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4.34.Yaw inertia parameter identification experimentYAI1.

beingU5 ROMEOs5-axis moment of inertia,s the applied torque as given by equation
(4.40) and&o the full efficiency yaw drag coefficient&o ' �D�6r*o@_. The time
constant� ' U5*&o of equation (4.46) can be a priori estimated replacing forU5 the
moment of inertia, along the its height, of a parallelepiped having a uniformly distributed
eDfg} mass, width���6, lengthf�H6, i.e. U5 ' �

�2
eDfEf�H2 n ���2� * H.��Hg}62.

The corresponding input frequency, according to equation (4.39), is

/JR| '
&os
�U5

* f�2�M5 (4.47)

Two different experiments, labeled YAI1 (+Bw �nertia) and YAI2, will be considered.
During the YAI1 experiment the input torque was provided by the only rear left and
front right thrusters (figure (4.3)), so that unit efficiency is assumed to hold for negative
velocity and torques. In accordance with equation (4.47), the input torque frequency
during the YAI1 experiment has been chosen to be/ ' f�2SM5 and the applied torque
s in �6 was

s ' �D n e t�?Ef�2S|�
in order to avoid propeller inversions. The position was measured with a�fM5 sampling
rate compass and the velocity has been computed with an off linee|� order Savitzky-
Golay filter having a symmetric window of full lengthe� points. The input torque,
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the filtered yaw rate and the yaw measurement of the YAI1 experiment are reported in
figure (4.34). Implementing the estimation algorithm described in section (4.2.8) yields

YAI1 experiment:U5 ' Eb��f	 f�S�g}62

being the estimation error computed with the usual technique based on equations (4.12)
and (4.6) probably underestimated for the reasons outlined in the previous two sections.
Nevertheless the identified model performance is acceptable, as shown in figure (4.35)
where the experimental position data of experiment YAI1 are compared with the model
predicted position. The YAI2 experiment refers to an input torque signal of frequency
/ ' f��bM5 provided by the front left and rear right thrusters. Torque unit efficiency
is assumed for positive torques and velocities, so the input torque signal was

s ' D n e t�?Ef��b|�

The angular (yaw) position was measured with a�fM5 sampling rate compass and,
as for the YAI1 experiment, yaw rate has been computed with an off linee|� order
Savitzky-Golay filter having a symmetric window of full lengthe� points. Applied
torque, computed velocity and measured position of experiment YAI2 are reported in
figure (4.36). The resulting estimated value of the inertiaU5 according to the experiment
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4.36.Yaw inertia parameter identification experimentYAI2.

YAI2 is
YAI2 experiment:U5 ' E�ff�f	 f�.�g}62

4.3 Summary
Within this chapter an identification procedure for the drag and inertia parameters of
an open frame ROV and the results of its implementation on a real system have been
presented. The identification procedure is based on on-board sensor data rather then
towing tank experiments. Although in principle towing tank methods allow a better es-
timation accuracy (in particular of the inertia coefficients), they are usually performed
on a scaled model of the vehicle rather then on the real system [73] with all the related
drawbacks. Moreover such towing tank methods are much more expensive, complex
and time consuming. A simple set of inputs and the relative model fitting technique
have been defined for the on board sensor based estimation of drag and inertia coef-
ficients of a decoupled ROV model: the major advantage of the proposed approach
consists in the possibility of estimating the propeller-hull and propeller-propeller ef-
ficiency parameters that would be otherwise unobservable. Moreover thanks to their
simple nature the tests may be repeated when the vehicle changes configuration in or-
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4.37.Rationale of the identification procedure design.

