �0j > � holds, a �nite length
solution never exists, so either an additional constraint
on total length must be added or the cost function must
be changed in order to penalize length.

3 Variational approach solution

If a 3D curve C(�) = (x(�); y(�); z(�)) is expressed in
terms of a generic parameter �, it's square curvature is
given by

k2(�) =

���dCd� ^ d2C
d�2

���2���dCd� ���6
=

(y0z00 � y00z0)2

(x0 2 + y0 2 + z0 2)3
+ (3)

+
(z0x00 � z00x0)2

(x0 2 + y0 2 + z0 2)3
+

(y00x0 � y0x00)2

(x0 2 + y0 2 + z0 2)3

where the symbol 0 indicates the derivative with respect
to �. Remembering that the length element ds can be
expressed as ds = (x0 2 + y0 2 + z0 2)1=2d�, the 3D cost "
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equivalent to the 2D one of equation (1) will be

" =
�fR
0

(y0z00
�y00z0)2

(x0 2+y0 2+z0 2)5=2
d�+

+
�fR
0

(z0x00
�z00x0)2

(x0 2+y0 2+z0 2)5=2
d�+

+
�fR
0

(y00x0
�y0x00)2

(x0 2+y0 2+z0 2)5=2
d�

9>>>>>>>=
>>>>>>>;

(4)

The 2D case, which must be optimized with boundary
conditions given in (2), is obtained for z = constant !
z0 = z00 = 0. Indicating respectively with G1, G2 and G3

the three integrands of equation (4) the following hold

" =
P3

i=1

�fR
0

Gi d� and

3X
i=1

Gi = k2
ds

d�
(5)

As each Gi is positive by de�nition, equation (4) will
be minimized if and only if each term of (4) will be;
thus the minimization conditions for a generic term Gi

must be sought. Lets consider for example G3 and the

minimization of � =
�fR
0

G3 d�. Putting F � G3 and

indicating with Fy, Fx and Fz its partial derivatives with
respect to y, x and z, the solution (x(�); y(�); z(�)) to the

minimization of � =
�fR
0

F d� has to satisfy Euler-Poisson's

equations 11

Fx � d
d�Fx0 + d2

d�2Fx00 = 0

Fy � d
d�Fy0 + d2

d�2Fy00 = 0

Fz � d
d�Fz0 = 0

9>=
>; (6)

If the total length had been �xed to L� the optimal curve
would have to satisfy (6) with �xed boundary con�gura-
tions, as boundary conditions (2) for the 2D case, and

�f such that
R �f
0
(x0 2 + y0 2 + z0 2)1=2d� = L�; if, on

the contrary, the total length is not �xed equation (6)
must hold with �xed boundary con�gurations, analogue
to (2) in 2D, and with the constraint of null variation ��
due to the moving boundary �f . The expression of the
variation �� due to the moving boundary �f can be cal-
culated extending the same techniques 11 adopted when
F depends on a single function and it's �rst derivative,
i.e. F = F (x; y(x); y0(x)), to the present situation where
F = F (�; x; y; z; x0; y0; z0; x00; y00; z00). Assuming equation
(6) to be satis�ed the variation due to moving boundary
is

�� =
h
F � y00Fy00 � y0

�
Fy0 � d

d�Fy00

�
+

�x00Fx00 � x0
�
Fx0 � d

d�Fx00

�
� z0Fz0

i���
�f
��f+

+Fy00 j�f �y0f + Fx00 j�f �x0f +
�
Fy0 � d

d�Fy00

����
�f
�yf

+
�
Fx0 � d

d�Fx00

����
�f
�xf + Fz0 j�f �zf

(7)

For �xed boundary con�gurations, as required by (2) in
2D, �xf = �yf = �zf = �x0f = �y0f = �z0f = 0 and
��f 6= 0 as the �nal con�guration is assigned, but length
is not. Thus to guarantee null �� the term in square
brackets of equation (7) must be null.

With reference to equation (6) note that Fx = Fy =
Fz = 0 and F� = 0 by de�nition of F so that the following
�rst integrals must hold:

Fx0 � d
d�Fx00 = ��1

Fy0 � d
d�Fy00 = ��2

Fz0 = ��3

9=
; (8)

for some constant �1, �2 and �3. Moreover, by direct
calculation follows that F � y00Fy00 � x00Fx00 = �F and
that d

d� (F�y00Fy00�x00Fx00) = � d
d�F = x00[Fx0� d

d�Fx00 ]+

y00[Fy0� d
d�Fy00 ]+z00Fz0 . Substituting equation (8) in this

last equation and integrating implies

F � (y00x0 � y0x00)2

(x0 2 + y0 2 + z0 2)5=2
= �1 x

0+�2 y
0+�3 z

0+� (9)

