
Chapter 3
Dynamics
Within this chapter the dynamics of a robotic structure will be revised and extended to
a fluid environment. The Euler-Newton formulation will be adopted.

3.1 Rigid body Newton-Euler equations
With reference to figure (3.1) the Newton-Euler equations of motion of the rigid body
will be outlined. Reference	 f : having origin inJ is inertial, while reference	 � :
having origin in� is fixed to the rigid body having center of mass in pointS. Indicating
with 4Eh� the density of the body, with6 it’s mass, withT it’s volume, withh�cS ] ES���
(Grassman’s notation, see Chapter 2) the position ofS with respect to� and withA it’s
kinetic energy the following hold by definition
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beingR a generic point of the rigid body,_T an infinitesimal volume element equal to
_�ER� �� in (3.1) and (3.2) and to_�ER� J� in (3.3). According to equation (2.17) the
velocity�R*J of equation (3.3) can be written as
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ER� S� ' f ; R by definition of rigid body. Replacing equation (3.4)
in (3.3) Köenig’s theorem is derived:
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/S*J�US/S*J (3.5)

where the inertia matrix operatorUS with respect to the center of mass has been intro-
duced. By definition of inertia operator and remembering equations (2.26), (2.27) and
(2.28) the inertia operator with respect an arbitrary point, e.g.�, is
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The inertia tensor thus defined is symmetric and positive definite. With reference to
figure (3.1) notice that replacingh�cR ' hScR � hSc� in equation (3.7) theparallel axis
theoremis immediately derived, i.e.,
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�
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4Eh�cR� dU�f�E2 hScR � hSc��� hScRh
A
Sc� � hSc�h

A
ScRo _T�

The first integral is justUS, by definition, the second one is equal to6 dU�f�EhSc� �hSc���
hSc�h

A
Sc�o beingh�cS constant, and the third one is null as by definition of center of massS

the following holds:6 hScS ]
U
T
4Eh�cR� hScR _T ' f. Thus for any point� the parallel

axis theorem states that

U� ' US n6 dU�f�EhSc� � hSc��� hSc�h
A
Sc�o (3.8)

As the hydrodynamic forces applied on a body are usually derived with respect to the
local reference frame, the standard Newton equations of a rigid body will be now cal-
culated in reference	 � :. With reference to equation (2.7) the absolute velocity of a
generic pointR of the rigid body in figure (3.1) is
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being _	�:
_|

ER� �� ' _	�:
_|

h�cR ' f by definition of rigid body. Notice that all involved
vectors are free vectors although according to equation (2.7) the most ’’natural’’ ref-
erence frame where to project��*J, /�*f andh�cR is the local reference	 � :. The
absolute acceleration will be:
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n/�*f a ��*J n /�*f a E/�*f a h�cR�

This equation can be used to calculate the Newton force equation
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for a rigid body having a time invariant density, in the local reference. By direct calcu-

23 Giovanni Indiveri, Ph.D. Thesis



Rigid body Newton-Euler equations

lation it follows that

6

�
_	�:

_|
��*J n

�
_	�:

_|
/�*f

�
a h�cS n /�*f a ��*J n /�*f a E/�*f a h�cS�

�

'
[
�

6
e%|eo?@,
� (3.11)

where6 is the total time-constant mass of the body,o�cS its center of mass position
relative to reference	 � : as given by equation (3.2),��*J is the absolute velocity of
references	 � : origin �, /�*f its absolute angular velocity and

S
� 6

e%|eo?@,
� is the

sum of all external forces applied on the body. Again notice that by construction the
most natural reference frame where to project all the free vectors in equation (3.11) is
	 � :. In particular adopting the standard SNAME notation for marine systems the
following hold:
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The Newton equation for the rotational dynamics is related to the absolute angular mo-
mentum balance. In particular calling�� the force moment about point� by definition
the following holds:

[
�

�
e%|eo?@,
�c� '

]
T

Eh�cR a
_	f:

_|
�R*J�4Eh�cR� _T '

'

]
T
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Substituting equation (3.10) in (3.12):]
T

Eh�cR a @R*J�4Eh�cR� _T '
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where the integral in the second line is6 h�cS a
�
_	�:
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�
, the one in

the third isU�
�
_	�:
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�
by equation (3.6), and the on in the fourth can be shown to be

/�*faU�/�*f by some vector manipulations based on the properties shown in paragraph
2.1.3. The second Newton equation for a rigid body can be thus expressed in the local
reference frame having origin in�, as
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Equations (3.11) and (3.13) can be written in matrix (space notation) form as:

�
_	�:

_|
D n �E/�*f� D ' �

e%| (3.14)

D ' E�A�*Jc/
A
�*f�

A
5 ?