der to tune the control and navigation systems when required. It is worthwhile pointing
out that the identification procedure has been designed taking into account the vehi-
cle model structure, the type of available sensors and the actuator dynamics. Moreover
during the experimental implementation of such procedure on the ROMEO ROV both
the system model and the identification procedure itself have been ‘‘tuned’’ on the basis
of the experimental results. The logical f low chart of the work described in this chap-
ter is reported in figure (4.37). The developed procedure has been adopted to estimated
the drag and inertia coefficients and their variances for the surge, sway, heave and yaw
axis of the ROMEO ROV: the data relative to numerous experimental trials has been
processed and the results are reported in detail. It has been shown that yaw drag in the
typical operating yaw rate range, i.e.m ��m � �f _i} *r, is better modeled by an only
linear term rather then both a linear and quadratic one: this is important as it suggests
that as far as the yaw axis is concerned linear control techniques may be successfully
adopted. At last it has been shown that the propeller-hull and propeller-propeller in-
teractions may have a most important relevance in the dynamics of open frame ROVs
and should thus be taken explicitly into account. To this extent an efficiency parame-
ter, closely related to the thruster installation coefficient described by Goheen et al.[66],
has been introduced and its value and variance have been estimated in all the cases of
interest.
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Chapter 5
Motion control and path planning
In this chapter some original results regarding the motion control and path planning of
nonholonomic systems with reference to underwater vehicles will be outlined.

5.1 2D motion control of a nonholonomic vehicle
Three major issues of robot motion control are the state stabilization problem, the path
generation problem and the path tracking problem. If the system at hand has nonholo-
nomic constraints, as for wheeled vehicles or under-actuated underwater vehicles, these
problems are particularly challenging. The literature regarding the stabilization of non-
holonomic systems is very large and, as a detailed overview of the topic goes beyond
the possibilities of this work, only the results of interest will be here reported. For a
wider discussion of the current state of the art in the control of nonholonomic systems
refer to [74] [75] [76]. The main difficulty in the stabilization of nonholonomic systems
is related to the theorem of Brockett [77]:

Theorem (Brockett, 1983)Given �̂ ' CE^�� with }E^f��f ' f and }E�� continu-
ously differentiable in a neighborhood of^f, then there exists a time invariant continu-
ously differentiable control law which makesE^fc �f� asymptotically stable if and only
if _�4E^� ' _�4E��.

Indeed many systems of practical interest may not be asymptotically stabilized via
smooth time invariant feedback due to this result. Among these the unicycle kinematic
model:

�% ' � ULt �

�+ ' � t�? � (5.1)
�� ' /

being%c + the Cartesian coordinates with respect to the inertial frame	 f :, � the
linear velocity,� the orientation with respect to the%-axis and/ the angular velocity as
shown in figure (5.1). To tackle this difficulty most authors have focused their attention
either on smooth but time varying state feedback approaches, or on time independent but
noncontinuous state feedback approaches. As far as underwater vehicles are concerned
examples of such control laws are provided by Egeland et al.[78] and Pettersen et al.[79].
A most interesting way of analyzing the asymptotic stabilization of the unicycle model
given by equation (5.1) is related to a remark of the above cited Brockett Theorem given
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by the same Brokcett [77]:’’If we have

�̂ '
6[

�'�

}�E^��� G ^E|� 5 ?
?

with the vectors}�E^� being linearly independent at̂f then there exists a solution to
the stabilization problem if and only if6 ' ?. In this case we must have as many
control parameters as we have dimensions of^. Of course the matter is completely
different if the seti}�E^f�j drops dimension precisely at̂f.’’ As shown by the works
of Casalino et al.[1] and Badreddin et al.[80] , this last observation plays a key role in the
solution of the unicycle stabilization problem: if the unicycle kinematics is represented
in polar-like coordinates

e ]

s
%2 n +2

w ] �A��2E�+c�%� (5.2)

k ] w � �

as shown in figure (5.1) Brocketts Theorem does not hold anymore as the state itself is
not defined fore ' f. With this choice of the state variables the state equations are

�e ' �� ULtk

�k ' �/ n �
t�?k

e
(5.3)

�w ' �
t�?k

e

and a smooth time invariant state feedback law for global asymptotic stability is not
prevented by Brocketts result. Examples of such possible control laws are reported in
[1] [2] and [80]. Indeed the idea of simply adopting a different state representation
in which Brocketts Theorem does not hold to solve the smooth state feedback global
stability problem for general models of nonholonomic systems is very appealing and
has been dealt by A. Astolfi [81].