This di�erential equation must be solved with �xed
boundary con�gurations, conditions (2) in 2D, and ei-

ther
R �f
0 (x0 2 + y0 2 + z0 2)1=2d� = L� if L� is �xed, or

�� = 0 being �� de�ned in (7) if maximum length is
not �xed. This latter hypothesis implies � = 0 as can
be shown substituting (8) in (7). The same equation (9)
demonstrated for F � G3 can be shown to hold, with
di�erent constants �i i = 1; 2; 3 and �, for G1 and G2, so
substituting these equations in (5) the general 3D Euler-
Poisson equation solving the optimization problem (1)
with �xed boundary con�gurations for an arbitrary pa-
rameterization � is found to be:

k2
ds

d�
= a � dC(�)

d�
+ b (10)

where a and b are constants. As follows from the above
discussion, b is either null if no length constraint is im-
posed, or eventually non null in order to satisfy a given
length L�. As torsion is not speci�ed, equation (10) by
itself, projected on a plane and with given boundary con-
�gurations, uniquely determines a 2D curve, but not a
3D one. In the 2D situation z = constant with a curvi-
linear parameterization � = s equation (10) is reduced to
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the same equations calculated in the plane starting from
a Cartesian parameterization 8 12, i.e.,

k2(s) = a �T(s) + � = � cos(� � ') + � (11)

being the vector a = (�1; �2), � it's norm and ' it's
phase.

4 2D Solution properties

With reference to equation (11) the following properties
hold:

i) If no constraint is imposed on maximum length
(i.e. � = 0, see (7)) and j�(s)� �0j > � for some s equa-
tion (11) has no solution other than � = 0, i.e. a straight
line of in�nite length, a solution of the kind depicted in
�gure (1). Moreover when a �nite non-constrained length
solution exists (� = 0, but cos(� � ') > 0 on the whole
path) it is never a �nite radius circular arc (constant non
null curvature) as equation (11) shows that constant cur-
vature would imply a constant unit tangent vector T(s),
i.e. a straight line once again.

ii) To completely determine the path from equation
(11) the constants �1; �2 and, eventually, � must be cal-
culated on the basis of boundary conditions (2). As sug-
gested by M.Kallay 12 this may be accomplished solving
the following nonlinear system

xf =
�fR
�0

cos(�)
k(�) d�

yf =
�fR
�0

sin(�)
k(�) d�

L� =
�fR
�0

1
k(�) d�

9>>>>>>>>=
>>>>>>>>;

(12)

being k given by equation (11). The initial con�guration
can always be thought as (x0 = 0; y0 = 0; �0 = 0) as this
is equivalent to choosing the reference frame. The last
equation of (12) is needed to calculate � if the �nal length
is assigned. Nevertheless from an engineering point of
view �xing the total length is as unreasonable as dealing
with in�nitely long paths. The most natural approach
is to weight curvature and length through some parame-
ter. Indeed within the developed formulation (equations
6 through 8) it can be shown that if the cost function
to be minimized is changed from equation (1) with �xed

L to
R L
0 (k2 + �) ds with un�xed L, being � a positive

constant that penalizes length, the Euler-Poisson equa-
tion to be solved has exactly equation's (11) structure
with the �xed � parameter in place of the unknown �,
i.e. k2(s) = a � T(s) + �. This is not surprising as �
(or �) can be thought of as a Lagrange multiplier that
transforms the L-constrained minimization of (1) prob-
lem, in the equivalent L-unconstrained minimization of

R L
0
(k2 + �) ds problem. Given this di�erent and more

appealing interpretation of the freely �xed � it will be
su�cient to solve the �rst two equations of (12) in order
to calculate a and thus the optimal path.

iii) If boundary conditions (2) are such that �(s) ' 0
over the whole length of the path than the tangent vector
T(s) can be approximated by T(s) �= (1; �(s)) so that
equation (11) implies _�2(s) = �2 �(s) + � + �1 being
_�(s) = d�

ds = k by de�nition of curvature. Integrating
this equation with initial condition �(0) = 0 yields �(s) =
�2
4 s

2 � s
p
� + �1 or

k(s) =
�2
2
s�

p
� + �1 (13)

i.e., the curve is a clothoid or Cornu spiral. Cornu spi-
rals are curves de�ned by k(s) = kcs + k0 and are used
mostly in highway and railway design to link smoothly
(up two second derivative) two curves possibly of di�er-
ent curvature10 as two circles of di�erent radius, straight
lines and circles, two di�erent straight lines, or simi-
lar. Special-case clothoids are circles (kc = 0; k0 6= 0)
and straight lines (kc = k0 = 0). In robotic appli-
cations they have been �rst analyzed by Kanayama et
al. 13 and used for smoothing trajectories by Fleury et
al. 14, but apparently had never shown to be minimal
energy when �(s) ' 0. The major limit in their use is
due to the di�culty in calculating kc and k0 for given
boundary con�gurations. Nevertheless in the hypothesis
�(s) ' 0 (the only case of interest) clothoids can be ap-
proximated by a cubic polynomial with the same degree
of approximation used in T(s) �= (1; �(s)). From equa-
tion (9) when z0 � z00 � 0 (2D) and � ! x (Cartesian
parameterization) and approximating (1+y

02(x)) � 1 8 x
(which is equivalent to T(s) �= (1; �(s)) 8 s) follows that

y
002(x) = �2 y

0

(x) +�1+� =) y(x) =
P3

n=0 anx
n i.e. a

cubic polynomial satisfying the two boundary con�gura-
tions.

