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Quel che é detto € detto.

Ma sara poi vero? lo non ho accesso

al vero, il mio pensiero ha un andamento
incerto, € sottoposto al vento

di scirocco, ma so per certo

che questi giorni invernalprimaverili

sono un eccesso inutile di luce e a me

non e concesso che attraversare i ponti

e al rosso del semaforo guardare con invidia
gualche ossesso che tra bestemmie e insulti
a passo lento infrange I'armata compatta
delle macchine. E basta, non c’'é che questo.

(Patrizia Cavalli
POESIE (1974-1992)
Giulio Einaudi Editore, 1992)



ABSTRACT

Whatever is the strategy pursued to design a control system or a state estimation filter
for an underwater robotic system the knowledge of its identified model is very impor-
tant. As far as ROVs are concerned the results presented in this thesis suggest that low
cost on board sensor based identification is feasible: the detailed analysis of the residual
least square costs and of the parameter estimated variances show that a decoupled vehi-
cle model can be successfully identified by swimming pool test provided that a suitable
identification procedure is designed and implemented. A two step identification proce-
dure has been designed on the basigipfthe vehicle model structure, which has been
deeply analyzed in the first part of this wolfi) the type of available sensors afiid)
the actuator dynamics. First the drag coefficients are evaluated by constant speed tests
and afterwards with the aid of their knowledge a sub-optimal sinusoidal input thrust is
designed in order to identify the inertia parameters. Extensive experimental activity on
the ROMEO ROV of CNR-IAN has shown the effectiveness of such approach. More-
over it has been shown that the standard unmanned underwater vehicle models may
need, as for the ROMEO ROV, to take into account propeller-propeller and propeller-
hull interactions that have a most relevant influence on the system dynamicss(% to
of efficiency loss in the applied thrust with respect to the nominal model). It has been
shown that such phenomena can be correctly modelled by an efficiency parameter and
experimental results concerning its identification on a real system have been extensively
analyzed. The parameter estimated variances are generally relatively low, specially for
the drag coefficients, confirming the effectiveness of the adopted identification scheme.
The surge drag coefficients have been estimated relatively to two different vehicle pay-
load configurations, i.e. carrying a plankton sampling device or a Doppler velocimeter
(see chaptet for details), and the results show that in the considered surge velocity
range (u| < 1m/s) the drag coefficients are different, but perhaps less then expected.
Moreover it has been shown that in the usual operating yaw rate rafige (0 deg /)
drag is better modeled by a simple linear term rather then both a linear and a quadratic
one. This is interesting as it suggests that the control system of the yaw axis of slow
motion open frame ROV can be realized by standard linear control techniques. For a
detailed description of the identification procedure and of the identification results of
the ROMEO ROV consult chaptér

In the last part of this thesis the issue of planar motion control of a nonholonomic
vehicle has been addressed. Inspired by the previous works of Casalino et al.[1] and
Aicardi et al.[2] regarding a unicycle like kinematic model, a novel globally asymptot-
ically convergent smooth feedback control law for the point stabilization of a car-like
robot has been developed. The resulting linear velocity does not change sign, curvature
is bounded and the target is asymptotically approached on a straight line. Applications
to the control of underwater vehicles are discussed and extensive simulations are per-
formed in order to analyze the algorithms behaviour with respect to actuator saturation.
It is analytically shown that convergence is achieved also in presence of actuator satu-
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ration and simulations are performed to evaluate the control law performance with and
without actuator saturation. Moreover the generation of smooth paths having minimum
square curvature, integrated over length, is addressed and solved with variational calcu-
lus in3D for an arbitrary curve parametrization. The plane projection of such paths are
shown to be least yaw drag energy paths for2beunderwater motion of rigid bodies.

5 Giovanni Indiveri, Ph.D. Thesis
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Chapter 1
Introduction

The scope of this chapter is to describe the motivations and objectives of this work.