Sf� (3.15)

beingD the generalized velocity,� 5 ?SfS the inertia operator,�E/� 5 ?SfS the Cori-
olis and centripetal operator and� e%| '

S
�E6

A
� c�

A
�c��

A e%|eo?@, 5 ?Sf� the generalized
torque applied to the body. By direct calculation it can be shown that the inertia and
Coriolis-centripetal operators are given by

� ]

�
6 U�f� �6 7Eh�cS�
6 7Eh�cS� U�

�
(3.16)

�E/�*f� ]

�
6 7E/�*f� �6 7E/�*f� 7Eh�cS�

6 7Eh�cS� 7E/�*f� �7EU�/�*f�

�
(3.17)

being7 the skew symmetric vector product operator defined by equation (2.24). It
can be shown [32] that while the parametrization of the positive definite rigid body
inertia matrix given in equation (3.16) is unique, the Coriolis-centripetal matrix can be
parametrized in a non-unique skew symmetric form. The one given in equation (3.17)
has the advantage of depending only on/�*f, but as shown in [32] other skew symmetric
parametrizations depending onD ' E�A

�*Jc/
A
�*f�

A are possible. To characterize the
dynamics of a rigid body in a fluid environment the right hand side�

e%| of equation
(3.14) has to be calculated explicitly.
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3.2 Fluid forces and moments on a rigid body
When a body moves in a fluid environment it experiences external forces due to the
interaction between itself and the fluid. As can be imagined even intuitively, all these
forces are somehow proportional to the fluids density and to the relative speed and ac-
celeration between the body and the fluid. When a body moves in atmospheric air at
low speeds, as for the majority of the robotic applications, these forces are negligeable.
On the contrary in underwater applications, due to the high density of water, these forces
are never negligeable even at the lowest speeds. The calculation of hydrodynamic gen-
eralized forces on a rigid body is a classical and well known topic in fluid dynamics
theory that will thus be here only revised in view of the robotic applications of interest.
For a more detailed discussion refer to [34] [35] [36].

3.2.1 The Navier Stokes equation

The Navier Stokes equation is the equation of motion of an infinitesimal volume of
newtonian, incompressible and time-constant density fluid. To derive this equation the
following notation will be used:4 will denote the fluid density (dimensionsdg}*6�o),
6 the force per unit volume (dimensionsd�*6�o), � �� the stress tensor (dimensions
d�*62o), R the pressure (dimensionsd�*62o), T a volume element (dimensionsd6�o)
of surface7 (dimensionsd62o) having unit normal vector? ' E?�c ?2c ?��A (dimensions
d6o), � ' E��c �2c ���A the fluids local velocity (dimensionsd6*ro) with respect to an
inertial frame. A preliminary result for the derivation of the Navier Stokes equation and
other important fluid dynamic properties is thetransport theorem. Given a differentiable
functionsE c |�, the quantityUE|� '

U U U
T E|�

sE c |�_T whereT E|� is a time evolving
volume of surface7E|� has time derivative

_

_|
UE|� '

] ] ]
T E|�

Y

Y|
s E c |� _T n

] ]
7E|�

sE c |�L? _7 (3.18)

beingL? the normal velocity of7. An important special case of equation (3.18) is
related to the situation where the volumeT E|� and the surface7E|� are relative to the
same fluid particles. In such situationL? ] �

A
? ' ��?� (where repeated indexes are

to be interpreted as summed) and by applying the Gauss theorem to the second integral
on the right hand side of (3.18) the following holds

_

_|

] ] ]
T E|�

sE c |� _T '

] ] ]
T E|�

�
Y

Y|
s E c |� nu � s E c |��

�
_T (3.19)

beingu ] EY*Y%�c Y*Y%2c Y*Y%��
A the gradient operator. Substituting the fluid den-

sity 4 to the functions for a generic volume element in equation (3.19) the principle of
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mass conservation implies
U U U
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Y|
4E c |� nu � 4E c |��

�
_T ' f and thus

Y

Y|
4E c |� nu � 4E c |�� ' f (3.20)

for the arbitrary ofT . If the fluid is assumed incompressible and of constant density in
time it follows
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Y

Y%�

�� ' f (3.21)

Equation (3.19) can be applied to the momentum4�� conservation of a generic volume
T of fluid yielding
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As the choice ofT is arbitrary this last equation implies
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Y
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E4����� '
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Y%�

� �� n 8�

which in the hypothesis stated in (3.21) implies the Euler’s equation of an incompressible
time-constant density fluid

Y

Y|
�� n ��

Y

Y%�

�� '
�

4

�
Y

Y%�

� �� n 8�

�
(3.22)

To finally derive the Navier Stokes equation some further hypothesis on the stress tensor
� must be made. The balance of moments acting on a free element of f luid_T implies
its symmetry, i.e.,� �� ' � �� ; ��. Moreover it can be shown [34] that the most general
form of stress tensor of an isotropic fluid satisfying (3.21) and whose volume element
_T does not undergo deformation when moving as a rigid body, i.e. with a velocity
� n / a h being� and/ constant, is

� �� ' �R B�� n > EY��*Y%� n Y��*Y%�� ; � 9' � (3.23)

beingB�� the Kronecker delta symbol,R the pressure and> theviscous shear coefficient
(dimensionsdg}*6ro). Equation (3.23) defines anewtonianfluid; notice that the vast
majority of fluids, including air and water, indeed exhibit a newtonian behaviour. Re-
placing equation (3.23) in (3.22) and using property (3.21) the Navier Stokes equation
is derived

Y

Y|
�n E� � u�� ' �

�

4
uRn D u2

�n
�

4
6 (3.24)

beingD the kinematic viscosityD ' >*4 (dimensionsd62*ro). Equations (3.21) and
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(3.24) with suitable boundary conditions totally describe the flow of a newtonian in-
compressible time-constant density fluid, but are of relevant practical use only in those
very special cases where the geometry and boundary conditions of the problem allow to
find an analytical solution, e.g.2( flows past two parallel walls (Couette flow) or flow
in a cylindrical pipe (Poiseuille flow). Fortunately it can be shown theoretically and
experimentally that the viscous effects in a fluid flow are relevant only in a very lim-
ited fluid volume next to the separating surface with a rigid body (thin boundary layer
theory) and that they decay very rapidly in the bulk of a fluid. As a consequence the
standard approach to estimate fluid forces on a rigid body consists in calculating all in-
ertial pressure effects as if the fluid was inviscid, i.e.D ' f, and then to add the viscous
effects estimated by the thin boundary layer theory or experimentally.

3.2.2 Viscous effects

To get a qualitative understanding of viscous effects in a fluid flow it may be useful
to calculate the order of magnitude of the ratio between inertial and viscous forces in a
general fluid dynamic problem. Assuming that the problem is characterized by velocity
L , length,, viscous shear coefficient>, gravitational acceleration} ' b�H� 6*r2, and
fluid density4, consider the ratios [34]

8 �*2
]

U?eo|�@, sJoSe

Co@��|@|�J?@, sJoSe
'

4L2,2

4},�
' L2*}, (3.25)

- ]
U?eo|�@, sJoSe

T �rSJ�r sJoSe
'

4L2,2

>L,
' 4L,*> ' L,*D (3.26)

being the first the square root of theFroude Numberand the second theReynolds Num-
ber of the specific problem. As both fresh and salt water have a kinematic viscosity
D ranging formf�H � �f3S 62*r to ��H � �f3S 62*r for temperatures betweenf� and
�f� degrees Celsius, it follows that the Reynolds number for typical underwater robotic
systems of�6 length-scale and�6*r velocity-scale is- 5 df�Sc ��2o � �fS. This value
actually suggests that in the bulk of the fluid viscous effects may be neglected with re-
spect to the inertial ones. Notice that the different scaling properties of the Reynolds
Number and the Froude Number with respect to variables of interestL , , andD are at
the basis of the difficulty in simulating the behaviour of large marine systems by scaled
models. Roughly speaking viscous forces on a rigid body can be thought of asdrag
forces and liftforces. The former are parallel to the relative velocity of the body with
respect to the fluid and the latter are normal to it.

3.2.2.1 Viscous drag forces

By dimensional analysis it can be argued [34] that the drag force8_o@} experienced by
a sphere of diameter_ moving in a fluid of density4 with velocityL can be written as
8_o@} ' �

2
4L 27 �_E-� being7 ' Z_2*e the frontal area of the sphere and�_E-� the
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Reynolds dependent drag coefficient. Experimental data reported in [34] relative to a
wide range of different sphere diameters_ and different fluids shows the validity of that
equation. Moreover the plot of�_ versus- shows a sharp discontinuity at about- '
� � �fD relative to the transition between the so calledlaminar andturbulent regimes.
For more general slender body geometries it is assumed that the drag coefficient�_ can
be thought of as the sum of africtional term�s and apressureor form term�R, i.e.
�_ ' �s n �R. The frictional term is due to the shear drag experienced by the surface
of the body travelling parallel to the relative velocityL , while the pressure term is due
to the frontal surface of the body normal toL . The frictional drag coefficient�s on a
slender body is usually modeled as equal to the one experienced by a flat plate of equal
surface and Reynolds number. As a matter of fact the frictional drag on a flat plate in
steady state laminar regime can be evaluated by means of the boundary layer theory
yielding Blasius result�s ' ���2H -3�*2 which is experimentally shown to hold for
- � � � �fD. In the turbulent regime, i.e.- � � � �fD , the semiempirical equation
of Schoenherrf�2e2*

s
�s ' ,J}�fE-�s� holds. It is worthwhile noticing that even

within this somehow ’’ideal’’ framework of steady state flat plates there is a quite large
domain of Reynold numbers, i.e.- 5 d�fDc 2 � �fSo, in which the experimental data
points reported in [34] are very scattered indicating that in that range of- neither of
the two models can be thought to be totally reliable. Notice that unfortunately many
underwater robotic systems operate in that range of the Reynolds Number-. As far
as the pressure drag coefficient�R is concerned, there is no general result of practical
interest. It is usually assumed to be roughly independent from- and it’s value has to
be determined experimentally for the particular body of interest.

Indeed the classical results outlined above are of little practical interest for underwa-
ter robotic applications. The experimental identification of the drag coefficients appears
to be mandatory as even assuming to work with Reynold numbers far from the lami-
nar/turbulent transition zone, which is highly unrealistic in the most common situations,
the great majority of underwater robotic systems can not be modeled as slender bodies
operating in steady state conditions.

3.2.2.2 Lift forces

Lift forces are another consequence of viscosity. Generally speaking there are two kind
of lift forces: hydrofoil andvortex sheddinglift forces. A hydrofoil is a streamlined
thin body that behaves as a lifting surfaces, i.e., that experience a force normal to its
surface in a wing-like fashion. The lift force8,�s| applied to a hydrofoil of area7 in a
fluid of density4moving with steady state relative velocityL can be modeled as8,�s| '
�

2
4L27 �,E-ck� beingk the angle of attack, i.e., the angle betweenL and the tangent

to the surface7. As a rule of thumb the hydrofoil lift coefficient�, can be thought to
be proportional tok for small values ofmkm, e.g.mkm 	 �f _i}, and sharply decaying to
zero otherwise as for large values of the angle of attack stall occurs. The phenomenon of
hydrofoil lift is of fundamental importance in a wide range of fluid dynamic applications
as propellers, sails, wings, rudders and all kind of control surfaces. Nevertheless in all
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those situations where sharp surfaces are absent or the typical operating velocities are
small, as for the majority of open frame bluff body ROVs or underwater manipulators,
they can be reasonably neglected.

To qualitatively understand the phenomenon of vortex shedding consider a circu-
lar cylinder at rest in a still fluid. If the cylinder is suddenly accelerated to a constant
regime speed normal to its axis separation of the flow will occur downstream. If up-
stream the flow may still be laminar, two initially symmetric vortices will start to grown
in the downstream wake. These vortices can be shown to be unstable and in the final
regime state of the cylinder they will be antisymmetric. The net result of the vortices
instability is a periodic force normal to the cylinder axis and to its speed. This phenom-
enon is very important in many underwater systems: it is responsible for the strumming
oscillations of cables and it may cause oscillations in many different kinds of under-
water structures. As far as underwater robotic vehicles are concerned vortex shedding
is usually neglected for slow motion open frame or bluff body vehicles. In principle
fast slender body vehicles as many AUVs could be subject to vortex shedding peri-
odic lift forces, but in practice it is not too difficult to employ small control surfaces in
the downstream wake that limit the vortices correlation thus greatly reducing the over-
all vortex shedding lift effect. As far as underwater manipulators are concerned their
cylindrical-like links could be reasonably subject to this phenomenon.

3.2.3 Added mass effects

The viscous effects described in paragraph (3.2.2) are not the only cause of forces ap-
plied to a rigid body moving in a fluid environment: indeed when a rigid body moves
in an otherwise unbounded fluid it is expected to experience inertial forces related to
the kinetic energy that the body itself induces on the whole bulk of fluid. These inertial
forces have little to do with the viscosity properties of the fluid and for standard hy-
drodynamic Reynolds numbers (- � �f

e) they are described within the theory of ideal
fluid.

