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4.8.From top to bottom: Torque, heave position and velocity with respect to time for experiment6

negative. Weight was changed adding on ROMEOs top, during each experiment, one
diver’s lead weight which reasonably does not affect the hydrodynamic derivatives but
only the overall weight of the system. During all experiments the heading of the vehicle
was kept constant by the action of the heading autopilot. This suggests that momentum
drag due to the horizontal thrusters could be present and should be taken into account.
The heave velocity has been calculated off-line processing the depth signal with a non-
causal Savitzky-Golay polynomial [68] filter of fourth order with a symmetric moving
window of �e� points. As only the stationary values of the velocities were needed for
the identification process, these have been calculated averaging the velocity signal far
from the inversion points to exclude the non stationary system response at each inver-
sion on one side, and the last.f samples of each constant input zone that could introduce
bias in the estimated velocity, on the other. The heave motion is described with respect
to a body fixed reference frame having its5 axis pointing downward; indicating with
� the heave velocity, with6 the thruster applied force, with̀ the weight and buoy-
ancy force, with6 the sum of inertial and added mass, with&

�
and&

���� the linear and
quadratic drag coefficients according to subsection (4.2.1) the standard heave model is:

6 �� ' �&� �� &
���� �m�mn 6n` (4.15)
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where� and6 are assumed to be known far from the inversion points, i.e., in sta-
tionary conditions�� ' f. Equation (4.15) is linear in the unknown parameters and,
callingi5 the5 axis unit vector, when�� ' f it can be written in the more convenient
form )r ' Mr wr n 0r beingwr ' d&

�
&
���� E`

A i5�o
A the parameter vector,)r '

d6A

�
i5 6

A

2
i5 � � �6A
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A the measurement vector,Mr '
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the regression matrix and0r the measurement noise. Each stationary velocity�� is
calculated as described above. As shown in the pictures in figure (4.1) the vertical pro-
pellers of the ROMEO ROV are at the very top of the frame in order to avoid large
turbulence next to the sea bottom that could limit visibility in the presence of sand or
dust. As a consequence when the vertical thrusters push upwards the water flow out of
the propellers interferes with the vehicles structure. It is then reasonable to assume that
when the thrusters’ force is directed upwards the efficiency of the vertical thrusters will
be affected by a propeller-hull interaction virtually absent when the force is directed
downwards. This suggests to modify equation (4.15) with the introduction of an effi-
ciency parameter# such that in stationary conditions the vehicles model can be written
as

# 6 ' &
�
�n &

���� �m�m �` (4.16)�
# ' � ; 6A i5 � f

# 	 � ; 6Ai5 	 f

(i5 is the5-axis unit vector pointing downwards) which will be calledeta model in the
sequel. Indicating with the subscripts_ and� forces and velocities in the downward
and upward directions, the regression form of equation (4.16) can be written as

)# ' M# w# n 0#
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w# ' d&� &
���� E`

A
i5� #o

A

being� and8 the norms of vectors� and6 following the standard notation@ ] n@n.
The third and last considered model takes explicitly into account the momentum drag
discussed in section (3.3.1). As during all the experiments the heading of the vehicle
was kept constant with the horizontal thrusters, their effect on the heave drag may be
modelled by66_ ' �k ?�� where?� is the mean propeller revolution rate modulus
of the four horizontal thrusters,k is an unknown constant parameter and� the heave
velocity. Adding66_ in equation (4.16) gives rise to theeta-md model which can be
written in regression form as
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Typical values of6 andR range frome to .. The identification of the above models
has been performed by the standard least squares technique described in the previous
section. In particular indicating with) ' Mw n 0 the generic heave model, the co-
variance matrixP of the noise vectors0 is considered unknown as the measurement
vector) is actually calculated through another identified model. AssumingP ' j2

