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Quel che è detto è detto.
Ma sarà poi vero? Io non ho accesso
al vero, il mio pensiero ha un andamento
incerto, è sottoposto al vento
di scirocco, ma so per certo
che questi giorni invernalprimaverili
sono un eccesso inutile di luce e a me
non è concesso che attraversare i ponti
e al rosso del semaforo guardare con invidia
qualche ossesso che tra bestemmie e insulti
a passo lento infrange l’armata compatta
delle macchine. E basta, non c’è che questo.

(Patrizia Cavalli,
POESIE (1974-1992)
Giulio Einaudi Editore, 1992)



ABSTRACT
Whatever is the strategy pursued to design a control system or a state estimation filter

for an underwater robotic system the knowledge of its identified model is very impor-
tant. As far as ROVs are concerned the results presented in this thesis suggest that low
cost on board sensor based identification is feasible: the detailed analysis of the residual
least square costs and of the parameter estimated variances show that a decoupled vehi-
cle model can be successfully identified by swimming pool test provided that a suitable
identification procedure is designed and implemented. A two step identification proce-
dure has been designed on the basis of:(i) the vehicle model structure, which has been
deeply analyzed in the first part of this work,(ii) the type of available sensors and(iii)
the actuator dynamics. First the drag coefficients are evaluated by constant speed tests
and afterwards with the aid of their knowledge a sub-optimal sinusoidal input thrust is
designed in order to identify the inertia parameters. Extensive experimental activity on
the ROMEO ROV of CNR-IAN has shown the effectiveness of such approach. More-
over it has been shown that the standard unmanned underwater vehicle models may
need, as for the ROMEO ROV, to take into account propeller-propeller and propeller-
hull interactions that have a most relevant influence on the system dynamics (up toDfI
of efficiency loss in the applied thrust with respect to the nominal model). It has been
shown that such phenomena can be correctly modelled by an efficiency parameter and
experimental results concerning its identification on a real system have been extensively
analyzed. The parameter estimated variances are generally relatively low, specially for
the drag coefficients, confirming the effectiveness of the adopted identification scheme.
The surge drag coefficients have been estimated relatively to two different vehicle pay-
load configurations, i.e. carrying a plankton sampling device or a Doppler velocimeter
(see chaptere for details), and the results show that in the considered surge velocity
range (m�m 	 �6*r) the drag coefficients are different, but perhaps less then expected.
Moreover it has been shown that in the usual operating yaw rate range (m ��m 	 �f _i} *r)
drag is better modeled by a simple linear term rather then both a linear and a quadratic
one. This is interesting as it suggests that the control system of the yaw axis of slow
motion open frame ROV can be realized by standard linear control techniques. For a
detailed description of the identification procedure and of the identification results of
the ROMEO ROV consult chaptere.

In the last part of this thesis the issue of planar motion control of a nonholonomic
vehicle has been addressed. Inspired by the previous works of Casalino et al.[1] and
Aicardi et al.[2] regarding a unicycle like kinematic model, a novel globally asymptot-
ically convergent smooth feedback control law for the point stabilization of a car-like
robot has been developed. The resulting linear velocity does not change sign, curvature
is bounded and the target is asymptotically approached on a straight line. Applications
to the control of underwater vehicles are discussed and extensive simulations are per-
formed in order to analyze the algorithms behaviour with respect to actuator saturation.
It is analytically shown that convergence is achieved also in presence of actuator satu-
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ration and simulations are performed to evaluate the control law performance with and
without actuator saturation. Moreover the generation of smooth paths having minimum
square curvature, integrated over length, is addressed and solved with variational calcu-
lus in�( for an arbitrary curve parametrization. The plane projection of such paths are
shown to be least yaw drag energy paths for the2( underwater motion of rigid bodies.