3.2.3.1 On the properties of ideal fluids

A first important property of inviscid fluids is Lord Kelvin’s theorem stating the ’’con-
stancy of circulation in a circuit moving with the fluid in an inviscid fluid in which the
density is either constant or is a function of the pressure’’ ( [35] pag. 84). Circulation
K on a closed circuitS moving with the same fluid particles is defined asK ]

K
S
�
A
_ 

Giovanni Indiveri, Ph.D. Thesis 30



Fluid forces and moments on a rigid body

being� the fluids velocity. The time derivative ofK is

_

_|
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_

_|
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E
_

_|
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S

�
A E

_

_|
_ � (3.27)

where the last integral is equal
K
S
�
A _� which is zero. To evaluate the term

K
S
E _

_|
�
A �_ 

notice that the left hand side of the Navier Stokes equation (3.24) is exactly_

_|
�
A .

Neglecting viscosity, i.e.D ' f, and assuming that the only external force applied to
the fluid is the conservative gravitational force, the right hand side of equation (3.24)
can be written as��

4
uERn4}�� being} ' b�H�6*r2 the gravitational acceleration and

� the vertical Cartesian coordinate. Applying Stokes’ theorem to equation (3.27) and
replacing _

_|
�
A ' �

�

4
uERn 4}��, the following holds:
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�
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4
uERn 4}��

�
� ? _7

being7 any surface bounded by the closed curveS. In the standard hypothesis of in-
compressible fluid (equation (3.21)) the last integral is equal to zero proving Kelvin’s
theorem _

_|
K ' f. From a physical point of view Kelvin’s theorem just states that in

absence of shear dissipative stress and under the action of only conservative forces a
circulation state of the fluid is a steady state. Assuming that the initial state of the cir-
culation isK ' f Kelvin’s theorem implies that it remains null in time and by applying
Stokes’ theorem againL

S

�
A _ '

]
7

Eua ��A ? _7 ' f ; | (3.28)

being7 any surface bounded byS. From the arbitrary of7 it follows that the integrand
of the last integral must be identically null in time, thus showing that an inviscid incom-
pressible fluid with no initial circulation isirrotational, i.e. u a � ' f. Notice that
equation (3.28) states that the velocity field� is conservative and can thus be written as
the gradient of a scalar potential�, i.e. the velocity field of an inviscid incompressible
fluid having initial circulation equal to zero can always be written as� ' u�. More-
over notice that as in the same hypothesis equation (3.21) holds, the scalar� must be a
solution of Laplace equationu2� ' f, i.e. aharmonic function.

The Navier Stokes equation (3.24) for an inviscid fluid (D ' f) subject to the only
gravitational force can now be written in terms of the velocity potential� to yield
Bernoulli’s equation:

Y

Y|
u�n Eu� � u�u� ' �

�

4
uERn 4}��,

uE
Y

Y|
�n

�
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4
uERn 4}��,
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Y

Y|
�n

�

2
u� � u�n �E|� ' �

�

4
ERn 4}�� (3.29)

being�E|� constant with respect to the position, but possibly function of time.�E|� is
related to the additive constant of the velocity potential� and can be always chosen to be
zero. The two terms on the right hand side of equation (3.29) are sometimes referred to
as thedynamic pressureR andhydrostatic pressure4}�. The Bernoulli equation (3.29),
as the Navier Stokes equation (3.24) for a viscid fluid, are general equations of motion
that can describe a specific physical problem only if solved with the suitable boundary
conditions. As a matter of fact all the information regarding the geometry of the problem
is embedded in the boundary conditions. For a rigid body in a fluid environment the
correct kinematic boundary condition to impose is that the fluid does not flow through
the separating (moving) surface between itself and the body. With reference to figure
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3.2.Rigid body underwater

(3.2), assuming? to be the unit vector normal to the separating surface pointing outside
the fluid, i.e. inside the body, and�R*J the velocity of a pointR on the separating surface
defined as in equation (3.9), the above stated kinematic condition is satisfied if and
only if the fluid velocityu� and the surface velocity�R*J in every pointR have equal
projection along?, i.e.

Y

Y?
� ' �

A
R*J? ' E��*J n /�*f a h�cR�

A
? (3.30)

As it can be shown [34] that two different harmonic functions�
�
c �

2 satisfying condition
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(3.30) may differ only by a constant, equation (3.30) is actually just the right amount
of ’’extra’’ information needed to solve the Bernoulli equation (3.29). In a real viscous
fluid, equation (3.30) should hold not for pointsR on the separating surface of the rigid
body, but for the points laying on the external face of the boundary layer within the fluid.
Due to the negligeable thickness of the fluid boundary layer with respect to the rigid
body for the great majority of robotic applications, it is reasonable to assume equation
(3.30) to hold on the separating surface.