0
U

beingj0 an unknown constant andU the identity matrix equations (4.5), (4.6) and (4.12)
may be applied. All the parameter values and relative standard deviations presented in
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4.9.Model residuals (Q) and relative estimated standard deviation for the8 experiments

following tables and figures have been calculated respectively as	wu7 given by equa-
tion (4.5), and the square root of the principal diagonal of matrixEMA

M�3�	j2
0
, i.e.

	jw '
t
_�@}EEMAM�3�	j2

0
� being 	j2

0
given by equation (4.12). As shown in figure

(4.9) all the models perform well as far as the mean value of the residuals) � M	w is
concerned, but indeed the estimated standard deviation	j0 of the standard model resid-
uals is from� to �f times larger then for the eta or eta-md models. In figures (4.10)
and (4.11) the linear and quadratic drag coefficients are plotted for the different mod-
els and experiments. The extremum values of the coefficients relative to the eta-md
model, which has the smallest variation on theD tests with respect to the other two
models, are reported by dashed lines. The scattered nature of the linear and quadratic
drag coefficients shown in figures (4.10) and (4.11) for the standard model suggests a
mismodelling error which is partially corrected in the other models that predict much
more stable values of&

�
and&

����. In figure (4.12) the buoyancy force estimate for
the different models is reported. Notice that while the eta-md and eta models are in per-
fect agreement oǹ s estimate, the standard model is affected by a bias on` such that
the vehicles results positively buoyant in allD tests, which is false3. This behaviour of

6 The vehicle was neutrally buoyant during experiment 3, positive during experiments 1 and 2 and negative
during experiments 4 and 5.
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4.10.Linear drag coefficientnz+Qv@p, for the three models in the five experiments. The dashed lines
show the limits of thenz eta-md estimate on the 5 experiments. The ranges of the other two models are
larger.
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Eta Model     
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Eta-md Model  
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4.11.Quadratic drag coefficientn
zmzm+Qv

5@p5, for the three models in the five experiments. The dashed
lines show the limit of then

zmzm eta-md estimate on the 5 experiments. The ranges of the other two models
are larger.
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the standard model is due to the fact that neglecting the propeller-hull interaction, the
standard model over-estimates the applied upward force and tries thus to compensate it
with a large weight. Table I reports the maximum and minimum percentile relative error
{	w
	w
] �ff

	jw

�	w�
of each parameter, for the three suggested models on theD tests. Both the

estimate of the parameter and its standard deviation have been calculated as described
above.

Table I Standard Eta Eta-md

Max {&�
&�

22H I H.�2 I e.D�� I
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`
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H�H I .�S I D�. I

Max {#

#
! �f�D I �f�b I
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#
! 2�� I ��� I

Max {k
k

! ! �2D�. I

Min {k

k
! ! 2H I

Table I shows that the eta model predicts the most stable parameter values of the three.
The extremely imprecise estimates of the momentum drag (	k of test2 is negative!) and
linear drag parameters in the eta-md model indicate that the first and last columns of
the regression matrixM6_ must share large parallel components. This is due to the fact
that the modulus of the revolution rate of the horizontal thrusters?� is very similar at
the different speed regimes considered. Moreover, the poor performance of the eta-md
model is clearly shown in figure (4.13) by the very scattered estimate of# on the five
tests as compared to the eta model. The plane and dashed lines in figure (4.13) represent
the mean value of# according to the eta and eta-md models. Concluding, the results
reported in Table I and in the above plots suggest that the best model among the three
is the eta model. This means that during common slow motion heave maneuvers of the
ROMEO open frame ROV momentum drag forces (3.3.1) due to the propeller revolution
rate of the horizontal thrusters can be modelled by the standard linear and quadratic drag
forces. On the contrary propeller hull interactions are relevant and need to be modeled
separately by an efficiency parameter. The above reported experimental results show
that the loss of efficiency due to the propeller hull interaction in the heave direction is
more thenefI (#6_ ' f�D.). The numerical values of the estimated parameters and
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4.12.Buoyancy forceZ +Q, estimate for the three models in the five tests.
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4.13.Efficiency� parameter estimate. The solid and dashed lines are the mean values of� according to
the eta and eta-md models.
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their standard deviation for the three models are reported in the following:

Model type Parameter values

Eta

;?
=

&� ' EDf 	 �2� �r*6
&���� ' Ee2e	 2H� �r2*62

# ' f�D.	 f�f�

Eta-md

;AA?
AA=

&� ' E2D 	 �e� �r*6
&
���� ' Ee��	 2e� �r2*62

# ' f�De	 f�f�
k ' �D 	 H

Standard

�
&
�
' E��S	 D�� �r*6

&���� ' Eef�	 �eD� �r2*62

(4.17)

At last notice that the value of the eta model heave efficiency parameter estimated by the
above described dynamic tests is remarkably similar to the value that has been measured
by static tests performed in a swimming pool: ROMEO has been fixed to a dynamometer
as shown in figures (4.14) (4.15) and the maximum heave force has been measured in
both the positive and negative vertical directions. Figures (4.16) and (4.17) show
a zoomed view of the dynamometer showing that the maximum vertical force in the
downward direction is almost double then in the upwards one even in static conditions.
Indeed this result validates the developed dynamic model.

4.2.5 Yaw model identification

As far as the yaw axis identification is concerned two type of experiments are ana-
lyzed. They will be called type A and B. The first consists of constant applied torque
by all four horizontal thrusters, the second in constant applied torque by only two hor-
izontal thrusters on the vehicles diagonal. With these kind of tests the loss of thruster
efficiency, with respect to the thrust tunnel measured value, due to propeller hull and
propeller-propeller interactions, can be estimated. The vehicle performed about one
complete circle at each torque value. The angular position measured by a Watson in-
ertial sensor and a Kvh compass has been logged (aboutDff points per trial,�fM5
sampling frequency). The constant yaw rate has been evaluated by least squares (LS)
on the part of signal going fromHr after the beginning of the constant torque (to avoid
the transient) to its end. For the yaw rate�� estimate the following kinematic model has
been assumed

)E|� ' �� |n �
f
n 0 ' M w n 0 (4.18)
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4.14.Maxium static downward thrust
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4.15.Maximum upward thrust.
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4.16.Zoom of the dynamometer in the static maximum upward thrust

4.17.Zoom of the dynamometer in the static maximum downward thrust
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4.18.Percentile yaw rate error for Kvh measurements experiments A (i), B (ii), and for Watson measure-
ments experiments A (iii), B (iv).
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As the variance of the noise0 is unknown, the standard LS solution rather then the WLS
one, is calculated to estimate the parameter vector

	w ' EMAM�3�MA)

and the0 noise and	w parameter variancesj2 andj2

	w
are estimated (4.12) (4.6) as

	j2 ' EE)�M	w�A E� �M	w��*E_�4E)�� _�4Ew��

	j2

	w
' _�@}EEMAM�3�	j2�

The percentile yaw rate estimated error calculated as�ff
	j
	w

�	w�
for experiment A and B

for both Kvh and Watson sensors is extremely small for every trial, as shown in figure
(4.18) This proofs that the yaw acceleration was indeed negligible during the exper-
imental trials and that the estimated constant yawrate is very precise. Notice that the
considered input torques have been chosen to match the typical operating yaw rate range
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(� d��f _i} *rc �f _i} *ro).
The data of experiment A and B has been fitted with four models derived from the

general equation (4.13). They will be denoted as: LQB (linear drag, quadratic drag,
bias term), LQNB (linear & quadratic drag and no bias term), LB (linear drag and bias),
LNB (linear drag and no bias) for the positive direction, the negative ones and putting
positive and negative direction together.

