Underwater Manipulator Model

k2 ()T
T4, 1S the generalized thruster force

6 disturbance vector
As discussed in the previous sections, the generalized velocity vectiefined in

equation (3.15) has to be replaced with the relative velocity vegtor= ((vy, —
vﬂm-d/o)T,wlT/O)T in order to take into account eventual irrotational uniform constant
underwater currents. Currents with time changing velocity give rise to an additional
hydrodynamic force sometimes called horizontal buoyancy (see section 3.2.4) that can
be modelled and simulated only with the knowledge of the fluids inertial acceleration
which is usually unaccessible. The velocity gradient of non uniform currents may cause
a pressure gradient on the vehicles hull that induces another hydrodynamic load. This
latter phenomenon is generally unmodeled as it would require a complete knowledge of
the current velocity filed.

3.4 Underwater Manipulator Model

The model of an underwater manipulator can be deduced on the basis of the standard
model of a land industrial manipulator and the hydrodynamic forces acting on an un-
derwater rigid body described in the previous sections. Both Lagrange and Newton-
Euler methods have been adopted in the literature for the synthesis of an underwater
arm model. Schjglberg et al.[22] have derived a lumped parameter dynamic model of
an underwater manipulator-vehicle system by an iterative Newton-Euler method. The
proposed model is an extension of the classical land manipulator model as outlined by
Spong et al.[47] to the underwater environment. The resulting dynamic equation has
the same structure of land manipulators, i.e.

M(a)4 + C(q,4)q4+ D(q,9)q +g(q) = T (3.53)

beingq the generalized link coordinate vectof, the sum of the standard inertia matrix

with the added mass oné€, the centripetal-Coriolis matrix including the added mass
terms responsible of the hydrodynamic coupling (D’Alembert paradox) discussed pre-
viously for a single rigid bodyp the hydrodynamic lift and drag generalized forces,

g the weight and buoyancy generalized forces andthe applied joint generalized
forces. The same model structure has been derived with the use of Kane’s equations
by Tarn et al. both for a single-axis manipulator-vehicle system [48] and for multiple
manipulators-vehicle system [24]. A manipulator-vehicle dynamic model may be use
either for simulation purposes, or for control system design.
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As far as simulation is concerned McMillan et al.[23] have described an efficient
simulator based on an articulated-body algorithm taking into account the major hydro-
dynamic forces on a manipulator-vehicle system. They show that the computational
requirement for a mobile six degrees of freedom underwater manipulator is about dou-
ble then for a land system, although the amount of computation still grows linearly with
the degrees of freedom. In their work drag is modeled as a distributed effect on each
link which is approximated with a cylinder. The same kind of drag model is adopted in
[49] where a fixed base patrtially (or totally) immersed manipulator is considered.

Before taking into account the control system design of an underwater-vehicle sys-
tem it is necessary to understand the actual relevance of hydrodynamic effects on an
underwater industrial manipulator and on the overall arm-vehicle system. To this extent
most interesting is the experience of the Deep Submergence Laboratory of the Woods
Hole Oceanographic Institution as reported in [50]: as the major hydrodynamic effect on
a fixed base manipulator is damping, the authors conclude that on their systelha *
performing routine tasks hydrodynamic effects have no significant effect on manipula-
tor control’. On the other hand for a mobile base system the effects of fast manipulator
motion on the vehicle have experimentally shown to be relevant. Intuitively this is
reasonable as it corresponds to a ‘swimming-like” coupling effect between the manip-
ulator and the vehicle. This phenomenon has been extensively analyzed by McLain et
al.[51] [52] [53] [25] both theoretically and experimentally. Their approach basically
consists of two steps: first a model arm, developed on the basis of Sarpkaya’s study of
the added mass and drag coefficients on a cylinder [54], is experimentally identified.
Then the dynamic model of the arm is used to compensate the arm-vehicle coupling
effect by a model-based feedforward signal. Experimental tests carried out with a sin-
gle link arm on an unmanned underwater vehicle [53] show good improvements in the
control performance with only a smab%) increase in vehicle thrust. Nevertheless
the implementation of such approach on a real system would require an accurate and
complete identification of the underwater arm model and a much higher computational
burden with all the drawbacks that this implies. In the words of Sayers et al. \B®n
operating at normal speeds in the real environment the principal benefit resulting from
a full model for combined manipulator/vehicle motion is not the ability to compensate
for dynamic effects on-line, but rather the assistance it provides in planning alterna-
tive motions off-liné. As a matter of fact to avoid a complete off-line identification
procedure an adaptive approach may be considered. Simulation results of an adaptive
scheme for underwater manipulator-vehicle control have been reported by Mahesh et
al.[21] and adaptive algorithms for underwater manipulators have been analyzed also
by Ramadorai et al. [12]. Assuming a full knowledge of the system parameters a feed-
back linearization control of the vehicle manipulator system may be implemented as
suggested Schjglberg et al.[55]. Finally robust control approaches to the problem have
been taken into account in [27].
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Chapter 4
|dentification

