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5.9.Saturated (�x @ 3=8, solid lines) and unsaturated (dashed lines) results for the same initial configura-
tion (4>4>�:�@7) and same gains� @ 4, � @ 5=<4, k @ 5.
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and �T gives
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e
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Ee*@n �� G q : f (5.23)

With such a choice ofS the derivative of the candidate Lyapunov functionT is once
again given by equation (5.13) and the whole global stability analysis described above
for the unsaturated� ' �e control law can be easily replicated: the conclusion is that the
system given by equation (5.7) is globally asymptotically stable under the action of the
control signals�andSgiven by equations (5.21) and (5.23) (or equations (5.15)). Indeed
whene� @ the two control strategies are identical an so are the stability properties of
the system. On the contrary whene @ the linear velocity� tends to its upper bound
�@ (rather then to infinity) andS tends to the finite, but not null, value of:

*�4
e<"

S '
�

@

�
t�?k n �w

t�?k

k
n qk

�

This shows that the@ parameter must be tuned keeping into account a trade off between
the maximum allowed linear speed�@ and the maximum allowed curvature. Notice
however that the curvature of the path generated by the controls given by equations
(5.23) and (5.21) will generally be larger then the curvature relative to the unsaturated
scheme: indeed the curvature given by equation (5.23) is the same one given by equa-
tions (5.15) multiplied byEe*@ n �� : �. The bounded, smooth and ‘‘slow’’ depen-
dence of� from e given by equation (5.21) is payed in terms of a larger curvature. This
is clearly visible in the simulation results shown in figures (5.11) (5.12).
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5.11.The solid and dashed line paths correspond to the implementation of thesoft saturation scheme being
d @ 4, � @ 3=;, k @ 5, � @ 5=<4 and the unsaturated scheme being� @ 4, k @ 5, � @ 5=<4.
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5.12.The solid and dashed lines are relative to thesoft saturation scheme and to the unsaturated scheme
of the paths shown in the previous figure.
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5.2 Path Planning
Having developed a time invariant control law that globally and asymptotically stabi-
lizes the car like systems given by equation (5.7) in the origin, attention is now focused
on the path planning problem. As discussed by Aicardi et al.[2] for the unicycle model,
assuming the target to move on a reference path such control scheme can be successfully
employed to design a path tracking controller. The point is thus to generate a suitable ref-
erence path. In order to better define what should be considered a ‘‘suitable’’ reference
path, some notation must be introduced. In the following aconfigurationwill denote the
vector describing the position and orientation at a certain time of the given system. The
configuration of a2( vehicle is given, e.g., by a�( vectorE%c +c �� as shown in figure
(5.1). Consider an elongated rigid body in a fluid environment as an open frame ROV, a
slender body AUV, or a laminar plate grasped by a robotic manipulator moving (for sim-
plicity) in the plane5 ' f (refer to figure (5.13)): as discussed in chapter� neglecting
time varying currents the hydrodynamic load in deep water (� D6) where wave effects
are virtually absent is due to drag, lift and added mass forces. Drag is anti-parallel to the
velocity and drag coefficients are proportional to the surface of attach. Lift is normal to
the velocity direction, proportional to its value and to the angle of attach provided it is
small enough (� �2J as an order of magnitude, stall occurs for higher values). Added
mass forces are proportional to accelerations_�

_|
,_�
_|

,_o
_|

through added mass coefficients
which depend on the body’s shape. To avoid large sway drag forces and surge added
mass forces that cause major hydrodynamic load on an elongated body the lateral sway
velocity� and the linear acceleration_�

_|
should be kept null. Notice that the constraint

on null sway makes the present problem very similar to the nonholonomic car-like path
planning problem. Yaw velocityo and acceleration_o

_|
should be minimized as the large

lateral surface produces strong moments along the5 axis. Lift forces can be controlled
through the value of surge velocity�. Thus assuming that� ' f and that surge� veloc-
ity is kept constant and small to avoid added mass stresses and limit lift effects, the major
dissipative force acting on the body will be caused by drag rotation moment in the5 di-
rection that at low speeds (see chaptere) is linear ino. The energy associated with such
drag moment is proportional to