� ' &o �� n &o�o� ��m ��mn K

� ' &o �� n &o�o� ��m ��m
� ' &o �� n K

� ' &o ��

LQB Model
LQNB Model

LB Model
LNB Model

The results of the LS fits for both the Kvh and Watson sensors are reported in the fol-
lowing tables:

Exp. A + & - dir Watson
Model LQB + LB + LQB - LB - LNB - LNB +

&o d�6r*o@_o -1.28 42.613 41.458 33.25 37.498 47.035
&o�o� d�6r2*o@_2o 241.42 - -35.32 - - -

K d�6o 2.05 0.54 -0.3 -0.63 - -
�ffj&o

�&o �
dIo 2066 12.3 41.9 12.7 5.7 4.2

�ff
j&

o�o�

�&o�o� �
dIo 59.43 - 204 - - -

�ffjK
�K�
dIo 50.25 109.4 303 87 - -

au7 dE�6�2o 1.0374 1.7717 3.2592 3.4151 4.1661 2.0681
D (�8 4 5 5 6 7 6

Exp. A + & - dir Kvh
Model LQB + LB + LQB - LB - LNB - LNB +

&o d�6r*o@_o 1 40.41 42.73 32.83 38.966 42.572
&o�o� d�6r2*o@_2o 191.6 - -44.38 - - -

K d�6o 1.89 0.29 -0.53 -0.90 - -
�ff

j&o

�&o �
dIo 1932 10 33.4 11.26 5.75 3.3

�ff
j&

o�o�

�&o�o� �
dIo 48.4 - 138.7 - - -

�ffjK
�K�
dIo 46 174.3 131.8 51.7 - -

au7 dE�6�2o 0.58555 1.2105 2.4789 2.7367 4.4423 1.2902
D (�8 4 5 5 6 7 6
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Exp. A Watson
Model LQB LQNB LB LNB