In this chapter the topic of underwater robotic system identification will be addressed.
Experimental results regarding open frame ROVs will be outlined.

4.1 Estimation approach

In order to describe the adopted estimation approach some notation will be introduced.
Suppose that a model of some phenomena is given in the form

yo(t) = H(x(t),t,0) (4.2)

beingt the timey,(t) € R*"*! ameasurable quantity (either deterministic or stochastic),
x(t) € ®™*! a time dependent variable afde ?*! a vector of parameters: the
problem of parameter estimation consists in calculating some ’estinéafestimates

will be denoted by a hat) of the parameter veéagiven noisy measuregt) = yo(t)+

e (beinge the measurement noise). Notice that due to the unavoidable measurement
noise the measures(t) of y,(t) are random variables beinfg either a stochastic or

a deterministic model. The approach to the estimation problem is different according
to the nature of the parameter vectr if it is a vector of unknown constants a so
callednon-Bayesiampproach should be followed, otherwis®ayesianone. Within

the Bayesian approach the parameter vector is a random variable having a probability
density function (pdfp(@) and one may argue that a good estimate of it could be the
mode of the pdf o0& conditioned to the measuremests.e.

ply|0)p(6)
p(y)

Within the non-Bayesian approach the parameter vector is an unknown deterministic
guantity which has no probability density function (or better, its pdf is a Dirac function
centered on the unknown valég. A typical non-Bayesian estimator is the maximum
likelihood estimator, i.e. the parameter estim@g,  is the mode of the measurement
probability density function given the deterministic parameter vector,

0 £ arg max p(6ly) = arg max = arg max p(y|0)p(6)

éMLE £ arg max p(yl0) (4.2)

The pdf of the measuremengsgiven® is calledlikelihood functionAy (8) £ p(y|6)

and the estimator described by the above equation is caléedmum likelihood esti-
mator (MLE). The underwater robotic models developed in the previous chapters are
deterministic models that contain only deterministic parameters as masses, drag coeffi-



Estimation approach

cients and geometrical quantities that should be regarded as unknown constants rather
then random variables. This suggests to work within the non-Bayesian framework and
in particular estimation should be performed with a maximum likelihood technique. No-
tice that according to the above statements regarding the stochastic nagtite diie

to the measurement noise in both the Bayesian and non-Bayesian frameworks, the
estimated of the parameter vectd is a random variable either éf is a deterministic
guantity or a stochastic one. Indeed important informations on the model structure can
be deduced analyzing the covariancéofAs a matter of fact the underwater robotic
models to identify are linear in the unknown parameters, thus least squares estimation
can be applied.

4.1.1 Least Squares Technique

Within this paragraph the least squares technique for estimation of models linear in their
parameters will be reviewed in order to introduce the adopted notation and to outline
the criteria that have been used for input and model selection. As all the following
results are standard in the identification literature many of them will be reported only
for reference and without proof.

If the equation (4.1) model happens to be linea in

yo(t) = H(x(t),t) @ = y(t) = H(x(t),1) 6 +e
one can analytically calculate theast squares estimaig.S) 8, s defined as

0,42 argmein Jrs = argmein | y(t) — H(x(t),t) 0 ”2 4.3)

beingJ; s the least squares cost function
Jis = (y(t) — H(x(t),t) 8 )" (y(t) — H(x(t),1) 0) (4.4)

equivalent to the squared norm of the measuring error véletr for a deterministic
model . By direct calculation it follows that

Ors = (H'H)Y *H y (4.5)

showing that the existence of this estimator relies on the existence of the inverse of
H"H (observability conditiol. If the measurement vectgr of a given process is

a stochastic variable having meaiy[y| = HO and covariance’,[(y — HO)(y —

H6)T] = o2I* being[ the identity matrix, then the least squares estimate (4.5) has the
following properties [56]:

(1) itislinear iny

L if H is a deterministic model this is equivalent to the statement that the measurement noise has zero mean
and covariancéo?
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(2) itis unbiasedi.e. E,[0.5] = 6

(3) cov(Bs) = Ey[(01s — 0)(01s — 0)T] = o (HTH) !