1.1 Motivations and Objectives

Underwater robotics applications have extensively grown in the last twenty years both
for scientific investigations and industrial needs. Technological improvements in the
design and development of the mechanics and electronics of the systems have been fol-
lowed by the development of very efficient and elaborate control strategies. Indeed the
framework of underwater robotics is challenging form both a theoretical and experi-
mental point of view. From a robotics perspective the challenge consists in dealing with
an unknown parameter, highly nonlinear and coupled plant affected by non predictable
noise, e.g. currents, with only partial state feedback provided by noisy and low sam-
pling frequency sensors. This setting affects not onlyctir@rol system synthesis, but

also thenavigationandguidanceones. Following [3], the navigation system is defined

to be a velocity and position estimation module, the guidance system is a subsystem re-
quired to perform navigation system and, eventually, inertial reference trajectory data
processing to compute local velocity and/or position references and the control system
is a subsystem that takes care of generating the actuator inputs on the basis of the guid-
ance system output. Within the classical control literature the above three subsystems
are, roughly speaking, equivalent to the sensing system, the reference generator, some-
times called high level control, and the compensator (low level control).

The interest of the theoretical control system community towards underwater robot-
ics is confirmed by the large and growing number of scientific publications and confer-
ences touching every branch of the field. This research activity has made the state of the
art in the navigation, control and guidance of underwater systems wide and variegate.
As far as the control synthesis problem is concerned, all sorts of approaches have been
analyzed: optimal control, adaptive control, sliding mode control, feedback lineariza-
tion based control, Lyapunov based robust control, gain scheduling control, neurofuzzy
and neural control. Sliding mode control for robust underwater vehicle trajectory track-
ing has been first proposed by the pioneer work of Yoerger and Slotine [4]in 1985. Since
then many other contributions based on sliding mode control theory applied to the con-
trol of unmanned underwater vehicles (UUVs) have been proposed: among the many
others, Cristi et al.[5] have reported and adaptive sliding mode approach combined with
a state observer algorithm, Healey et al.[6] have discussed a multivariable sliding mode
technique based on state variable errors, rather then output errors as accounted in [5],
da Cunha et al.[7] have proposed a variable structure algorithm requiring only position
measurements, Corradini et al.[8] have discussed a MIMO (multi input multi output)
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Motivations and Objectives

discrete time variable structure approach and Bartolini et al.[9] have suggested a sec-
ond order sliding mode technique. Also adaptive control approaches for the control of
UUVs have been analyzed as shown, for example, in the works of Fossen et al.[10] [11],
Ramadorai et al.[12], Sagatun et al.[13] and Yuh [14]. Examples of Lyapunov based and
H, robust control approaches for the synthesis of underwater vehicle control systems
are given by Conte et al.[15] [16] [17], while examples of the use of neural net and neu-
rofuzzy techniques for the control of underwater vehicles are given by the works of J.
Yuh[18] [19] and of Craven et al.[20]. A similarly broad range of techniques have been
proposed for the synthesis of control systems for mobile base underwater manipulators.
This topic is very interesting as the hydrodynamic interactions between the manipu-
lator and the fluid may induce relevant forces on the manipulator base that should be
taken into account by the system model, rather then considered external disturbances,
in order to achieve satisfactory control performance. In particular, the problem of coor-
dinated manipulator-vehicle modelling and control has been addressed, e.g., by Mahesh
et al.[21], Schjglberg et al.[22], McMillan et al.[23], Tarn et al.[24], McLain et al.[25],
Dunnigan et al.[26] and Canudas de Wit et al.[27].