&o d�6r*o@_o 51.723 54.09 41.623 41.22
&o�o� d�6r2*o@_2o -66.25 -83.81 - -

K d�6o 0.38 - 0.47 -
�ffj&o

�&o �
dIo 10.85 11.27 3.96 4.56

�ff
j&

o�o�

�&o�o� �
dIo 53.5 45.55 - -

�ffjK
�K�
dIo 50 - 42.8 -

au7 dE�6�2o 6.0436 8.0827 7.8032 11.08
D (�8 12 13 13 14

Exp. A Kvh
Model LQB LQNB LB LNB

&o d�6r*o@_o 50.59 50.77 40.64 40.62
&o�o� d�6r2*o@_2o -63.86 -65.12 - -

K d�6o 0.048 - 0.092 -
�ffj&o

�&o �
dIo 10.26 9.79 3.56 3.47

�ff
j&

o�o�

�&o�o� �
dIo 50.52 47.34 - -

�ffjK
�K�
dIo 341.8 - 197.11 -

au7 dE�6�2o 4.7945 4.8287 6.3599 6.4859
D (�8 12 13 13 14

Exp. B + & - dir Watson
Model LQB + LB + LQB - LB -

&o d�6r*o@_o 33.042 45.62 -11.04 35.52
&o�o� d�6r2*o@_2o 41.64 - 223.04 -

K d�6o -0.73 -1.58 -2.53 -0.57
�ff

j&o

�&o �
dIo 87.26 9.92 334 18.92

�ff
j&

o�o�

�&o�o� �
dIo 226 - 78 -

�ffjK
�K�
dIo 286 46.65 -67 142

au7 dE�6�2o 2.2525 2.3408 1.4136 2.1917
D (�8 5 6 3 4

Giovanni Indiveri, Ph.D. Thesis 76



On board sensor based ROV identification

Exp. B + & - dir Kvh
Model LQB + LB + LQB - LB -

&o d�6r*o@_o 21.36 42 0.44 34.17
&o�o� d�6r2*o@_2o 64.12 - 167.24 -

K d�6o -0.0092 -1.49 -2.22 -0.9
�ffj&o

�&o �
dIo 158.89 11.04 6404 16.32

�ff
j&

o�o�

�&o�o� �
dIo 162.77 - 81.8 -

�ffjK
�K�
dIo 27754 54.3 55.76 71.39

au7 dE�6�2o 2.6594 2.8602 1.1241 1.68
D (�8 5 6 3 4

Exp. B Watson
Model LQB LQNB LB LNB

&o d�6r*o@_o 29.34 32.51 38.08 37.39
&o�o� d�6r

2*o@_2o 52.58 28.66 - -
K d�6o -0.47 - -0.35 -

�ffj&o
�&o �

dIo 16.86 17.62 3.48 3.69

�ff
j&

o�o�

�&o�o� �
dIo 54.95 114 - -

�ffjK
�K�
dIo 40.1 - 54.53 -

au7 dE�6�2o 4.4195 6.9175 5.75 7.3617
D (�8 11 12 12 13

Exp. B Kvh
Model LQB LQNB LB LNB

&o d�6r*o@_o 30.57 35.93 37.08 35.7
&o�o� d�6r

2*o@_2o 37.08 -1.26 - -
K d�6o -0.75 - -0.64 -

�ff
j&o

�&o �
dIo 15.23 18.16 3.31 4.38

�ff
j&

o�o�

�&o�o� �
dIo 69.25 2751 - -

�ffjK
�K�
dIo 25.94 - 29.21 -

au7 dE�6�2o 4.384 10.308 5.2151 10.309
D (�8 11 12 12 13

The parameter variances have been calculated by equation (4.6) having the torque
variance been estimated by equation (4.12). The above reported tables are quite signif-
icant to understand the most correct way of modelling a pure yaw motion at standard
operating velocities: the high value of the percentile relative error of the quadratic drag
term indicates that at the considered velocities (�� � �f _i} *r) drag is a linear function
of speed. This is also confirmed by the value of the quadratic drag term itself, that is
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4.19.Yaw rate as a function of applied torque: experiment A, Kvh data

sometimes estimated to be negative, and more intuitively by the plots in figures (4.19)
to (4.22). The bias term, introduced to model eventual unmodeled terms, is actually
unnecessary as confirmed by the value of its estimated relative percentile error, and the
most reliable model is the simple linear no-bias LNB one. The quadratic drag term is
expect to become relevant only at higher yaw rates. The plots in figures (4.19), (4.20),
(4.21) and (4.22) show also that modeling the right hand side and left hand side turns
with different drag coefficients gives only a small fitting improvement that, for the sake
of simplicity, can be neglected without serious loss of information.

At last the efficiency loss due to propeller hull and propeller propeller interactions has
been considered: propeller hull interactions can be reasonably thought to be responsible
of thruster efficiency loss in the B experiment. With reference to figure (4.3) the applied
torque and yaw rate relative to the operation of the only front left (FL) and rear right
(RR) thrusters are denoted by�n and ��

n
: notice that when only the FL and RR thrusters

apply a right turn torque there is no propeller propeller interaction with the rear left
(RL) or front right (FR) thrusters and the outgoing water flow does not interact with the
vehicles hull. As a consequence the efficiency of the two operating thrusters is assumed
to be equal to the one measured in the thrust tunnel. On the contrary, when the same FL
and RR thrusters apply a left hand side yaw rate, i.e.��

3

, their efficiency is reasonably
thought to be reduced by a propeller-hull interaction due to the thruster disposition. As
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On board sensor based ROV identification
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Experiment B

Solid line: Exp. B LNB

Dashed line: Exp. B LNB − & LNB +

* Kvh Experimental data

4.20.Yaw rate as a function of applied torque: experiment B, Kvh data
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On board sensor based ROV identification
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Experiment A
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Dashed line: Exp. A LNB − & LNB +

* Watson Experimental data

4.21.Yaw rate as a function of applied torque: experiment A, Watson data
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