(4) cov(@rs) < cov(Byrr) beingfy x the estimate given bgny otherunbiased linear
estimator.

This last property is equivalent to the statement that in the given hypothesis the least
squares estimator is a so calleést linear unbiased estimat¢BLUE). Moreover in
the above equations the functiég is the expectation operator defined as

= /f(Y) py(y) dy

Property(1) is immediate, propertig®) and(3) can be proven by direct calculation
Ey(81s) = Ey[(HTH) " H'y] = (H"H) " H" Ey[y] = (H"H) 'HTH6 = 8
and

0,s—0=H"H)'H'y —0 = (HTH)'H"(y — H) =
cov(Brs) £ Ey[(0rs — 0)(01s — 0)"] =

= (H'H) 'H'Ey|(y — H8)(y — HO)'|[H(H"H) ' =

= (H'H) 'H" o’l HH"H) ' =o*(H"H)™"

cov(@ps) = o?(HTH) (4.6)

Property(4) can be proven as follows [56]: by definition a linear unbiased estinitor
is such thal'y = 8,5 and

Ey@ruw] = By[Cy] = CEy[y] = CHO = 6

for any@ so that

CH=1 4.7)
By direct calculation the covariance &f;;. is
COU(éLUE) = (OLUE )(9LUE —0)'] = E,[(Cy —0)(Cy — 6)"] =

Ey|
Ey[(Cy —CHO+ CHO —6)(Cy — CHO + CHO — 8)"] =
B,[(Cy — CHO)(Cy — CHO)| = CEy [(y — HO)(y — 18)"]C" —
CCto?
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Next consider the positive semi-definite matfix)” beingD = C — (H"H) 'H™.
By direct calculation the following holds:

DDY = (C—(HTH) 'H")(C - (HTH) 'H)T =
= CCT—(H'"H) 'H"CT —CHH"H) '+ (H"H) ' =
cct—H"H) ' >0

which implies property4).

With the same kind of calculations it can be shown that the BLUE estimator for a
process having meahi,[y] = H6 and covariancé’,[(y — HO)(y — H8)'] = S is
given by )

Owrs = (H'S THY 'HTS 1y (4.8)
having covariance

COU(éWLs) é Ey[<éWLS — 9)<9WLS — Q)T] = (HTzilH)il (49)

This BLUE estimator may be regarded a#ighted Least Squarestimator as it can
be seen by direct calculation thf ;s given by equation (4.8) minimizes with respect
to @ the cost function/yy ;¢ defined as

Twis & (y(0) — Hx(1),1) )" £ (y(t) - Hx(1),)8)  (4.10)

Equation (4.6) tells us a great deal about the precision and reliability of the estimates
calculated by the least squares techniquédi ifs a deterministic model then is the
standard deviation of the measurement noise and the covariance of the estimates will be
proportional to it. Even more interesting is the dependaneedf ) on (HTH) .

This matrix depends on the input signgl) that in the identification experiments is
designed by the experimenter keeping into account all the required constraints. Indeed
H is sometimes referred to as thesign matrixin estimation theory. The existence of

the inverse of /7 H is the so calledbservability conditiorwhich of course depends on

the input vecto(t). The relationship between the parameter estimate covariance and
the conditioning of the regressaéf can be understood considering the singular value
decomposition (SVD) [57] off

H = USVT

H ¢ RVPBUeR™MVeRP.UTU=1,VIV=I

S = dia9<317327"'73p)
being sy, sy, - -, 5, the singular values of/. Given this SVD decomposition, from
equation (4.6) it follows that

0_2

Ugi £ (cov(éLS))i = (*(H H)™"); = 0%(579); ' = =

2
53
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which clearly shows the relationship between the parameter estimate variance, the mea-
surement noise variane€ and the regressor singular valuesx({f) guarantee$/” H

to be nonsingular it is calledersistently excitingor the model. The degree of exci-
tations provided to a system by an input can be measured by several indicators as the
determinant oft/” [, or its trace or its condition number. The issue of designing per-
sistently exciting inputs is the topic of a very wide literature a discussion of which goes
beyond the scope of this work. For a detailed discussion of such topics refer to [56]
[58].