U
o_w '

U
o _w

_r
_r '

U
o&_r ' �

U
&2_r wherer is the

curvilinear coordinate,& ' o*� the paths curvature and� the constant surge velocity.
This calculation suggests to consider the minimization of the cost functionaU '

U
&2_r

with fixed boundary configurations as a path design criterion. Notice that such crite-
rion produces smooth paths that are, as far as their ‘‘elastic energy’’ is concerned, the
closest possible to a straight line. This makes the suggested criterion appealing also for
wheeled land robots and indeed the problem of finding a smooth and minimum cur-
vature trajectory between two given configurations has received a very wide attention
in the robotic literature, specially regarding the steering of nonholonomic mobile ro-
bots. From the pioneering work of Dubins [83] who calculated the shortest path of
bounded curvature among two configurations, many other authors focused their atten-
tion on the generation of bounded curvature2( paths. In synthesis Dubins’ results state
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5.13.Laminar plate moving at constant} and with fixed yaw axis direction parallel to}.

that the shortest2( path of bounded curvature between to fixed configurations may be
traced joining straight lines and circular arcs of curvature smaller or equal to the maxi-
mum allowed. Dubins results have been extended to the case of a vehicle moving both
back and forward by Reeds and Shepp [84]and more recently the issue of computing the
shortest path for a nonholonomic vehicle either in an obstacle free workspace or in pres-
ence of obstacles has been discussed and refined, among the others, by J.D.Boissonnat
et al.[85], X.N.Bui et al.[86], Desaulniers et al.[87], Reister et al.[88], A.M.Shkel et
al.[89], Bicchi et al.[90], Moutarlier et al.[91], Desaulniers et al.[92] and Szczerba et
al.[93]. Kanayama et al.[94] suggest the use of paths generated joining cubic spirals and
arc of circles to minimize two cost functions related to curvature and jerk energies while
A.M.Hussein et al.[95] generate smooth paths optimizing the integral of the square ac-
celeration instead of curvature. One of the cost functions used by Kanayama et al.[94],
and that is at the center of the present paper, is the integral over the path’s lengths of its
square curvature. A similar optimal criterion has been taken into account also by Reuter
[96] within an optimal control approach. Indeed the minimization of

U
&
2
_r with fixed

boundary configurations is a problem with an interest of its own as such cost function
can be physically interpreted as proportional to the elastic energy of the curve. Due
to this fact the sought plane path is sometimes called theleast energy curvein litera-
ture. Indeed this interpretation makes the problem appealing also to researchers of other
fields as A.M.Bruckstein et al.[97], B.K.P.Horn [98] and M.Kallay [99] who addressed
a very similar problem to the one here discussed within a different framework and for-
mulation. It will be shown that Horn’s [98] and Kallay’s [99]2( results can be viewed
as the projection on a plane of a more general�( Euler-Poisson equation.
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5.2.1 Curvature

Consider a generic differentiable curve� parametrized by the coordinate1, so that in
Cartesian coordinates the points of� are% ' ��E1�, + ' �2E1�, 5 ' ��E1�. The paths
curvilinear coordinater is defined as

r '

1]
f

���_�El�
_l

��� _l (5.24)

being

_

_l
� ] i�

_��

_l
n i2

_�2

_l
n i�

_��

_l

Ei�c i2ci�� G reference unit vectors

and the unit tangent vectorA is defined as

A ]
_�

_l

!����_�_l
���� (5.25)

Differentiating equation (5.24) it follows that

_r

_l
'

����_�_l
���� (5.26)

so that the unit tangentA can be computed as

A '
_�

_r
(5.27)

By definition the curvature is a vector given by

! ]
_A

_r
(5.28)

so that in the2( case

! ]
_A

_r
, & '

����_w_r
����

being_w the angular deviation relative to a step_r along the path. In many2( appli-
cations thesigned curvature

& '
_w

_r
(5.29)

is adopted. Notice that havingA unit constant norm, by definition,! andA are normal,
i.e. !�A ' f. To compute the curvature& of a generic curve� ' E��E1�c �2E1�c ��E1��
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the following formula is most useful

&2 '

�
�
�
�

_�

_1
a
_2�

_21

�
�
�
�

2

�
�
�
�

_�

_1

�
�
�
�

S
(5.30)

Equation (5.30) can be proved by direct calculation as follows: denoting with the sym-
bol � the derivative with respect to1 and with6 the norm of_�*_1, i.e.