3.2.3.2 Dynamic pressure forces and moments on a rigid body

Within the above developed theory of ideal or inviscid fluid the total force6_R and
moment�_R experienced by a rigid body in a fluid media due to the only dynamic
pressure can be written as

6_R '

]
7

R? _7 ' �4

]
7

�
Y

Y|
�n

�

2
u� � u�

�
? _7 (3.31)
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�
EhJcR a ?� _7 (3.32)

being� a harmonic function subject to boundary conditions (3.30),7 the separating
surface,? a unit normal vector andhJcR a position vector as shown in figure (3.2). To
explicitly solve equation (3.31) and (3.32) one more simplifying hypothesis is needed:
the unboundedness of the fluid. As shown by Newman in [34] if the fluid is assumed to
be unbounded except for the rigid body itself, equations (3.31) and (3.32) with boundary
condition (3.30) can be solved analytically. To match the boundary condition (3.30) the
total scalar velocity potential� can be written in terms of a new vector� 5 ?Sf� and
the generalized velocityD (defined by equation (3.15)) as

� ' �AD (3.33)

The analytical solution of equations (3.31) and (3.32) as reported by Newman [34] yields
for each component� ' �c 2c �

8_R� ' �

S[
�'�

%
6��

_	�:

_|
D� n

�[
&c,'�

0�&,D�/&6,�

&
(3.34)
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0�&,D�D&6,�

&
(3.35)

beingD the generalized velocity defined in equation (3.15),/ the angular velocity/�*f,
0�&, theLevi-Civita densitydefined such that the�|� component of the vector product
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between to given vectors@ andM is E@ a M�� '
S

�

&c,'�
0�&,@&K,, i.e.

0�&, ' � if �&, '

;?
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�c 2c�
2c �c�
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0�&, ' �� if �&, '
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�c 2c �

0�&, ' f otherwise

and6�� the components of theadded mass tensordefined as

6�� ] 4

]
7

��

Y

Y?
�� _7 (3.36)

being�� the components of the� vector introduced in (3.33). Each component of� has
to be harmonic (i.e.,u2�� ' f) in the bulk of the fluid and has to satisfy the kinematic
conditions

Y��

Y?
' ?� ; � ' �c 2c � (3.37)

Y��

Y?
' Eh�cR a ?��3� ; � ' ec Dc S (3.38)

on the separating surface7. As a consequence each added mass component6�� given
by equations (3.36) depends only on the shape of the boundary surface7 and on the
constant (by hypothesis (3.21)) fluid density4. Equations (3.34) and (3.35) can be
expressed in a more compact form writing the added mass tensor as

�� '

�
��� ��2

�2� �22

�
(3.39)

being each��� a � � � matrix. With such notation equations (3.34) and (3.35) can be
written as

6_R ' �E��� ��2�
_	�:

_|
D � /�*f a dE��� ��2� Do (3.40)

�_R ' �E�2� �22�
_	�:

_|
D � /�*f a dE�2� �22� Do (3.41)

���*J a dE��� ��2� Do

or in spatial notation� _R ] E6A_Rc�
A
_R�

A

� _R ' ���

_	�:

_|
D ���ED� D (3.42)

Giovanni Indiveri, Ph.D. Thesis 34



Fluid forces and moments on a rigid body

being

��ED� ]
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7E/�*f� f
7E��*J� 7E/�*f�

� �
��� ��2

�2� �22

�
(3.43)

Notice that from equations (3.40) and (3.41) follows that a rigid body subject to a con-
stant linear velocity, i.e.��*J ' SJ?r|� and/�*f ' f, in an infinite inviscid fluid does
not experience any dynamic pressure force (although it may experience a non zero mo-
ment due to the term��*J a dE��� ��2� Do in (3.41)); this fact is often referred to as
theD’Alembert paradoxin the fluid dynamic literature. Applying Green’s theorem to
the added mass components definition (3.36) it can be shown [34] that the added mass
tensor�� of a rigid body in an ideal infinite f luid is symmetrical, i.e.6�� ' 6��.
Moreover starting from the energy conservation principle it can be shown [35] [34] that
�� is related to the fluid kinetic energy by the quadratic form equation

As,��_ '
�

2
D
A �� D

beingD the generalized rigid body velocity defined in equation (3.15). This property
shows that�� is positive definite.