4.1.2 Consistency and Efficiency

The concepts of consistency and efficiency are related to the asymptotic properties of
an estimator as functions of the available “information’. In particular an estimator, for
both a random or deterministic parameter vector, is said ttohsistentf the estimate
converges to the true value in some stochastic sense [59], e.g. in the mean square sense
if

lim E[0—-6)"0—-6)]=0
where the expectation is taken oyeandx. The concept of efficiency is instead related
to the covariance of an estimator. In this regard the covariance of the estimate of either
a random or deterministic parameter vector has to satisfthmer-Rao lower bound
stating that

cov(@) — Mfl) is positive semi-definite
or equivalently )
cov(@) > M !
being M the Fisher information matrixdefined for the deterministic parameter case as
[59]

M= EyKvB In Ay<9)><vﬂ In Ay<9)>T”0:00 = —Fky [ngg In Ay<9>”0:00

beingA, (8) = p(y|@) the likelihood function@, the value of the unknown determin-

istic parameter vectoK, gradient operatoWy = (30-, 70-, > 35)" andV,V, the
Hessian. The Fisher information matrix of a random parameter vector can be defined
as above simply replacing the combined probability density fungtignd) to A, (0).

An estimator is said to befficient if its covariance matrix is equal to the inverse of the

Fisher information matrix.

4.1.3 Onthe normal distribution case

If the processy is normally distributed with mea#’@ and covariance?! the LS es-
timate is efficient and normally distributed with me@ps given by equation (4.5) and
covariance (4.6) [56]. The efficiency of the LS estimator in the normal case can be
proven thanks to the fact thatyifis normal the likelihood function and the Fisher infor-
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mation matrix can be calculated explicitly. The fact that the estimate is itself normally
distributed follows from the fact that linear functions of normal variables are normal
themselves. This last property is very useful as if the parameter vector is known to be
normally distributed with known mean and variance the standard Gaussian hypothesis
testing technique [59] may be applied to the overfitting or model selection problem.
Overfitting of the data by the model can be detected evaluating the variance of the para-
meter estimate. Roughly speaking, if the parameter variance is too large the parameter
itself is said to bestatistically insignificantand it might just as well be put to zero. More
precisely given the two hypothegig andh;:

hO:QiZO

hy:0; %0 }such thap(accepth;| ko true) = o

beingd; normally distributed with standard deviatiof, anda some arbitrary constant
(usually5%), theh; hypothesis is acceptedl;fef—“ > c(a) beinge = 1.96 if a = 5%2. In

percentile notation it can be said that if the barameter relative percentile error is larger

then51.02%, i.e.

Op. 100
100— >
0 1.96

there is 5% confidence limit that the parameter itself is statistically insignificant and
the hypothesig, : 6, = 0 is better to be accepted. Moreover in the normal case the

measurement varianeg normalized sum of the squared residuals (4’%4%%2 =

(y — HO1s)"(y — HO.s)/a? has ay?(v) distribution of mean and standard devia-
tion v/2v beingy £ dim(y) — dim(8) the number of degrees of freedom of the fit. As
a consequence the value of the normalized cost funcﬁtigl(l@m)/a2 can be used to
measure quantitatively the goodness of the fit: a rule of thumb for a moderately good fit
is thaty? ~ v. Actually the value of/;5(01s)/0? is generally used to test for underfit-
ting as ifitis larger then some thresheldixed so that the area under thédistribution
between: and infinity is more them% being usuallyx = 1 or 5, the data is said to be
underfitted by the model. Notice that in order to evaluate underfitting the measurement
variances? must be known. On the contrary, if it is not known, then assuming that the
fit is good, the value oﬂLs(éLS) may be used to estimate the measurement variance
o? as shown in the following section. In such circumstance one is not allowed to use
Jrs (9Ls) to asses underfitting anymore.