6 ] m��m '

�
�
�
�

_�

_1

�
�
�
�

equations (5.25), (5.26) and (5.28) imply

�
� ' 6A (5.31)

�
�� ' 6�

An62
! (5.32)

Next with reference to the vector property given by equation (2.3) and to the above
equations for�� and���, consider
�
�
�
�

_�

_1
a
_2�

_21

�
�
�
�

2

' E�� a���� � E�� a���� ' EE�� a���� a��� ���� '

' ���� � E�� a E�� a����� ' ���� � E��E�� ���������E�� ����� '

' E��� �����E�� ����� E�� �����2 ' E6� 2 n6e&2�62 �626� 2 '

' 6S&2

which concludes the proof. In terms of the Cartesian coordinatesE%E1�c +E1�c 5E1��
equation (5.30) yields

&2 '
E+�5�� � 5�+���2 n E%�5�� � 5�%���2 n E%�+�� � +�%���2

E%� 2 n +� 2 n 5� 2��
(5.33)

Moreover from equation (5.32) it follows that

6� ' ��� �A, 62
! ' ���EA �A��AE��� �A�,

62
! ' A a E��� aA�, ! '

�
� a E��� a���

m��me

showing the relation between curvature vector and second derivative of a curve.

5.2.2 Planning criterion: a variational calculus approach

The above discussion regarding the energy that a rigid body dissipates during a2(
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motion in a fluid suggested the minimization of the integral of the square curvature of
the path over length with fixed boundary configurations, i.e.

aU '

] u

f

&2_r (5.34)

in 2(

;AAAAAA?
AAAAAA=

E%Ef�c +Ef�c wEf�� ' E%fc +fc wf�

E%Eu�c +Eu�c wEu�� ' E%uc +uc wu�

+�

%�

����
f

' |@? wf (
+�

%�

����
u

' |@? wu

(5.35)

in �(

;AAAA?
AAAA=

E%Ef�c +Ef�c 5Ef�c REf�c ^Ef�c oEf�� ' E%fc +fc 5fc Rfc ^fc of�

E%Eu�c +Eu�c 5Eu�c REu�c ^Eu�c oEu�� ' E%uc +uc 5uc Ruc ^uc ou�

Rc ^c o G Euler angles

(5.36)

Where in the2( casewf andws are the initial and final angles between the curve
and the%-axis. A most natural setting to solve the minimization ofaU with the given
boundary conditions is classical analytical variational calculus which is preferred to a
numerical optimal control solution as through variational calculus the general Euler-
Poisson differential equation that the solution must satisfy can be computed. Notice
that in equations (5.34), (5.35) and (5.36)u is not fixed and ifu $ 4 it is always
possible to find a path for whichaU $ f as can be understood from figure (5.14).
The cost on line segments is null and its value on the arc of circle^���2 is {w