The practical limit of the above formulation describing the dynamic pressure on a
whatsoever rigid body is related to the calculation of the added mass coefficients6�� .
These have been evaluated analytically (see for example [37]) only for very special
geometries like spheroids or ellipsoids that are of very limited interest in real applica-
tions. To model real underwater system�� should be estimated experimentally. More-
over the above formulation has been derived with a number of ideal hypothesis that are
here summarized:

(1) the body in the fluid is rigid
(2) the fluid is incompressible (equation (3.21))
(3) the fluid is ideal, i.e. inviscid, which implies Lord Kelvin’s theorem and the irrota-

tional nature of the fluid as derived in equation (3.28)
(4) the fluid is unbounded except for the rigid body itself

If the first two hypothesis are reasonably satisfied in most applications, the last two
of them require some comments. The assumption of inviscid fluid for the derivation of
the dynamic pressure forces is justified by the large value of the Reynolds number in
the great majority of underwater robotic applications; of course viscous effects as drag
and lift have to be taken into account by independent terms in the equation of motion
of the system. As far as the last hypothesis is concerned an illustrative example of what
happens to a sphere moving in the presence of an infinite fixed rigid wall is reported
from [35]: if % and+ are two Cartesian axes respectively normal and parallel to the
wall (refer to figure (3.3)), a sphere of radiuso has a kinetic energy given to a first
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approximation byA ' �
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3.3.Sphere inpresence of a wall

given kinetic energy the forces along the% and+ axes follow
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� �

from which it is seen that the dynamic pressure force tends to repel the sphere if this
moves at constant speed towards or away from the wall (� ' fc � 9' f) and attracts it if
the sphere tends to move parallel to the wall (� ' fc � 9' f).

3.2.4 Current effects

Within the above described theory nothing have been said about eventual f luid currents.
From the definition (3.33) and from the equations (3.37) and (3.38) it should be noticed
that if the fluid is subject to a uniform motion�s,��_*JE|�, the rigid body generalized
velocityD ' E�A

�*Jc/
A
�*f�

A appearing in equation (3.42) must be replaced by the relative
velocity EE��*J � �s,��_*f�

A c/A
�*f�

A . As a matter of fact such a uniform current would
also induce a buoyancy-like force, sometimes calledhorizontal-buoyancy, proportional
to the product of the displaced fluid6s times the fluid acceleration_	f:

_|
�s,��_*J. These

forces are usually taken into account when underwater robotic systems are simulated
[14] [38] [23] [39] but are usually neglected in control and identification schemes as it is
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very difficult to measure�s,��_*J and its time derivative. If the current is not uniform, as
in presence of waves, the situation is even more complex as also the gradient of the fluid
velocity is expected to produce a pressure force on the body. This latter phenomenon,
which is fundamental in the modeling of surface systems, is generally neglected in deep
water, but should be taken somehow into account in shallow water [40] [41] [42] [43].

3.2.5 Weight and buoyancy

Weight and buoyancy generalized force may be modeled as

�
6�K

��K

�
' }

�
�6 U�f� 6s U�f�
�6 7Eh�cS� 6s 7Eh�c��

��
�
!f

�
!f

�
(3.44)

Being6s the displayed liquid volume,6 the rigid body mass,} ' b�H� 6*r2 the
gravitational acceleration,h�c� the center of buoyancy local position vector,h�cS the
center of mass local position vector and�

!f the projection of the5-axis inertial unit
vector on the local reference	 � :.

3.3 Underwater Remotely Operated Vehicles Model
The rigid body dynamic equations described in the previous sections can be viewed as
the building blocks for more complex robotic system models as the ones of underwater
vehicles or manipulators. In particular the dynamic models of a bluff body UUV will
be derived. Generally bluff body UUVs are designed for low speed operations and are
not equipped with lifting or control surfaces so their dynamic models do not take into
account lift forces. The added mass and viscous drag effects are modeled on the basis of
the rigid body theory described in the previous sections. Although drag is a distributed
force on the surface of the vehicle for the sake of simplicity it is usually modeled within a
lumped parameter formulation. The standard approach to drag modeling consists in the
sum of a linear and quadratic term in the relative generalized six dimensional velocity
D, i.e.,

6_o@} ' �(D
D �(

D �D �DmDm (3.45)
being the matrixes(

D
and(

D �D � positive definite. A further and very common simpli-
fication [32] consists in assuming(D and(D �D � diagonal thus neglecting the viscous
drag coupling. The most common notation for the drag coefficients is