As far as deterministic models are concerned,y.bas a joint Gaussian distribution
with mean/78 and known covariancg, the WLS estimatéyy .5 (equation (4.8)) is
equivalent to the MLE estima#,,;» (equation (4.2)). This follows from the fact that

% = 51.02 % (4.11)

If &« = 5% thenc is calculated such that i¥ (x,0, 1) is the normal distribution of having zero mean
and unit variance[“, N (x,0,1)dz =1 —a =0.95 = ¢ = 1.96
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in the given hypothesis the likelihood functidn (0) is

Ay(8) = p(y10) — mexp{—éw— HOY St (y - 116)}

(n £ dim(y)) that is maximized minimizing the exponential argument, i.By s
(4.10). The consistency of the LS, WLS and MLE estimators is a known fact a proof
of which may be found in any text book on estimation theory. As far as the efficiency
of the MLE estimator is concerned the following theorem is reported from [56]: if an
efficient unbiased estimator exists, then it is also the maximum likelihood estimator.

4.1.4 Measurement variance estimation

In order to use equation (4.6) in practice the variasfcef the stochastic procegamust

be known. As noticed in the previous footnote (1), if the made$ deterministic such
variance is the measurement noise variance which is thus usually known. Nevertheless
itis not infrequent that such variance is not known, e.g. i calculated through some
other model of unknown reliability, and must be estimated as well. An unbiased estimate
of o2 is provided by [56]:

52 — JLs(éLs) B (y—HéLS )T(y—HéLS)
~ dim(y) — dim(8) dim(y) — dim(6) (4.12)

In the normal case, i.e. ¥ is normally distributed with mea#/@ and variancer?,
such estimator is optimal in the sense that miaimum variance unbiased estimator
(MVUE) for ¢?[56].

4.2 On board sensor based ROV identification

As discussed in the first chapter of this work, the navigation and control systems design
of variable configuration ROVs are strictly related to the degree of knowledge of the
vehicles dynamic model. As these models are subject to mission dependent changes an
on board sensor based system identification approach is highly recommended in order
to be able to identify the most important dynamic parameters by simple in water tests
rather than complex, time consuming and expensive towing tank techniques. More-
over being the ROV models linear in their parameters a least squares technique will be
adopted as the LS estimator has been shown to be either the maximum likelihood one in
the Gaussian case, or the best linear unbiased estimator in the more general case. Indeed
also other estimation techniques as Kalman filter based ones or estimation error mini-
mization by simulated annealing algorithms have been tested by the author as accounted
in [60] [61]. The experimental results regard the identification of a simplified model

of the heave, surge, sway and yaw axis of the ROMEO ROV of CNR-IAN. ROMEO
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which is depicted in figure (4.1) is abolt: in height,0.9m in width andL.3m in length

and its weight in air is of about50 K'g. As shown in figure (4.1) the bottom of the ve-
hicle carries a skid frame for payload a2dylindrical canisters for batteries while the
upper part is made of a cylindrical canister for the electronidbrusters for propul-

sion in the horizontal pland,for the vertical one, several instruments and sensors and,
on the top, foam for buoyancy. The thrusters, canisters, and instruments are allocated
so that the overall structure of the vehicle is symmetric with respect to boti:thad

yz planes.

4.2.1 Model structure

The experimental identification of a complete ROV model as the one given by equation
(3.52) is not feasible with only standard on board sensors because it would require a
complete state knowledge. Indeed it may be performed with more complex and expen-
sive towing tank facilities as described by Goheen et al.[62] or Fryxell [63], but such
approach is not indicated for systems having a variable and mission dependent config-
uration. Moreover in many standard manoeuvreing conditions, e.g. plane surge motion
or vertical translation, and generally at low operating speeds, the coupling terms may be
reasonably neglected without serious loss of information. As a consequence on board
sensor based identification experiments usually refer to a simplified uncoupled model
that can be deduced from equation (3.52) neglecting the off diagonal elements of the
added mass matrix, the Coriolis and centripetal kinematic coupling terms and the drag
ones. This approximation relies on the facts tfiptthe off diagonal elements of the
added mass matrix of a rigid body having three symmetry planes are identically null
[34], (ii) the off diagonal elements of such positive definite matrix are much smaller
than their diagonal counterparts [38]i)) the hydrodynamic damping coupling is neg-
ligeable at low speeds. The resulting model structure for a single degree of freedom
is:

mf = —1{755 — /{:5‘5‘5]5] + Tg + & (413)
beingm the inertia relative to the considered degree of freed¢itine 1D velocity
(surge, sway, heave, yaw, pitch or roll ratg)andk, ¢ the linear and quadratic drag
coefficients, 7, the applied force or torque anda disturbance modelling otherwise
unmodeled phenomena as cable effects. This kind of uncoupled model structure is cer-
tainly one of the most common in the literature of underwater vehicles: as far as iden-
tification experiments are concerned it has been adopted, for example, to identify the
yaw motion of the IFREMER VORTEX vehicle [64] or the surge motion of the NPS
PHOENIX AUV [65]. Equation (4.13) relative to the heave, surge, sway, and yaw axis
of the ROMEO ROV has been experimentally identified as described in the follow-
ing sections. To estimate the parameter ve@ter (m, ke, k¢ ¢ )" from equation (4.13)
the torquer, is assumed known and a linear regressor is considered. The knowledge
of 7, is actually related to the fact that the relation between applied thruster voltage
and torque has been a priori identified for each single thruster in a thrust tunnel as de-
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l -