Each of the above reported control approaches for either vehicles, manipulators or
combined vehicle-manipulators systems require at some stage the knowledge of the sys-
tem model and parameters. Each of the above approaches is at some extent capable of
dealing with model uncertainties and system noise, but each of them necessarily needs
the knowledge of a fully identified, perhaps simplifiethminal model. Each of the
above reported control approaches increases its performance as the model uncertainty
is reduced. These may seem obvious considerations that apply to any robotic system,
not only to underwater ones. Indeed if complex land or space robots, e.g. manipulators,
need to be identified experimentally in order to develop a reliable dynamic model, the
urge for system identification applied to underwater systems is even higher as for the
great majority of underwater robots model parameters can not be estianatiedi on
the basis of geometrical or structural information. The point is that given an underwater
bluff body system of known geometry, what will be its drag coefficients or its inertia pa-
rameters? There is no reliable method of answering this question without experimental
data. As far as underwater vehicles are concerned, experimental data for identifica-
tion can be collected either in towing tank facilities or with on board sensors. The first
method relies on consolidated naval engineering methodology and is more precise but
complex, lengthy and expensive. As underwater vehicles configuration is time and mis-
sion dependent, system identification by means of on board sensors is certainly more
appealing being faster, cheaper and easier to be repeated for different configurations
when necessatry.

Another important motivation for the analysis of underwater system modelling and
identification is related to state and, eventually, environment estimation problem. As
pointed out at the beginning of the above discussion, underwater systems sensors gen-
erally have a low sampling rate frequency (typically less th&mn for sonar profilers
and Doppler effect velocimeters) and do not provide full state feedback as not all the
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degrees of freedom are measured. The angular positions and, eventually, velocities are
measured by inertial devices and a compass for yaw, while position with respect to the
environment is measured by means of acoustic devices as long base line (LBL) or ultra
short base line (USBL) positioning systems, or by sonar profilers. If velocity measure-
ments are absent state estimation techniques as Kalman filters (KF) or extended Kalman
filters (EKF) are generally adopted for velocity estimation. Indeed within this frame-
work the need of an identified system model is related not only to control system design
as discussed above, but also to the navigation one. Examples of dynamic model based
navigation and motion estimation filters are given by the works of Caccia et al.[28] [29]
[30] and Smith et al.[31]. The use of a correctly identified and reliable model to design
dynamic filters for state estimation indirectly affects also the control system perfor-
mance if the control strategy uses the estimated state as feedback. These considerations
have motivated the majority of the work presented in this thesis: the development of a
physical based model and its on board sensor based identification strategy for an open
frame ROV. The proposed approach has been tested on the ROMEO ROV of the Insti-
tute for Naval Automation of the Italian National Research Council CNR-IAN and the
experimental results are reported in this work. The proposed modelis based on the clas-
sical Newton Euler unmanned underwater vehicle model presented, among others, by
Yuh [14] and Fossen [32]. It is experimentally shown that such models may need to be
extended in order to take into account propeller propeller, propeller hull and momen-
tum drag interactions that are usually neglected. A two step procedure is proposed for
the identification of a simplified model of the vehicles model: first the drag coefficients
are estimated by constant velocity tests, then the drag coefficients values are adopted to
design a suboptimal experiment for the identification of the inertia parameters.

Given the vehicles model, the motion control problem is addressed in the last part
of this research and a novel algorithm for nonholonomic vehicle control taking into
account the paths curvature is proposed in the last part of this work.

1.2 Outline of the work

The first chapter is mainly devoted to the discussion of the motivations and objectives
of this research. In chapters 2 the adopted vector notation and some general (classical)
kinematic results are presented, while in chapter 3 the dynamics of a rigid body in a
fluid media is described within a Newton Euler formulation and the general equations
of motion of an underwater vehicle are derived and discussed in detail. General con-
siderations regarding underwater manipulators are also briefly addressed. Chapter 4 is
devoted to the presentation of the proposed identification scheme, within the setting of
classical least squares (LS) approach, and of the experimental results. At last Chapter 5
addresses the issue of nonholonomic vehicle motion control with reference to the case
of underwater vehicles. Some original results regarding possible navigation solutions
are presented.
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Chapter 2
Kinematics

The scope of this chapter is to introduce the adopted notation and to review some basic
concepts of kinematics that will be employed.