5 Results and examples

Figure 2 refers to paths optimizing
R L
0
(k2 + �) ds with

un�xed L and passing through boundary con�gurations
(0; 0; 0) and (1; 1; 74�) for di�erent values of �. They have
been numerically calculated solving equivalent forms of
the �rst two equations of (12) for each �. a has been
previously estimated to match the given boundary con-
ditions. Note that if k(s) = 0 for some s there may be an
ambiguity in the choice of k's sign: this situation occurs
whenever the path has an S shape and must be dealt with
some attention. A possible solution, yet not the only and
perhaps not the best one, is to �x some via-points among
which curvature does not change sign.
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Figure 2: Optimal paths for di�erent values of �

6 Conclusions

The problem of �nding 3D paths minimizing the integral
of their square curvature over length with �xed boundary
con�gurations has been addressed and solved with a vari-
ational approach for an arbitrary curve parameterization
(equation (10)). It has been shown that the projection
of this general solution on a plane is in agreement with
the 2D results obtained starting from Cartesian param-
eterized curves by B.K.P.Horn 8 and M.Kallay 12 within
computer graphics research. Underwater path planning
applications have been suggested and discussed. More-
over it has been shown both, that given suitable bound-
ary con�gurations the optimal path linking them is a
Cornu spiral, and that in the same situation such curve
is approximated by a simple cubic polynomial. The ma-
jor drawback of the proposed planning method is related
to the solution of the non linear system (12) in particular
for S shaped paths. Future work will focus on numerical
algorithms to overcome these di�culties.

Acknowledgments

Giovanni Indiveri wishes to thank Dr. Andrea Capon-
netto of the Department of Physics of Genova University
for helpful discussions.

References

1. L. E. Dubins, \On curves of minimal length
with a constraint on average curvature, and with
prescribed initial and terminal positions and tan-
gents", American Journal of Mathematics, vol. 79,
pp. 497{516, 1957.

2. J. Boissonnat, A. C�er�ezo, and J. Leblond, \Short-
est paths of bounded curvature in the plane", in

Int. Conf. on Robotics and Automation, May 1992,
pp. 2315{2320.

3. X. Bui, J. Boissonnat, P. Sou�eres, and J. Laumond,
\Shortest path synthesis for dubins non-holonomic
robot", in Int. Conf. on Robotics and Automation,
1994, pp. 2{7.

4. A. M. Shkel and V. J. Lumelsky, \On calculation
of optimal paths with constrained curvature: the
case of long paths", in Int. Conf. on Robotics and
Automation, April 1996, pp. 3578{3583.

5. Y. Kanayama and B. Hartman, \Smooth local path
planning for autonomous vehicles", Int. Jou. of
Robotics Research, vol. 16, no. 3, pp. 263{284,
1997.

6. A. M. Hussein and A. Elnagar, \On smooth and
safe trajectory planning in 2d environments", in
Int. Conf. on Robotics and Automation, April
1997, pp. 3118{3123.

7. A. M. Bruckstein and A. N. Netravali, \On minimal
energy trajectories", Computer Vision, Graphics,
and Image Processing, vol. 49, pp. 283{296, 1990.

8. B. K. P. Horn, \The curve of least energy", ACM
Transactions on Mathematical Software, vol. 9, no.
4, pp. 441{460, 1983.

9. J. N. Newman, Marine Hydrodynamics, The MIT
Press, Cambridge, Massachusetts, 1977.

10. D. S. Meek and D. J. Walton, \The use of cornu
spirals in drawing planar curves of controlled curva-
ture", Journal of Computational an Applied Math-
ematics, vol. 25, pp. 69{78, 1989.

11. L. E. Elsgolts, Equazioni Di�erenziali e Calcolo
delle Variazioni, Editori Riuniti, Edizioni MIR,
Roma (in Italian), 1981.

12. M. Kallay, \Plane curves of minimal energy", ACM
Transactions on Mathematical Software, vol. 12,
no. 3, pp. 219{222, 1986.

13. Y. Kanayama and B. Hartman, \Smooth local path
planning for autonomous vehicles", in Int. Conf.
on Robotics and Automation, 1989, pp. 1265{1270.

14. S. Fleury, P. Sou�eres, J. Laumond, and R. Chatila,
\Primitives for smoothing mobile robot trajecto-
ries", in Int. Conf. on Robotics and Automation,
May 1993, pp. 832{839.

5