4.1.ROMEOQO: the bottom right pictures shows a different payload configuration, a palnkton sampling
equipment
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4.3.Sketched top view of ROMEOSs horizontal thruster configuration.
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scribed in the following section. A potentially serious drawback of such methods could
be related to the fact that the identified thruster model does not take into account the
propeller-propeller or propeller-hull interactions that occur on the vehicle in the operat-
ing conditions. These phenomena are due to the fact that on the great majority of ROVs
more thrusters§ on ROMEOQ) are present on the vehicle and may thus interfere be-
tween themselves or with the hull. As far as the ROMEO ROV is concerned this can be
more easily understood with reference to figure (4.3) in which the horizontal thruster
disposition is schematically depicted. If all four thrusters operate at the same time, itis
reasonable to expect that the front and rear ones on the same side of the vehicle inter-
fere with each other. It is also expected that the front ones will experience a propeller
hull interaction pushing backwards as the rear ones pushing forward. As a consequence
the efficiency of the thrusters is expected to be less then the one measured in the thrust
tunnel. As will be described in the following sections, to model this phenomena an
efficiency parameter has been introduced. This technique has been shown to be effec-
tive for the modeling of both the propeller-propeller interactions and the propeller hull
ones. The experimental results reported in the following show that the propeller-hull
and propeller-propeller interactions have indeed a most relevant effect on ROV dynam-
ics. Nevertheless this topic has not been systematically addressed by the underwater
robotics scientific community: to the knowledge of the author the only relevant refer-
ence to this phenomenon in ROV systems is due Goheen and Jefferys [66] who describe
athruster installation coefficientln their words [66] the installation coefficient takes
*into account the differences in force that the thruster provides when it is operating in
the proximity of the RQ¥s opposed to when it is tested in open water

At last notice that in order to estimafle= (m, k¢, k)" and the eventual efficiency
parameters a two step procedure has been implemented: first a the drag and efficiency
coefficients are estimated by constant velocity experiments, then with the aid of their
knowledge a sinusoidal torque input is designed in order to identify the imertia

4.2.2 Thruster model identification

The modelling and control of underwater vehicle thruster systems has received a wide
attention in the literature of the last years [45] [46] [44]. As shown by Yoerger et. al.[44],
within the theory of ideal fluids a lumped parameter thruster model is given by (section
(3.3.1))

T = Cnln|
g1 — an|n|

beingr the output thruster forcé,;, 5 anda constant parameters,the propeller rev-
olution rate andl’ the input torque. Generally the servo velocity loop of the velocity
controlled thruster system has a negligible time constant with respect to the overall vehi-
cles’ one [19], and thus the thruster dynamics can be neglected. Indeed most often [32]
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the applied thrust is modeled as= C;|n|n — Cs|n|v beingwv the velocity of the fluid
through the thrusterglocity of advanceand—C|n|v a saturation term. In virtue of the
creeping motion of UUVSs, this last saturation term can be neglected in many standard
operational conditions as widely accepted in the literature [32] [14] [44] [64]. More-
over in steady state conditions the neglected thrust drag-t&rnv.|v will be somehow
taken into account by the drag forces considered in the equation of motion (4.13) of the
vehicle. Thus, neglecting the motor dynamics, the thruster force may be modelled as

T =CVI|V| (4.14)

beingC an unknown constant aidthe applied control voltage. In many marine appli-
cations two different’ parameters are requested for the positive and negative propeller
revolution rates, as the thrusters do not behave symmetrically in the two directions, but
most frequently UUV propellers, as ROMEOSs ones, are designed to exhibit a symmetri-
cal behaviour in the two directions. Equation (4.14) has been identified [67] for each of
the eight ROMEDO thrusters putting the whole thruster (motor and propeller) in a thrust
tunnel (figure (4.4)) and measuring the forc@as a function of the input voltage.