5.1.1 A state feedback solution for the unicycle model

Casalino et al.[1] presented the smooth feedback law

� ' � e ULtk G � : f (5.4)

/ ' &kn � ULtk
t�?k

k
Ekn �w� G &c � : f (5.5)

that globally stabilizes the unicycle system given by equation (5.3) in the origin. A ma-
jor draw back of this result that prevents its straightforward application to the control of
the planar motion of real systems as underwater or air vehicles equipped with actuators
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5.2.Initial position+3> 4, with orientation! @ �@7.

in only one direction is the unicycle-like nonholonomic constraint according to which
angular velocity can be assigned independently. This is equivalent to the obvious state-
ment that a unicycle-like vehicle can turn on itself thus moving on an infinite curvature
trajectory, while a wider class of moving systems (like bicycles, cars, torpedoes or air-
planes) can only move on bounded curvature paths. To have a qualitative understanding
of the behaviour of the above algorithm (equations (5.4) and (5.5)) refer to figures (5.2)
and (5.3). Notice that within the unicycle-like approach of Casalino et al.[1] given by
equations (5.4) and (5.5) the velocity� can take both positive and negative signs: in-
deed the resulting path inversion points correspond to null linear velocity�. Moreover
the closed loop equation for the position errore is

�e ' ��e ULt2 k

showing thate is always decreasing. This is certainly a most interesting aspect of the
above outlined algorithm as it guarantees exponential convergence ofe. As described
in the papers of Caccia et al.[28] [30] and Casalino et al.[82] the control strategy given
by equations (5.4) and (5.5) can be successfully adopted for the planar motion control
of underwater vehicles that can steer having null surge velocity (/ 9' fc � ' f), but in
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5.3.Errrorh and orientation! with respect to time relative to the previous figure.
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2D motion control of a nonholonomic vehicle

many underwater vehicle applications the system can (or is preferred to) move in the
only forward direction and can not turn with� ' f. With these ideas in mind the above
outlined approach can be modified to introduce the (bounded) curvature explicitly in
the model and to prevent inversions in the sign of the linear velocity�.

5.1.2 A state feedback solution for a more general model

A simple way to introduce the curvature in the unicycle model is to consider the bicycle-
like kinematics given, in Cartesian coordinates, by

�% ' � ULt �

�+ ' � t�? � (5.6)
�� ' �S

being the control signals� and the curvatureS. With the polar-like variable choice given
in equation (5.2) this model is transformed in the following:

�e ' �� ULtk

�k ' ��

�
S�

t�?k

e

�
(5.7)

�w ' �
t�?k

e

Notice that within this model the linear velocity� can not change sign, as when� ' f
the state stops moving. Thus in order to converge to the origin of the state space,� can
take the null value only in the target stateEfc fcf�. In order to design a globally stable
smooth state feedback control law for the system given by equation (5.7) a Lyapunov-
like based approach will be followed. The control law synthesis method is inspired by
and closely related to the previous works of Casalino et al.[1] and Aicardi et al.[2] .
Having noticed that the state equation (5.7) derivative is identically null when� ' f
suggests to try the control law

� ' �e G � : f (5.8)
The point is now to guarantee, by a suitable choice ofS, that within some finite time
ULtk 	 f (so thate starts decreasing) and asymptoticallyEeckc w� $ Efc fc f�. To
calculateS consider the state equation (5.7) given (5.8), i.e.,

�e ' ��e ULtk

�k ' ��e

�
S�

t�?k

e

�
(5.9)

�w ' � t�?k
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and the quadratic Lyapunov candidate function

T '
�

2
Ek2 n �w2� G � : f (5.10)

having time derivative

�T ' k �kn �w �w ' �Ek t�?kn �w t�?k� keS� (5.11)

This last equation suggests the choice ofS as:

S '
t�?k

e
n �

w

e

t�?k

k
n q

k

e
G q : f (5.12)

so that the time derivative of the candidate Lyapunov functionT becomes

�T ' ��qk2
� f (5.13)

As in the model of Casalino et al. [1] and as will be shown in the sequel, the� parameter
in equation (5.10) is needed to guarantee that*�4Eeck�<Efcf� S ' f. Moreover beingT
positive and radially unbounded equation (5.13) implies that it tends towards a non-
negative finite limit, thus