5 Giovanni Indiveri, Ph.D. Thesis



1 Introduction 9
1.1 Motivations and Objectives 9
1.2 Outline of the work 11
1.3 Acknowledgments 12

2 Kinematics 13
2.1 Vectors 13
2.1.1 Vector notation 13
2.1.2 Time derivatives of vectors 14
2.1.3 On useful vector operations properties 19

3 Dynamics 21
3.1 Rigid body Newton-Euler equations 21
3.2 Fluid forces and moments on a rigid body 26
3.2.1 The Navier Stokes equation 26
3.2.2 Viscous effects 28

Viscous drag forces 28

Lift forces 29
3.2.3 Added mass effects 30

On the properties of ideal fluids 30
Dynamic pressure forces and moments on a rigid body 33

3.2.4 Current effects 36
3.2.5 Weight and buoyancy 37
3.3 Underwater Remotely Operated Vehicles Model 37
3.3.1 Thruster dynamics 38
3.3.2 Overall ROV Model 40

3.4 Underwater Manipulator Model 41

4 Identification 43
4.1 Estimation approach 43
4.1.1 Least Squares Technique 44

4.1.2 Consistency and Efficiency 47
4.1.3 On the normal distribution case 47
4.1.4 Measurement variance estimation 49
4.2 On board sensor based ROV identification 49
4.2.1 Model structure 50
4.2.2 Thruster model identification 54
4.2.3 Off line velocity estimation 55
4.2.4 Heave model identification 58
4.2.5 Yaw model identification 70

4.2.6 Surge model identification 84
4.2.7 Sway model identification 89
4.2.8 Inertia parameters identification 94

Giovanni Indiveri, Ph.D. Thesis 6



4.2.9 Surge inertia parameter identification 97
4.2.10 Yaw inertia parameter identification 100
4.3 Summary 105

5 Motion control and path planning 107
5.1 2D motion control of a nonholonomic vehicle 107
5.1.1 A state feedback solution for the unicycle model 109
5.1.2 A state feedback solution for a more general model 112
5.2 Path Planning 126
5.2.1 Curvature 128
5.2.2 Planning criterion: a variational calculus approach 129
5.2.3 Solution properties 135

5.2.4 Solution examples 137
1 References 145

7 Giovanni Indiveri, Ph.D. Thesis



Chapter 1
Introduction
The scope of this chapter is to describe the motivations and objectives of this work.

1.1 Motivations and Objectives
Underwater robotics applications have extensively grown in the last twenty years both
for scientific investigations and industrial needs. Technological improvements in the
design and development of the mechanics and electronics of the systems have been fol-
lowed by the development of very efficient and elaborate control strategies. Indeed the
framework of underwater robotics is challenging form both a theoretical and experi-
mental point of view. From a robotics perspective the challenge consists in dealing with
an unknown parameter, highly nonlinear and coupled plant affected by non predictable
noise, e.g. currents, with only partial state feedback provided by noisy and low sam-
pling frequency sensors. This setting affects not only thecontrol system synthesis, but
also thenavigationandguidanceones. Following [3], the navigation system is defined
to be a velocity and position estimation module, the guidance system is a subsystem re-
quired to perform navigation system and, eventually, inertial reference trajectory data
processing to compute local velocity and/or position references and the control system
is a subsystem that takes care of generating the actuator inputs on the basis of the guid-
ance system output. Within the classical control literature the above three subsystems
are, roughly speaking, equivalent to the sensing system, the reference generator, some-
times called high level control, and the compensator (low level control).

The interest of the theoretical control system community towards underwater robot-
ics is confirmed by the large and growing number of scientific publications and confer-
ences touching every branch of the field. This research activity has made the state of the
art in the navigation, control and guidance of underwater systems wide and variegate.
As far as the control synthesis problem is concerned, all sorts of approaches have been
analyzed: optimal control, adaptive control, sliding mode control, feedback lineariza-
tion based control, Lyapunov based robust control, gain scheduling control, neurofuzzy
and neural control. Sliding mode control for robust underwater vehicle trajectory track-
ing has been first proposed by the pioneer work of Yoerger and Slotine [4] in 1985. Since
then many other contributions based on sliding mode control theory applied to the con-
trol of unmanned underwater vehicles (UUVs) have been proposed: among the many
others, Cristi et al.[5] have reported and adaptive sliding mode approach combined with
a state observer algorithm, Healey et al.[6] have discussed a multivariable sliding mode
technique based on state variable errors, rather then output errors as accounted in [5],
da Cunha et al.[7] have proposed a variable structure algorithm requiring only position
measurements, Corradini et al.[8] have discussed a MIMO (multi input multi output)
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Motivations and Objectives

discrete time variable structure approach and Bartolini et al.[9] have suggested a sec-
ond order sliding mode technique. Also adaptive control approaches for the control of
UUVs have been analyzed as shown, for example, in the works of Fossen et al.[10] [11],
Ramadorai et al.[12], Sagatun et al.[13] and Yuh [14]. Examples of Lyapunov based and
M
"