Typical results of this measuring and identification method are shown in figure (4.5). It
should be noticed that having neglected the velocity of advance, the proposed model is
expected to be more accurate far from the propeller revolution rate inversion points. In
particular high frequency sign changesipthat may occur during hovering manoeuvres

or would occur with pseudo random binary inputs typical of identification experiments,
produce unmodeled turbulence next to the thrusters making the output thrust computed
by the standard model less accurate.

4.2.3 Off line velocity estimation

As stated above, the proposed identification scheme consists in two steps: first the drag
coefficients are estimated by constant velocity tests, and then their values are adopted
to design a suboptimal inertia identification experiment with a sinusoidal input. Both
steps are based on position measurements only so that a major issue is velocity estima-
tion. As far as the drag experiments are concerned a simple least squares fitting of the
position data is enough, but for the inertia identification tests a different filtering tech-
nique is required. More generally the problem of computing the numerical derivative
of a signal given noisy samples is posed. Among the many possible signal processing
techniques to face this problem attention is focused on the use of the Savitzky-Golay
filters [68]. These are low pass filters designed in the time domain rather then in fre-
guency domain. Within a moving window containingpoints on the left and,. on the

right of the:!" data sample, the, - n,. + 1 points are least squares fitted with a polyno-
mial of degreen and the filtered value of th&" data sample is assumed to be the value

of the polynomial ini. The derivative of the given signal iris thus assumed to be the
derivative of the polynomial in. Notice that the fitted polynomial is adopted in #¥e

point only, as when the moving window is shifted of one point the whole procedure is
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4.4 .Cavitation tunnel tests: preliminary propeller test. The thruster identification has been carried out
putting the whole thruster in the tunnel.
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4.5.Cavitation tunnel identification tests.
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repeated. In order to design a Savitzky-Golay filter the windows left and right lengths
n;, n, and the polynomial degree must be chosen. If the data is processed offtine

can be chosen to be non null so that the filter is non-causal: as far as the polynomial
degreem is concerned it can be chosen adaptively as proposed in [69], but generally
[68] m is fixed to2 or 4. For most applications the moving window can be chosen to
be symmetrical®{; = n,): guidelines for the choice of, andn, may be found in [68].
Savitzky-Golay filters, that are most common among the chemists for noisy spectro-
metric data analysis, are among the most “natural’ tools for derivative estimation. A
detailed analysis of their properties goes beyond the scopes of this work, yet to have
a qualitative understanding of their performance an example based on the equations of
our interest is reported: consider the linear system

being : f = fo+ Asin(wt)
By direct calculation it follows that

Ay sin(wt) — wr(cos(wt) — 1)

b= me T A1)
1

k; (14 w?7?)
fo i fo,  Ajwrt—7sin(wt) — L cos(wt) + L
— — 29 = /T EALW =7 w w
vo= e — (L — et 4t (1 +wr?)

being : 7=m/k

Assumingfy = 35, Ay = 25, w = 0.1963, m = 500, k; = 170, ¢ = 0, the position

2 0n al80s test evolves as shown in the top plot of figure (4.6) having adoptd-a
sampling rate, i.e540 data samples. Adding to this signal the zero mean normal noise
having0.07 standard deviation shown in the bottom plot of figure (4.6) and filtering
the so computed noise corrupted position signal witi*arder Savitzky-Golay filter
havingn, = n, = 10 yields the result displayed in figure (4.7).

4.2.4 Heave model identification

As far as the heave axis is concerned, off-line identification has been performed to es-
timate linear and quadratic drag coefficients and buoyancy force [70]. The data for the
identification experiments consists in depth and thrust measurements collected during
up and down motions performed under the Antarctica ice-canopy during the XllI Ital-
ian Antarctica Expedition (1997-1998). Depth was measured directly by a depth-meter
with a 10 H z sampling rate, while thrust was estimated by the thrust-tunnel identified
model described in the previous subsection. Five different experiments, in the sequel
labelled with numberg to 5, have been performed with inputs of the kind shown in
figure (4.8) each with a different vehicle weight. During experimeand?2 the vehi-

cle was positive, during experimehit was roughly neutral and in the last two it was
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4.6.Above: analytical position signal. Below: additive, zero mean, normal noise having standard devia-
tion 0.07.
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4.7 Estimated and real velocity
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