o
, so if

points�� and�2 tend to infinity alsoo will and aU will tend to zero. The junctions
between straight lines and the arc of the circle where curvature is not defined can be
made smooth with a Cornu spiral [100] which will not affect the cost when�� and
�2 tend to infinity. Solutions of infinite length as the one shown in figure (5.14) can
not be found by variational calculus as they belong to the closure of the open set of
curves in?2. It will be demonstrated that ifmwEr�� wfm : Z holds for somer, a finite
length solution never exists, so either an additional constraint on total length must be
added or the cost function must be changed in order to penalize length. Notice that the
minimization ofaU given by equation (5.34) as a planning criterion is somehow the dual
problem of the most popular Dubins problem that has been extensively analyzed in the
literature as discussed above. As a matter of fact the proposed planning criterion consists
in finding the ‘‘least curvature’’ path, i.e.@h} 4�?aU , of bounded length as opposed to
the shortest path of bounded curvature, i.e. Dubins criterion. Within the nonholonomic
vehicle path planning literature similar approaches have been considered by Kanayama
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5.14.Infinite lenght solutions: a geometrical interpretation.
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et al.[94] and Reuter [96]. In particular Kanayama et al.[94] consider the minimization
of aU given by equation (5.34), but over a given fixed length: having fixed the length it
is not possible to satisfy boundary conditions as given in equations (5.35) on both the
starting and ending configurations, but at most on one of the two. This is a consequence
of the fact that the only solution of the minimization ofaU with fixed length, as stated
in [94], is an arc of a circle [101]: with reference to equation (5.29) and indicating with
� the derivative with respect to the curvilinear coordinater, i.e. & ] _w

_r
] w�Er�,

4�?

] 7u

f

w� 2_r G 7u fixed/
Y

Yw
w� 2Er��

_

_r

Y

Yw�
w� 2Er� ' f,

w��Er� ' f, w�Er� ' SJ?r|�

In the great majority of the practical situations length is not given a priori, but only
the initial and final configurations are. Indeed if the costaU is to be interpreted as
proportional to the ‘‘elastic energy’’ of the path or to the energy dissipated by rotational
drag to join two given configurations, equations (5.35) must be satisfied. The cost
function considered by Reuter [96] within an optimal control framework is given by

a- ]

u]
f

#
k&2 n q

�
_2&

_r2

�2
$
_r ' kaU n q

u]
f

�
_2&

_r2

�2

_r

with non-fixed length. The major advantage of considering such a cost function is that
havinga- a dependance on both& and&��, boundary conditions may be imposed on the
direction, the curvature and the curvature derivative at the boundary positions, i.e. the
minimum ofa- must be computed adding to the boundary conditions given by equa-
tion (5.35) the conditions&Ef� ' &f, &Eu� ' &u, &�Ef� ' &�

f
, & �Eu� ' &�

u. Nevertheless
in [96] only the numerical solution of the optimization problem@h} 4�?a- is addressed
and such solutions solves the problem of interest@h} 4�?aU only if q ' f, thus a vari-
ational approach solution to the minimization ofaU for a generic curve parametrization
will be presented for both the�( and2( case.

With reference to equation (5.30) and remembering that for the arbitrary parame-
trization1 the infinitesimal curve length element_r can be written as_r ' E%� 2n+� 2n
5� 2��*2 being� the derivative operator with respect to1, the cost functionaU is

aU '

1s]

f

E+�5��
� +��5��2

E%� 2 n +� 2 n 5� 2�D*2
_1 n

1s]

f

E5�%��
� 5��%��2

E%� 2 n +� 2 n 5� 2�D*2
_1 (5.37)

n

1s]

f

E+��%�
� %��+��2

E%� 2 n +� 2 n 5� 2�D*2
_1
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The 2( case, which must be optimized with boundary conditions given in (5.35), is
obtained for5 ' SJ?r|@?| $ 5� ' 5�� ' f. Indicating respectively withC�, C2 and

C� the three integrands of equation (5.37) the following holdaU '
S

�

�'�

1sU
f

C� _1 and

�[

�'�

C� ' &2
_r

_1
(5.38)

As eachC� is positive by definition, equation (5.37) will be minimized if and only if
each term of (5.37) will be; thus the minimization conditions for a generic termC�

must be sought. Lets consider for exampleC� and the minimization ofD '
U 1s
f

C� _1.
Assuming

8 ] C� '
E+��%�

� %��+��2

E%� 2 n +� 2 n 5� 2�D*2
(5.39)

and indicating with8b its partial derivative with respect to any quantityb the solution
E%E1�c +E1�c 5E1�� to the minimization ofD '

U 1s
f

8 _1 has to satisfy Euler-Poisson’s
equations [101]:

8% �
_

_1
8%� n

_2

_12
8%�� ' f

8+ �
_

_1
8+� n

_2

_12
8+�� ' f

85 �
_

_1
85� ' f

<AAAAAAAAA@
AAAAAAAAA>

(5.40)