robust control approaches for the synthesis of underwater vehicle control systems
are given by Conte et al.[15] [16] [17], while examples of the use of neural net and neu-
rofuzzy techniques for the control of underwater vehicles are given by the works of J.
Yuh[18] [19] and of Craven et al.[20]. A similarly broad range of techniques have been
proposed for the synthesis of control systems for mobile base underwater manipulators.
This topic is very interesting as the hydrodynamic interactions between the manipu-
lator and the fluid may induce relevant forces on the manipulator base that should be
taken into account by the system model, rather then considered external disturbances,
in order to achieve satisfactory control performance. In particular, the problem of coor-
dinated manipulator-vehicle modelling and control has been addressed, e.g., by Mahesh
et al.[21], Schjølberg et al.[22], McMillan et al.[23], Tarn et al.[24], McLain et al.[25],
Dunnigan et al.[26] and Canudas de Wit et al.[27].

Each of the above reported control approaches for either vehicles, manipulators or
combined vehicle-manipulators systems require at some stage the knowledge of the sys-
tem model and parameters. Each of the above approaches is at some extent capable of
dealing with model uncertainties and system noise, but each of them necessarily needs
the knowledge of a fully identified, perhaps simplified,nominal model. Each of the
above reported control approaches increases its performance as the model uncertainty
is reduced. These may seem obvious considerations that apply to any robotic system,
not only to underwater ones. Indeed if complex land or space robots, e.g. manipulators,
need to be identified experimentally in order to develop a reliable dynamic model, the
urge for system identification applied to underwater systems is even higher as for the
great majority of underwater robots model parameters can not be estimateda priori on
the basis of geometrical or structural information. The point is that given an underwater
bluff body system of known geometry, what will be its drag coefficients or its inertia pa-
rameters? There is no reliable method of answering this question without experimental
data. As far as underwater vehicles are concerned, experimental data for identifica-
tion can be collected either in towing tank facilities or with on board sensors. The first
method relies on consolidated naval engineering methodology and is more precise but
complex, lengthy and expensive. As underwater vehicles configuration is time and mis-
sion dependent, system identification by means of on board sensors is certainly more
appealing being faster, cheaper and easier to be repeated for different configurations
when necessary.

Another important motivation for the analysis of underwater system modelling and
identification is related to state and, eventually, environment estimation problem. As
pointed out at the beginning of the above discussion, underwater systems sensors gen-
erally have a low sampling rate frequency (typically less thenDM5 for sonar profilers
and Doppler effect velocimeters) and do not provide full state feedback as not all the
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degrees of freedom are measured. The angular positions and, eventually, velocities are
measured by inertial devices and a compass for yaw, while position with respect to the
environment is measured by means of acoustic devices as long base line (LBL) or ultra
short base line (USBL) positioning systems, or by sonar profilers. If velocity measure-
ments are absent state estimation techniques as Kalman filters (KF) or extended Kalman
filters (EKF) are generally adopted for velocity estimation. Indeed within this frame-
work the need of an identified system model is related not only to control system design
as discussed above, but also to the navigation one. Examples of dynamic model based
navigation and motion estimation filters are given by the works of Caccia et al.[28] [29]
[30] and Smith et al.[31]. The use of a correctly identified and reliable model to design
dynamic filters for state estimation indirectly affects also the control system perfor-
mance if the control strategy uses the estimated state as feedback. These considerations
have motivated the majority of the work presented in this thesis: the development of a
physical based model and its on board sensor based identification strategy for an open
frame ROV. The proposed approach has been tested on the ROMEO ROV of the Insti-
tute for Naval Automation of the Italian National Research Council CNR-IAN and the
experimental results are reported in this work. The proposed model is based on the clas-
sical Newton Euler unmanned underwater vehicle model presented, among others, by
Yuh [14] and Fossen [32]. It is experimentally shown that such models may need to be
extended in order to take into account propeller propeller, propeller hull and momen-
tum drag interactions that are usually neglected. A two step procedure is proposed for
the identification of a simplified model of the vehicles model: first the drag coefficients
are estimated by constant velocity tests, then the drag coefficients values are adopted to
design a suboptimal experiment for the identification of the inertia parameters.

Given the vehicles model, the motion control problem is addressed in the last part
of this research and a novel algorithm for nonholonomic vehicle control taking into
account the paths curvature is proposed in the last part of this work.