*�4
|<"

k ' 7k

*�4
|<"

w ' 7w

The above and the fact that�T is uniformly continuous5 imply by Barbalat’s Lemma that
�T tends to zero, so that7k ' f. Substituting equation (5.12) in (5.9) gives:

�e ' ��e ULtk

�k ' ��

�
qkn �w

t�?k

k

�
(5.14)

�w ' � t�?k

From the facts thatk $ f, w $ 7w, and that�k is uniformly continuous, again by Bar-
balat’s Lemma it follows that the limit

*�4
|<"

�k ' ���7w ' f

and thus the limit value7w of w must be zero. Moreover notice from the last of equations
(5.14) that given the above results also�w tends asymptotically towards zero. The above

8
�Y @ �5��� b� is bounded.
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results show that

k $ f ( �k$ f

w $ f ( �w$ f

so as|$4 there must be some finite value of|, say|W, starting from whichULtk 	 f
and thus

�e$ ��e 	 f, e$ f
The behaviour of the above developed closed loop control, i.e.,+

� ' �e G � : f

S '
t�?k

e
n �

w

e

t�?k

k
n q

k

e
G qc � : f

(5.15)

depends on the choice of the parameters�c qc �. In particular while� is obviously lim-
ited as long ase and� are finite, the limit*�4Eeckcw�<Efcfcf� S must be analyzed: when the
stateEec kc w� approaches the originEfc fc f� the state equations (5.14) can be approxi-
mated by the linear system�

�k
�w

�
'

� ��q ���
� f

��
k

w

�
(5.16)

�e ' ��e (5.17)

and

S '
k

e
E� n q� n �

w

e
so that in order to reach the targetEfc fc f� on a straight line (i.e. with null curvature)
the real part of the dominant pole of equation (5.16) must be strictly larger then�. By
direct calculation the eigenvalues of the system matrix of equation (5.16) are

b� '
�

2

�
��q 	

t
�2q2 � e��2

�
(5.18)

so the requested conditionm+iEbn�m : � is equivalent to

� : � ( 2 	 q 	 �n �

Moreover by direct analysis of equation (5.18) it follows that if� : �

{ � f+, q � 2
s
�

being{ ' �2q2�e��2 so that the system is stable and under damped for2 	 q 	 2
s
�,

stable and critically damped for2 	 q ' 2
s
�, stable and over damped for2

s
� 	 q 	

� n �. If � : � andq 	 2 ^ q : � n � or if � ' � ; q the curvature diverges as the
target state is approached, thus the importance of the� parameter in equation (5.10).
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5.4.Paths starting on the unit circle with gains� @ 4> k @ 5> � @ 5=<4. From left to right and from top
to bottom the starting orientation!

3
is: 3, �@5, �, 6�@5.

A most important property of the proposed algorithm is the boundedness of the control
input S. Equation (5.15) shows thatmSm � �Zn�nq�k6@% �

e6�?

and thatS tends to zero ase
grows. The above linear analysis shows that if the gainsq and� are suitably chosenS
tends to zero also asEec kc w� tends to zero. Moreover notice that the linearized system
given by equations (5.16) and (5.17) actually holds for small values ofk and whatever
e andw are, as the only adopted approximation has beent�?k * k andULtk * �. As a
consequence the only requirement necessary forS to be minor than a prescribed upper
bound during the whole state trajectory, is that during the convergence ofk in the state
space region wheret�?k * k, the errore is kept larger then some limit valuee6�?.
Intuitively this means that if an upper bound7S is given onS, as in most real systems,
the initial erroref must be larger then some limit valueeWEkfc wfc 7S� depending on the
initial values ofk andw and on7S.

For a qualitative understanding of the resulting paths refer to figures (5.4) and (5.5).
In figure (5.4) various paths starting on the unit circle with different orientation are dis-
played, while figure (5.5) shows the influence of a2Z difference on the initial angular
position�

f
on the path. With reference to the above reported stability analysis, all the

simulations reported in figures (5.4) and (5.5) are relative to gain values that guarantee a
stable and over damped convergence ofS to zero, in particular� ' �, � ' 2, q ' 2�b�.
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� @ 4> k @ 5> � @ 5=<4.