(
D

' _�@}Ef�c t�c~�cgRc�^c �o� (3.46)

(
D �D � ' _�@}Ef����c t����c~����cgR�R�c�^�^�c �o�o�� (3.47)

To obtain the complete model of a UUV thruster and cable dynamics are to be consid-
ered. The cable dynamics is sometimes modeled in simulation studies, but even being
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potentially a major source of drag or external applied force on an ROV, it is usually ne-
glected in the design of ROV control systems. Indeed as for underwater currents, also
cable forces are usually assumed to be disturbances of a nominal model that neglects
them explicitly. From a practical point of view this can be an acceptable working hy-
pothesis when the vehicle operates in a limited area, the cable is neutrally buoyant and
is not in tension. If these conditions are not satisfied the cable forces applied on an
ROV may be large and should be taken into account by an explicit term in the dynamic
equation. As all the experimental data presented in this work has been collected match-
ing the above stated working hypothesis regarding the cable, in the sequel its dynamics
will not be taken explicitly into consideration but assumed to be a disturbance of the
nominal model.

3.3.1 Thruster dynamics

As far as thruster dynamics is concerned a steady state equation can be obtained by
dimensional analysis [34] yielding

A

4?2_e
' gEa� (3.48)

beinga the advance ratio,

a '
L

?_

;?
=

L constant thruster velocity
? number of revolutions per second
_ propeller diameter

A the thrust and4 the water density. In the great majority of the applicationsg in
equation (3.48) is assumed to be constant and the square dependance ofA on? is written
as?m?m to take into account the sign of the thrust. Moreover in real application saturation
occurs, thus the usual thrust model is assumed to be [32]

A ' @ ?m?m � K ?�@ (3.49)

being�@ the velocity of advance of the water through the propeller blades. The satura-
tion term may be very important at high speeds, but is usually neglected in standard low
speed operating conditions of ROVs. A dynamic thruster model taking into account the
motor dynamics has been proposed by Yoerger et al. [44] and consists of the following
equations:

_?

_|
' q � � k ?m?m

A ' �| ?m?m

beingk andq constants, and� the input torque. Although the topic of thruster dy-
namic modeling and control has received a quite large attention in the past years [45]
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[46] a simple steady state model asA ' @ ?m?m in which the propeller revolution rate
is assumed to be linear in the applied DC motor voltage, thus neglecting the motor dy-
namics, is actually a very good approximation in all those applications in which? does
not suddenly change sign. In the sequel the thruster applied force will be modeled as

A ' S T mT m (3.50)

beingT the applied DC motor voltage andS a constant to be experimentally identified.
A difficulty related with this approach is that, as the identification of theS constant in
equation (3.50) is generally performed putting the single thruster in a cavitation tunnel
and measuring the thrust as a function of the applied voltage, the propeller hull inter-
actions are neglected. Indeed due to possible propeller hull interactions the operating
conditions of the thruster in the cavitation tunnel may differ from the real ones espe-
cially, but not only, when open frame vehicles are considered. It will be shown in the
next chapter by experimental data relative to the ROMEO open frame ROV that the
propeller hull interaction may be significant and must be taken into account. Another
kind of potentially important hydrodynamic ’’interference’’ phenomenon regarding the
thrusters dynamics ismomentum drag. This phenomenon occurs when a thruster moves

V

3.4.Momentum drag

normally to its axis. With reference to figure (3.4) notice that in order to produce a flow
parallel to the propeller axis, the fluid must be first accelerated to the same axis normal
velocityT . This produces a drag force in the direction normal to the propeller axis that
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may be modeled as
66_ ' �k?V (3.51)

being? the propeller revolution rate,V the axis normal velocity andk a constant para-
meter. Momentum drag may be important in ROV systems as most of them are equipped
with both horizontal and vertical thrusters that allow full translational control in�( and
that frequently operate together. Nevertheless to the knowledge of the author the litera-
ture relative to the modeling of such phenomenon in ROVs is limited to the only work
of K. R. Goheen [38] and papers there cited.

3.3.2 Overall ROV Model

The complete model of an open frame UUV can be written as

E� n���
_	�:

_|
D n d�E/�*f� n ��ED�oD n (3.52)
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being all the terms defined as follows:
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(
D �D � ] _�@}Ef����c t����c ~����cgR�R�c�^�^�c �o�o�� as in equation (3.47)

` ]

�
�6 U�f� 6s U�f�

�6 7Eh�cS� 6s 7Eh�c��

�
as in equation (3.44)

Giovanni Indiveri, Ph.D. Thesis 40