1.2 Outline of the work
The first chapter is mainly devoted to the discussion of the motivations and objectives
of this research. In chapters 2 the adopted vector notation and some general (classical)
kinematic results are presented, while in chapter 3 the dynamics of a rigid body in a
fluid media is described within a Newton Euler formulation and the general equations
of motion of an underwater vehicle are derived and discussed in detail. General con-
siderations regarding underwater manipulators are also briefly addressed. Chapter 4 is
devoted to the presentation of the proposed identification scheme, within the setting of
classical least squares (LS) approach, and of the experimental results. At last Chapter 5
addresses the issue of nonholonomic vehicle motion control with reference to the case
of underwater vehicles. Some original results regarding possible navigation solutions
are presented.
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Chapter 2
Kinematics
The scope of this chapter is to introduce the adopted notation and to review some basic
concepts of kinematics that will be employed.

2.1 Vectors

2.1.1 Vector notation

Free vectors will be denoted with bold characters and no particular superscript or sub-
script, e.g.@, while geometric vectors, i.e. vectors projected on a specific reference
frame, will be bold variables having a left hand side superscript denoting the reference
frame, e.g.�@. The position vectorh^cR of point R with respect to point̂ will be writ-
ten, according to Grassman’s notation, ash^cR ' R � ^, so if�� and�� are the origins
of reference frames	 � : and	 � : thenh�c� ' �� � �� will denote��s position
with respect to��. The projection ofh�c� on reference	 ? : is ?

h�c� ' Eh�c��%i� n

Eh�c��+i2nEh�c��5i� '
S

�

�'�
Eh�c���i� beingEi�c i2c i�� an orthonormal basis of	 ? :.

<0>

<i>

<j>

y

z
y

z

ri,j

Oj

Oi

x

x

y

z

x



Vectors

2.1.2 Time derivatives of vectors

The majority of books on Robotics start with a note on reference frames, rotations and
homogenous transformations. Indeed these concepts are the basis of kinematics and
rely on the idea of time derivative of a vector. This is a tricky topic that is worthwhile
discussing in some detail as a starting point. The building block of classical mechanics
is the concept ofevent. This is the mathematical abstraction of a primitive idea that can
be defined only heuristically as the limit for null time duration and space occupation
of a certain physical phenomenon as viewed by an observer. The set of all events is
saidspace-time, denoted byTe that can be identified with the Cartesian product.��?
being.� the �( Euclidean space and? the set of real numbers. The evolution of a
material point can be described by a continuous curve (line of universe)in Te made by
the sequence it’s events. Given the line of universeabsolute timecan be unambiguously
defined through the following:

Axiom of Absolute Time Given two events@c K 5 Te their time separation
{|E@c K� is unambiguously defined for every observer as a continuous function
{| G Te � Te $ ? satisfying

{|E@c @� ' f
{|E@c K� n {|EKc S� ' {|E@c S� ; @c Kc S 5 Te

so that chosen a reference eventf the absolute time can be defined as the continuous
function| G Te $ ?c |E@� ] {|Efc @�. According to the properties of{| and to the
definition of |E@� it follows that{|E@c K� ' |EK� � |E@� showing the independence
of {| from the reference event. Events@ andK are said to besimultaneousif and
only if {|E@c K� ' f.

As a consequence of the above axiom given@ 5 Te the equation| ' |E@� defines a
�( hyperplaneP| (hyperplane of simultaneity) subset ofTe made of all and only the
simultaneous events of@. At each fixed instant|,P| can be identified with the physical
space at time|, common to every observer. In particular the following axiom is assumed
to hold:

Axiom of Absolute Space Each hyperplaneP| for a fixed | 5 ?, is a�( space
having intrinsic Euclidean structure, i.e., in every hyperplaneP| a Euclidean
distance is defined and all axioms and theorems of Euclidean geometry hold.