The convergence to zero ofk, w, �, � andS for the two paths reported in figure (5.5) is
shown in figures (5.6) and 5.7). The developed control strategy can be adopted ei-
ther for path tracking of a given 2D curve, or to navigate among via points or to design
an autonomous navigation algorithm: a simple path tracking controller can be realized
assuming that the target state space pointEfc fc f� moves along the desired curve. This
approach has been analyzed by Aicardi et al.[2] for the unicycle model (equation (5.3))
with the control law given by equations (5.4) and (5.5) and can be extended to the kine-
matic model equation (5.7) controlled by equations (5.15) with minor changes. As far
as autonomous navigation is concerned, the proposed control strategy is appealing be-
ing globally convergent and requiring only position and orientation errors that can be
reasonably measured by standard on board vehicle sensors. Yet for a practical imple-
mentation on real systems two aspects of the proposed control law must be considered:
the maximum vehicles curvature radius and actuator saturation. The curvature upper
bound constraint can be managed assuming to approach the target form a sufficiently
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5.6.Convergence of�> �>! for the paths starting in (1,1) with initial orientation!
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@ �@7 (dashed lines)

and!
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@ �:�@7 (solid lines).

117 Giovanni Indiveri, Ph.D. Thesis



2D motion control of a nonholonomic vehicle

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

u

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−5

0

5

c

5.7.Convergence off andx for the paths starting in+4> 4, with initial orientations!
3
@ �@7 (dashed

lines) and!
3
@ �:�@7 (solid lines). Notice the different time scales of the convergence ofx andf.

Giovanni Indiveri, Ph.D. Thesis 118



2D motion control of a nonholonomic vehicle

distant point. As discussed above, ifk converges to a region wheret�?k * k being
e greater then some limiteWEkfc wfc 7S�, thenS will converge to zero without ever ex-
ceeding some prescribed upper bound7S. Actuator saturation must be considered with
reference to the proportional control law� ' �e equation (5.8). Notice that as long as�
is strictly positive, the value of� does not affect the convergence properties of the state
(as� andq do) but only the convergence rate, so one could argue that choosing� suffi-
ciently small can always avoid saturation problems. Indeed in some applications, as the
path tracking problem where the moving target is always reasonably close, this is the
most simple way of dealing with saturation, but in other circumstances, as autonomous
navigation on long distances, it is not. The point is then to understand if and how actua-
tor saturation due to� ' �e affects the convergence of the state to the targetEfc fc f� and
eventually design a different bounded control law for�. Actuator saturation occurring
with a straight forward implementation of equations (5.15) can be modelled as:

� ' �e r@|E�ec 7�� G � : f (5.19)

beingr@| a discontinuous function defined as

r@|E%c +� '

�
� ; m%m 	 +
+

�%�
; m%m � + ; + : f (5.20)

that models ahard saturation of�. With only marginal technical differences related to
the discontinuity ofr@|E�ec 7�� for �e ' 7�, the whole control law design procedure going
form equation (5.9) to equation (5.15) can be replicated replacing�e r@|E�ec 7�� to �e:
as a result equations (5.9), (5.11), (5.13) and (5.14) should be multiplied byr@|E�ec 7��
and this will not affect either the global stability properties or the convergence analysis
of S$ f developed for the unsaturated case as long ase is finite and7� : f (obvious).
Indeed this is a satisfactory result as it suggest that a straight forward implementation
of equations (5.15) will guarantee convergence even in presence of ahard saturation
on� as the one modelled by equation (5.19). As an example the simulation shown in
figure (5.5) relative to the starting configurationE�c �c�.Z*e� with gains� ' �, � ' 2,
q ' 2�b� has been repeated with the same gains saturating the linear velocity� to f�D,
i.e. 7� ' f�D in equation (5.19). The resulting path and the values ofk, w, �, � andS
for the saturated and unsaturated cases are reported in figures (5.8) and (5.9). Another
way of approaching the saturation problem is to choose a smooth and bounded control
law for � compatible with the actuator dynamics. Perhaps the most simple choice is to
compute� as:

� '
�e

e

@
n �

(5.21)

so that, as shown in figure (5.10),� is smooth (soft saturation), bounded by�@ and
linear ine whene� @. Replacing equation (5.21) in equation (5.9) and computingT
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