If the total length had been fixed touW the optimal curve would have to satisfy (5.40)
with fixed boundary configurations as given by equations (5.35) in2( or equations
(5.36) in�(, and1s such that

U 1s
f
E%� 2 n +� 2 n 5� 2��*2_1 ' uW; if, on the contrary, the

total length is not fixed equation (5.40) must hold with fixed boundary configurations
given by equations (5.35) or (5.36) and with the constraint of null variation{D due
to the moving boundary1s . The expression of the variation{D due to the moving
boundary1s can be calculated extending the same techniques [101] adopted when8

depends on a single function and it’s first derivative, i.e.8 ' 8 E%c +E%�c +�E%��, to
the present situation where8 ' 8 E1c %c +c 5c %�c +�c 5�c %��c +��c 5���. Assuming equation
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(5.40) to be satisfied the variation due to moving boundary is

{D '
k
8 � +��8+��

� +�
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_

_1
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� 5�85�
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s n 8%��m
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s n
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_1
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����
1s
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�
8%� � _

_1
8%��

����
1s

B%s n 85�m
1s
B5s

(5.41)

For fixed boundary configurations, as required by (5.35) in2(, B%s ' B+s ' B5s '

B%�

s ' B+�

s ' B5�

s ' f andB1s 9' f as the final configuration is assigned, but length is
not. Thus to guarantee null{D the term in square brackets of equation (5.41) must be
null. With reference to equations (5.40) and (5.39) notice that8% ' 8+ ' 85 ' f and
81 ' f by definition of8 so that the following first integrals must hold:

8%� �
_

_1
8%�� ' �k�

8+� �
_

_1
8+�� ' �k2

85� ' �k�

<AAAAAAA@
AAAAAAA>

(5.42)

for some constantk�, k2 andk�. Moreover, by direct calculation follows that

8 � +��8+��
� %��8%�� ' �8

and that

�

_

_1
8 '

_

_1
E8 � +��8+��

� %��8%��� '

' %��d8%�
�

_

_1
8%��o n +��d8+�

�

_

_1
8+��o n 5��85�

Substituting equation (5.42) in this last equation and integrating implies

8 '
E+��%�

� +�%���2

E%� 2 n +� 2 n 5� 2�D*2
' k� %

� n k2 +
� n k� 5

� n q (5.43)

This differential equation must be solved with boundary configurations given by equa-
tions (5.36) and either

U ls
f
E%� 2 n +� 2 n 5� 2��*2_l ' uW if uW is fixed, or{D ' f being

{D defined in (5.41) if maximum length is not fixed. This latter hypothesis implies
q ' f as can be shown substituting (5.42) in (5.41). Moreover equation (5.43) that has
been derived for8 � C� can be shown to hold, with different constantsk� � ' �c 2c �
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andq, also forC� andC2. As a consequence substituting these equations in (5.38)
the general�( Euler-Poisson equation solving the optimization problem (5.34) for an
arbitrary parameterization1 is found to be:

&2
_r

_1
' @ �

_�E1�

_1
n K (5.44)

where@ andK are constants that depend on the given boundary conditions. As follows
from the above discussion,K is either null if no length constraint is imposed, or eventu-
ally non null in order to satisfy a given lengthuW. As torsion is not specified, equation
(5.44) by itself, projected on a plane and with given boundary configurations, uniquely
determines a2( curve, but not a�( one. In the2( situation5 ' SJ?r|@?| with a
curvilinear parameterization1 ' r equation (5.44) is reduced to the same equations
calculated in the plane starting from a Cartesian parameterization [98] [99], i.e.,

&2Er� ' @ �AEr� n q ' k ULtEw � )� n q (5.45)

being the vector@ ' Ek�c k2�,k it’s norm and) it’s phase. Equation (5.45) had been al-
ready presented by Horn [98] in 1983 and then discussed by Kallay [99] and Bruckstein
et al.[97] in 1986 and 1990 within the computer graphics research community. Nev-
ertheless in these previous works the variational problem was solved for a one valued
real function+ G ? $ ? and the so computed Euler equation was then ‘‘extended’’ to
the case of a2( curvilinear parametrized curveE%Er�c +Er��. Indeed the2( result is
the same, but a priori this fact is not obvious as the set of real valued functions+E%�
among which the solution was initially computed is a subset of the larger set of2(
curvesE%E1�c +E1��. Moreover having approached and solved the minimization prob-
lem directly in the family of�( curves, the most general�( solution given by equation
(5.44) has been obtained [102] and a much deeper insight in the interpretation of theq

parameter has been presented.