It follows that every geometric result at each fixed instant has an absolute character,
i.e., is independent from the observer: for example callingT�EP|� the set of all geomet-
ric vectors at instant| the time dependent vector�E|� is defined as�E|� G ? $ T�EP|�
and is an absolute quantity. Notice, however, that at each instant|� 9' |� �E|�� and�E|��
are elements of different spaces asP|� andP|� are not only different, but disjoint. As
a matter of fact the absolute time and space axioms do not specify what is meant by a
fixed point at different times and thus the same concept of movement can not be de-
fined. In particular as�E|�� 5 T�EP|�� and�E|�� 5 T�EP|�� with T�EP|�� 9' T�EP|��
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Vectors

vectors�E|�� and�E|�� can’t be compared and the incremental ratio�E|n{|�3�E|�
{|

has no
meaning whatsoever. It follows that even if the concept of vector as a function of time is
well posed and has an absolute meaning, it is impossible to formally introduce the time
derivative of a vector on the only basis of the axioms of absolute time and space. So, as
the concept of event has an absolute meaning, the one of movement and time derivative
of a vector is intrinsically relative, it can not even be formally defined prior to the in-
troduction of the concepts ofreference spaceandreference frame. Each observer maps
the space-time setTe in it’s own distinct�( Euclideanreference spaceK� with a map-
ping functionZ G Te $ K� that, according to the axiom of absolute space, must have
an invertible and isometric restriction on eachP|; that isZmP|

G P| $ K� is invertible
and isometric so that at each instant every observer has it’s own, but coherent to all the
other observers, view of the common absolute space. Given an observerf and it’s ref-
erence spaceK�, it’s reference frame	 f : is an orthonormal set of� constant vectors
in T EK��, beingT EK�� the set of all geometric vectors inK�. Notice that constant vec-
tors in reference	 f : are generally time dependent as viewed by a different observer
as each observer has it’s own mappingZ. This is the reason why time derivatives of
vectors are relative to a specific observer and not absolute quantities. In particular call-
ing Ei�c i2c i�� the unit vector of reference	 f : each time dependent vector inT EK��
can be thought of asf�E|� '

S
�

�'�
��E|� i� and the time derivative of� with respect to

reference	 f : is _	f:

_|

f
�E|� '

S
�

�'�
���E|� i� where the dot indicates the usual ob-

server independent time derivative of a scalar function,��E|� ] _

_|
�E|�. In the view of

a different moving observer, say�, the vectorsEi�c i2c i�� may not be constant with re-
spect to his reference frame	 � :, so the time derivative of� with respect to	 � : is
_	�:

_|

�
�E|� '

S
�

�'�
E ���E|� i�n��E|�

_	�:

_|
i��. To better understand the nature of the term

_	�:

_|
i� remember that each mappingZ must be isometric and invertible, so that ortho-

normality among vectors is observer independent. This fact is at the basis ofPoisson’ s
Formula.

Poisson Formula Having noticed that orthonormal vectors in a reference frame must
be viewed as orthonormal in each other, and indicating withEi�c i2c i�� an orthonormal
set of vectors fixed to reference	 f :, the following holds:

_	�:

_|
Ei� � i�� '

�
_	�:

_|
i�

�
� i� n i� �

�
_	�:

_|
i�

�
' �i� � i� n i� � �i� ' f (2.1)

where�i� ]
_	�:

_|
i�. Next the time dependent/f*�E|� vector is defined as

;AAAA?
AAAA=

/f*�E|� ]
�

2

�[
�'�

i� a �i�

�i� ]
_	�:

_|
i�

i� G � ' �c 2c � orthonormal basis of reference	 f :

(2.2)
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Vectors

beinga the vector product. Remembering that for any three vectors@cMc U

@ a EM a U� ' ME@ � U�� UE@ � M� (2.3)

being� the scalar product, the following is calculated

/f*� a i� ' �
�

2

�[
�'�

di� a Ei� a �i��o ' �
�

2

�[
�'�

di� Ei� � �i��� �i� Ei� � i��o '

' n
�

2

�[
�'�

di� E �i� � i�� n �i� B��o ' �i� (2.4)

whereB�� is the Kronecker symbol and the substitutioni� E �i� � i�� ' �i� Ei� � �i�� is
possible due to equation (2.1). The equation

_	�:

_|
i� ] �i� ' /f*� a i� (2.5)

is known as Poisson’s equation and allows to express the time derivative of a vector with
respect to a given reference in terms of it’s derivative with respect to a different refer-
ence. To stress it’s physical meaning, the angular velocity vector/ of reference	 f :
with respect to the fixed reference	 � : will be denoted as/f*�. Equation (2.2) can
not be considered adefinition of angular velocity, but rather the mathematical demon-
stration of the existence of a free vector/ that depends on the only relative motions of
two given frames and allows to calculate the time derivative of a vector with respect to
a reference as a function of the time derivative of the same vector with respect to the
other reference. Remembering thatEi�c i2ci�� are an orthonormal set of vectors fixed
to reference	 f :, the time derivative of a vector with respect to a given reference
	 � : will be:

_	�:

_|
4 '

_	�:

_|
f
4 '

_	�:

_|

#
�[
�'�

4�i�

$
' (2.6)

'
�[
�'�

�
_	�:

_|
4�

�
i� n

�[
�'�

�
_	�:

_|
i�

�
4� '

'
_	f:

_|
f
4n /f*� a

f
4 ,

,
_	�:

_|
4 '

_	f:

_|
4n /f*� a 4 (2.7)

In the above calculations
S

�

�'�

�
_	�:

_|
4
�

�
i� has been replaced by_	f:

_|

f
4 because by

definition a scalar4 is invariant for rotations, i.e._	�:
_|

4 '
_	�:

_|
4 ; 	 � :c	 � :.

Notice that in (2.6) and (2.7) the geometric vectorf
4has been replaced by the free vector
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x

yz

<0>

x

y
z

<1>

x

y

z

<2>
x

y

z

<3>

....... x

y

z

<n>

2.1.Kinematic chain

4 as the time derivative of a vector depends on the reference in which it is evaluated
but not on the frame eventually used to represent the vector itself. From equation (2.7)
some properties of angular velocity can be deduced:

_	�:

_|
/�*f '

_	f:

_|
/�*f (2.8)

/�*f ' �/f*� (2.9)
/�*� ' f (2.10)

/S*@ ' /S*K n /K*@ (2.11)

where the last one follows from

_	@:

_|
4 '

_	K:

_|
4n /K*@ a 4 (2.12)

_	K:

_|
4 '

_	S:

_|
4n /S*K a 4 (2.13)

_	@:

_|
4 '

_	S:

_|
4n /S*@ a 4 (2.14)

the substitution of (2.13) and (2.14) in (2.12).

Velocity composition rules Equations (2.7) and (2.11) can be used to calculate the
relationship among the linear and angular velocities of a chain of? reference frames.
From equation (2.11) follows

/?*f '

?[

�'�

/�*�3� (2.15)

As far as the linear velocity is concerned the linear velocity vector��*� of frame	 � :

with respect to frame	 � : is defined as:

��*� ]
_	�:

_|
E�� ���� (2.16)
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so that

��*f '

_	f:

_|
E�� ��f� '

_	f:

_|
E�� ���3�� n

_	f:

_|
E��3� ��f� '

'
_	�3�:

_|
E�� ���3�� n /�3�*f a E�� ���3�� n ��3�*f ,

��*f ' ��*�3� n /�3�*f a h�3�c� n ��3�*f (2.17)

From equation (2.17) follows:

�?*f n
?[

�'�

��*f '
?[

�'�

��*�3� n
?[

�'�

E/�3�*f a h�3�c�� n
?[

�'�

��3�*f n �?*f ,

�?*f '
?[

�'�

��*�3� n
?[

�'�

E/�3�*f a h�3�c�� (2.18)

as
S?

�'� ��*f '
S?

�'� ��3�*f n�?*f. To understand the nature of the second sum on the
right hand side of equation (2.18) notice that

?[

�'�

E/�3�*f a h�3�c�� ' /f*f a hfc� n /�*f a h�c2 n /2*f a h2c� n /�*f a h�ce n � � � '

' /�*f a h�c2 n dE/2*� n /�*f� a h2c�o n dE/�*2 n /2*� n /�*f� a h�ceo n � � � '

' /�*f a Eh�c2 n h2c� n h�cen � � �� n /2*� a Eh2c� n h�ce n hecDn � � ��n � � � '

' /�*f a h�c? n /2*� a h2c? n /�*2 a h�c? n � � � ,

?[

�'�

E/�3�*f a h�3�c�� '
?[

�'�

E/�*�3� a h�c?� (2.19)

Replacing equation (2.19) in (2.18) the linear velocity of the?-th frame of a kinematic
chain is calculated as a function of the relative velocities of each other frame with respect
to the previous one, i.e.:

�?*f '
?[

�'�

E��*�3� n /�*�3� a h�c?� (2.20)

Considering the special case? ' 2 both, the rigid body velocity composition rule, and
the Galilean velocity composition rule can be deduced from (2.20). By direct calculation

