University of Genova

Modelling and Identification of Underwater Robotic Systems

Giovanni Indiveri

Ph.D. Thesis in
Electronic Engineering and Computer Science

December 1998

DIST
Department of Communications, Computer and Systems Science
University of Genova,
Via all’Opera Pia, 13 C.A.P. 16145 Genova, Italy

CNR-IAN
National Council of Research,
Institute for Naval Automation
Via De Marini, 6 C.A.P. 16149 Genova, Italy
Università degli Studi di Genova
Facoltà di Ingegneria

“Modelling and Identification of Underwater Robotic Systems”

Tesi per il conseguimento del
Dottorato di Ricerca in Ingegneria Elettronica ed Informatica

Giovanni Indiveri

Dicembre 1998

Relatore,
Prof. Ing. Giuseppe Casalino,
DIST, Università di Genova

Co-relatore,
Ing. Gianmarco Veruggio,
CNR-IAN

Coordinatore del corso di Dottorato di Ricerca,
Prof. Ing. Riccardo Zoppoli,
DIST, Università di Genova
Quel che è detto è detto.
Ma sarà poi vero? Io non ho accesso
al vero, il mio pensiero ha un andamento
incerto, è sottoposto al vento
di scirocco, ma so per certo
che questi giorni invernalprimaverili
sono un eccesso inutile di luce e a me
non è concesso che attraversare i ponti
e al rosso del semaforo guardare con invidia
qualche ossesso che tra bestemmie e insulti
a passo lento infrange l’armata compatta
delle macchine. E basta, non c’è che questo.

(Patrizia Cavalli,
POESIE (1974-1992)
Giulio Einaudi Editore, 1992)
ABSTRACT

Whatever is the strategy pursued to design a control system or a state estimation filter for an underwater robotic system the knowledge of its identified model is very important. As far as ROVs are concerned the results presented in this thesis suggest that low cost on board sensor based identification is feasible: the detailed analysis of the residual least square costs and of the parameter estimated variances show that a decoupled vehicle model can be successfully identified by swimming pool test provided that a suitable identification procedure is designed and implemented. A two step identification procedure has been designed on the basis of: (i) the vehicle model structure, which has been deeply analyzed in the first part of this work, (ii) the type of available sensors and (iii) the actuator dynamics. First the drag coefficients are evaluated by constant speed tests and afterwards with the aid of their knowledge a sub-optimal sinusoidal input thrust is designed in order to identify the inertia parameters. Extensive experimental activity on the ROMEO ROV of CNR-IAN has shown the effectiveness of such approach. Moreover it has been shown that the standard unmanned underwater vehicle models may need, as for the ROMEO ROV, to take into account propeller-propeller and propeller-hull interactions that have a most relevant influence on the system dynamics (up to 50% of efficiency loss in the applied thrust with respect to the nominal model). It has been shown that such phenomena can be correctly modelled by an efficiency parameter and experimental results concerning its identification on a real system have been extensively analyzed. The parameter estimated variances are generally relatively low, specially for the drag coefficients, confirming the effectiveness of the adopted identification scheme. The surge drag coefficients have been estimated relatively to two different vehicle payload configurations, i.e. carrying a plankton sampling device or a Doppler velocimeter (see chapter 4 for details), and the results show that in the considered surge velocity range ($|u| < 1 m/s$) the drag coefficients are different, but perhaps less then expected. Moreover it has been shown that in the usual operating yaw rate range ($|\dot{\psi}| < 10 \, \text{deg/s}$) drag is better modeled by a simple linear term rather then both a linear and a quadratic one. This is interesting as it suggests that the control system of the yaw axis of slow motion open frame ROV can be realized by standard linear control techniques. For a detailed description of the identification procedure and of the identification results of the ROMEO ROV consult chapter 4.

In the last part of this thesis the issue of planar motion control of a nonholonomic vehicle has been addressed. Inspired by the previous works of Casalino et al.[1] and Aicardi et al.[2] regarding a unicycle like kinematic model, a novel globally asymptotically convergent smooth feedback control law for the point stabilization of a car-like robot has been developed. The resulting linear velocity does not change sign, curvature is bounded and the target is asymptotically approached on a straight line. Applications to the control of underwater vehicles are discussed and extensive simulations are performed in order to analyze the algorithms behaviour with respect to actuator saturation. It is analytically shown that convergence is achieved also in presence of actuator satu-
eration and simulations are performed to evaluate the control law performance with and without actuator saturation. Moreover the generation of smooth paths having minimum square curvature, integrated over length, is addressed and solved with variational calculus in $3D$ for an arbitrary curve parametrization. The plane projection of such paths are shown to be least yaw drag energy paths for the $2D$ underwater motion of rigid bodies.
1 Introduction 9
1.1 Motivations and Objectives 9
1.2 Outline of the work 11
1.3 Acknowledgments 12

2 Kinematics 13
2.1 Vectors 13
2.1.1 Vector notation 13
2.1.2 Time derivatives of vectors 14
2.1.3 On useful vector operations properties 19

3 Dynamics 21
3.1 Rigid body Newton-Euler equations 21
3.2 Fluid forces and moments on a rigid body 26
3.2.1 The Navier Stokes equation 26
3.2.2 Viscous effects 28
 Viscous drag forces 28
 Lift forces 29
3.2.3 Added mass effects 30
 On the properties of ideal fluids 30
 Dynamic pressure forces and moments on a rigid body 33
3.2.4 Current effects 36
3.2.5 Weight and buoyancy 37
3.3 Underwater Remotely Operated Vehicles Model 37
3.3.1 Thruster dynamics 38
3.3.2 Overall ROV Model 40
3.4 Underwater Manipulator Model 41

4 Identification 43
4.1 Estimation approach 43
4.1.1 Least Squares Technique 44
4.1.2 Consistency and Efficiency 47
4.1.3 On the normal distribution case 47
4.1.4 Measurement variance estimation 49
4.2 On board sensor based ROV identification 49
4.2.1 Model structure 50
4.2.2 Thruster model identification 54
4.2.3 Off line velocity estimation 55
4.2.4 Heave model identification 58
4.2.5 Yaw model identification 70
4.2.6 Surge model identification 84
4.2.7 Sway model identification 89
4.2.8 Inertia parameters identification 94

Giovanni Indiveri, Ph.D. Thesis 6
4.2.9 Surge inertia parameter identification 97
4.2.10 Yaw inertia parameter identification 100
4.3 Summary 105

5 Motion control and path planning 107
5.1 2D motion control of a nonholonomic vehicle 107
5.1.1 A state feedback solution for the unicycle model 109
5.1.2 A state feedback solution for a more general model 112
5.2 Path Planning 126
5.2.1 Curvature 128
5.2.2 Planning criterion: a variational calculus approach 129
5.2.3 Solution properties 135
5.2.4 Solution examples 137
1 References 145