5.2.3 Solution properties

With reference to equation (5.45) the following properties hold:
i) If no constraint is imposed on maximum length (i.e.q ' f, see (5.41)) and

mwEr�� wfm : Z for somer equation (5.45) has no solution other thank ' f, i.e. a
straight line of infinite length, a solution of the kind depicted in figure (5.14). More-
over when a finite non-constrained length solution exists (q ' f, but ULtEw � )� : f
on the whole path) it is never a finite radius circular arc (constant non null curvature)
as equation (5.45) shows that constant curvature would imply a constant unit tangent
vectorAEr�, i.e. a straight line once again.

ii) To completely determine the path from equation (5.45) the constantsk�c k2 and,
eventually,q must be calculated on the basis of boundary conditions (5.35). As sug-
gested by M.Kallay [99], if the paths curvature is strictly different from zero over the
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whole length, this may be accomplished solving numerically the following nonlinear
system

%s '
wsU

wf

ULtEw�
&Ew�

_w

+s '
wsU

wf

t�?Ew�
&Ew�

_w

uW '
wsU

wf

�
&Ew�

_w

<AAAAAAAA@
AAAAAAAA>

(5.46)

being& given by equation (5.45). If, on the contrary, the paths curvature is null for some
r as when& changes sign, equations (5.46) are not defined and a different approach
must be adopted. The issue of computing the path for given boundary configurations
integrating equation (5.44) will be discussed in the following section for both constant
and non constant sign curvature paths. The initial configuration can always be thought
asE%f ' fc +f ' fc wf ' f� as this is equivalent to choosing the reference frame. The
last equation of (5.46) is needed to calculateq if the final length is assigned. Notice
once again that ifmwEr�� wfm � Z ; r belonging to the path then the length needs not
to be penalized (q ' f) and the curvature can be computed for every point of the path
as& ' 	s@ �A being the sign fixed according to the curve direction. Following the
previous observation theq parameter needs to be fixed to a non null positive value only
if the range of the values ofwEr� along the path is such that@ � A can not stay positive
for everyr. Nevertheless from an engineering point of view fixing the total length is
as unreasonable as dealing with infinitely long paths. The most natural approach is
to weight curvature and length through some parameter. Indeed within the developed
formulation (equations 5.40 through 5.42) it can be shown that if the cost function to
be minimized is changed from equation (5.34) withfixed u to

U
u

f
E&2 n >� _r with non

fixed u, being> a positive constant that penalizes length, the Euler-Poisson equation
to be solved has exactly equation’s (5.45) structure with the fixed> parameter in place
of the unknownq, i.e. &2Er� ' @ � AEr� n >. This is not surprising as> (or q) can
be thought of as a Lagrange multiplier that transforms theu-constrained minimization
of (5.34) problem, in the equivalentu-unconstrained minimization of

U
u

f
E&2 n >� _r

problem. Given this different and more appealing interpretation of the freely fixedq it
will be sufficient to solve the first two equations of (5.46) in order to calculate@ and
thus the optimal path.

iii) If boundary conditions (5.35) are such thatwEr� * f over the whole length of
the path than the tangent vectorAEr� can be approximated byAEr� �' E�c wEr�� so that
equation (5.45) implies