�2*f ' ��*f n �2*� n /�*f a h�c2

so that if the origin of the third frame is calledR instead then�2 follows

�R*f ' ��*f n �R*� n /�*f a h�cR (2.21)
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with obvious meaning of notation. The relative velocity�R*�of point R with respect to
��is null if R and the frame	 � : are fixed to the same rigid body. Thus if	 f :

is a fixed (absolute) reference and	 � : moves attached to a rigid body (relative
reference), each pointR of the rigid body will have absolute velocity

�R*f ' ��*f n /�*f a h�cR (2.22)

beinghRc� ' R � �� the position vector ofR respect to�� by definition. As far as the
Galilean velocity composition rule is concerned, equation (2.21) can be written as

�R*f � ��*f '
_	f:

_|
ER��f ��� n�f� '

'
_	f:

_|
h�cR ' �R*� n /�*f a h�cR ,

_	f:

_|
h�cR '

_	�:

_|
h�cR n /�*f a h�cR (2.23)

which is the desired Galilean velocity composition rule equation.

2.1.3 On useful vector operations properties

As?-dimensional vector quantities are assumed to be elements of??f� the scalar prod-
uct operation introduced in (2.3) with the symbol� can be also thought of as a row by
column product, i.e.@ � M ' @

A
M ; @cM 5 ??f�. The vector product@ a M can be

thought of as

@ a M ] d@ao M ] 7E@� M ]

3
C f �@� @2

@� f �@�
�@2 @� f

4
D
3
C K�

K2
K�

4
D (2.24)

and more generally any skew-symmetric operator can be thought of as a vector product.
This is an important property that may be worthwhile showing. Consider a generic
skew-symmetric operator�: by definition of skew-symmetry given any vectors�,�
the following must hold�E�� �� ' �� ��E�� which is equivalent to the statement that
for any skew-symmetric operator� and any vector�, �E�� � � ' f. Given a generic
skew-symmetric operator� and an othonormal basisEi�c i2ci��, consider the vector
@ ]

�

2

S
�

�'�
i� a�Ei�� (axis vector) and the for any vector� the following holds:

@ a � '

#
�

2

�[
�'�

i� a �Ei��

$
a � '

�

2

�[
�'�

EE� � i�� �Ei��� E�Ei�� � �� i�� '

'
�

2

�[
�'�

E�� �Ei�� n E�E�� � i�� i�� ' �E��
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being��Ei�� � � ' �E�� � i� by definition of skew-symmetry of� and
S

�

�'�
E� �

i�� �Ei�� '
S

�

�'�
�� �Ei�� '

S
�

�'�
�E��i�� ' �E�� by the linearity of�. Two simple

consequences of the above result are

� @ is unique (suppose@, M such that�E�� ' @ a � ' Ma � thenE@� M�a � ' f ,
@ ' M).

� � has only one real eigenvalueb ' f relative to the eigenvector@.

A frequent kind of vector operation in kinematic and dynamic calculations is the
double vector product (2.3)@ a EM a U� which is linear in each of the three vectors.
Noting by direct calculation that for any three vectorsE@ � M� U ' dU @A o M where

dU @A o '

3
C

S�@� S�@2 S�@�
S2@� S2@2 S2@�
S�@� S�@2 S�@�

4
D (2.25)

dU @A o is theexternal vector product, the double vector product (2.3) can be written as

@ a EM a U� ' ME@ � U�� UE@ � M� '

' EdMUA � U M
A o�@ (2.26)

' EU�f�E@ � U�� dU @A o�M (2.27)

' EdM@A o� U�f�E@ � M�� U (2.28)

beingU�f� the� � � identical matrix.
Another useful result in vector analysis isHelmholtz’s theorem: any finite, uniform,

continuous and vanishing at infinity vector field6 may be written as the sum of the
gradient of a scalar) and the curl of a zero divergence vector@, i.e.[33]

; 6 5 ?�f� uniform, finite and vanashing at infinite,

< ) 5 ?c@ 5 ?�f� m 6 ' u)nua @ c u � @ ' f

As the divergence of the rotor of any vector is identically null, from the above follows
that the divergence of a vector field6 satisfying the above hypothesis can be written as
the laplacian of a scalar, i.e.

u � 6 ' u � Eu)� nu � Eua @� ' u2)

moreover if the rotor of6 is null (6 is conservative) then@ itself is identically null
[33]. These results are useful in the hydrodynamic theory of ideal fluids that will be
discussed in the next chapter.
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