_w

_r
' k2 wEr� n q n k�

being _w

_r
' & by definition of curvature. Integrating this equation with initial condition
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wEf� ' f yieldswEr� ' k2

e
r2 	 r

s
q n k� or

&Er� '
k2

2
r	
s
q n k� (5.47)

i.e., the curve is a clothoid or Cornu spiral. Cornu spirals are curves defined by&Er� '
&
S
rn&f and are used mostly in highway and railway design to link smoothly (up two sec-

ond derivative) two curves possibly of different curvature [100] as two circles of differ-
ent radius, straight lines and circles, two different straight lines, or similar. Special-case
clothoids are circles (&

S
' fc &f 9' f) and straight lines (&

S
' &f ' f). In robotic appli-

cations they have been first analyzed by Kanayama et al.[103] and used for smoothing
trajectories by Fleury et al.[104], but apparently had never shown to be minimal en-
ergy whenwEr� * f. The major limit in their use is due to the difficulty in calculating
&S and&f for given boundary configurations. Nevertheless in the hypothesiswEr� * f
(the only case of interest) clothoids can be approximated by a cubic polynomial with
the same degree of approximation used inAEr� �' E�c wEr��. From equation (5.43)
when5� � 5�� � f (2() and1 $ % (Cartesian parameterization) and approximat-
ing E� n +

�
2E%�� � � ; % (which is equivalent toAEr� �' E�c wEr�� ; r) follows that

+
��
2E%� ' k2 +

�

E%� nk�n q ', +E%� '
S

�

?'f
@?%

? i.e. a cubic polynomial satisfying
the two boundary configurations.

5.2.4 Solution examples

The major difficulty in the implementation of the above reported2( results is related
to the calculation of the parameter@ given the final boundary configuration (as noticed
previously the initial configuration can always be taken to beEfc fc f� as this is equiv-
alent to choosing the reference frame). Equation (5.44) can not be trivially integrated,
thus a numerical algorithm is required. Two different cases may be distinguished:

� constant sign, non null curvature paths
� non constant sign curvature paths called5 -shapedpaths in the following

As far as the first case is concerned the parametersk : f and) of equation (5.45)
can be computed as

@h} 4�?
kc)

5
7#%s �

] ws

f

ULt w

	
s
k ULtEw � )� n q

_w
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2

(5.48)
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2
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8

being E%s c +s c ws� the given final boundary configuration andq � f a constant that
needs to be non null only if for the givenE%s c +s c ws� no solution exists forq ' f, as
whenmws m : Z. The sign in front of the square roots is unambiguously fixed according

137 Giovanni Indiveri, Ph.D. Thesis



Path Planning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal
Cubic  

5.15.Optimal<3r curve, obtained assuming+4> 4> �@5, as final configuration and� @ 3, and cubic spline
<3r curve.

to the desired curve direction. The minimum problem given by equation (5.48) can be
solved by standard numerical methods as the simplex method. Examples of the paths
obtained with this approach are displayed in figures (5.15) and (5.17). The@ parameter
of 7-shaped paths can not be computed with the above suggest method as by definition
of 7-shaped path the curvature takes a null value for some valuewW of w. As shown
by the example reported in figure (5.18), whereq ' f for the sake of simplicity, once
that the curvature reaches a null value asw evolves& has to change sign as not so doing
would imply a discontinuity in the derivative of& with respect tow. Indeed once that
the curvatures sign is fixed at the starting configurationEfc fc f�, the apparent possible
ambiguity in&s sign choice is completely solved by the above observation: if awW such
that&EwW� ' f is reached the curvature changes sign. In order to compute@ for a given
final configuration and with reference to equations (5.6) consider the kinematics of an
ideal point following the7-shaped path with unit velocity

�% ' ULt w (5.49)

�+ ' t�? w (5.50)
�w ' & ' 	

s
@� ULt w n @2 t�? w (5.51)

A possible algorithm to compute@ ' E@�c @2� is

@ ' @h}4�?
@�c@2

a7
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5.16.Square curvature for an optimal<3r curve and a cubic spline path versus the{ position.
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5.17.Paths of constant curvature sign for final configuration+4>4>:�@7, and varius values of�, i.e. �.
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5.18.From top to bottom:n5 @ d �W andn as functions of� in the hypothesis thatn is always positive
or that it changes sign at�� being��such thatn+��, @ 3.
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