2.1 \fectors

2.1.1 \fector notation

Free vectors will be denoted with bold characters and no particular superscript or sub-
script, e.g.a, while geometric vectors, i.e. vectors projected on a specific reference
frame, will be bold variables having a left hand side superscript denoting the reference
frame, e.g.’a. The position vector,, of point p with respect to poing will be writ-

ten, according to Grassman’s notationrgs = p — ¢, so if O; andO; are the origins

of reference frames: i > and< j > thenr,; = O; — O, will denoteO;s position

with respect taD,. The projection ofr; ; on reference< n > is "r;; = (r;;).€e1 +
(ri;)ye2+ (ri;).e3 = S0 (r;;)nen being(ey, e,, e3) an orthonormal basis &f n >.

<0> X



\ectors

2.1.2 Time derivatives of vectors

The majority of books on Robotics start with a note on reference frames, rotations and
homogenous transformations. Indeed these concepts are the basis of kinematics and
rely on the idea of time derivative of a vector. This is a tricky topic that is worthwhile
discussing in some detail as a starting point. The building block of classical mechanics
is the concept oévent This is the mathematical abstraction of a primitive idea that can
be defined only heuristically as the limit for null time duration and space occupation
of a certain physical phenomenon as viewed by an observer. The set of all events is
saidspace-timedenoted by, that can be identified with the Cartesian prodfigt<

being F5 the 3D Euclidean space arifil the set of real numbers. The evolution of a
material point can be described by a continuous cuime 6f universe)in V; made by

the sequence it’s events. Given the line of univafssolute timecan be unambiguously
defined through the following:

Axiom of Absolute Time Given two events:,, b € V, their time separation
At(a,b) is unambiguously defined for every observer as a continuous function
At : Vi x V; — %t satisfying

At(a,a) =0
At(a,b) + At(b,c) = At(a,c) Y a,b,c € Vj

so that chosen a reference evetite absolute time can be defined as the continuous

functiont : V;, — R, t(a) = At(0,a). According to the properties dft and to the

definition of¢(a) it follows thatAt(a,b) = t(b) — t(a) showing the independence

of At from the reference event. Eventandb are said to besimultaneousf and

only if At(a,b) = 0.

As a consequence of the above axiom given V; the equationt = ¢(a) defines a
3D hyperplanes; (hyperplane of simultaneijysubset ofi, made of all and only the
simultaneous events af At each fixed instant, 33; can be identified with the physical
space at time, common to every observer. In particular the following axiom is assumed
to hold:

Axiom of Absolute Space Each hyperplan&; for a fixedt € R, is a3D space
having intrinsic Euclidean structure, i.e., in every hyperplap@ Euclidean
distance is defined and all axioms and theorems of Euclidean geometry hold.

It follows that every geometric result at each fixed instant has an absolute character,
i.e., is independent from the observer: for example calif(:;) the set of all geomet-
ric vectors at instant the time dependent vecta(?) is defined asi(t) : ® — V3(%;)
and is an absolute quantity. Notice, however, that at each instgnt; u(t;) andu(z,)
are elements of different spacesXag and’;; are not only different, but disjoint. As
a matter of fact the absolute time and space axioms do not specify what is meant by a
fixed point at different times and thus the same concept of movement can not be de-
fined. In particular asa(t;) € Vi5(E;,) andu(t;) € Va(3;) with Va(3,) # Va(2,)

Giovanni Indiveri, Ph.D. Thesis 14



\ectors

vectorsu(t;) andu(t,) can’t be compared and the incremental r%ﬁ% has no
meaning whatsoever. It follows that even if the concept of vector as a function of time is
well posed and has an absolute meaning, it is impossible to formally introduce the time
derivative of a vector on the only basis of the axioms of absolute time and space. So, as
the concept of event has an absolute meaning, the one of movement and time derivative
of a vector is intrinsically relative, it can not even be formally defined prior to the in-
troduction of the concepts eéference spacandreference frameEach observer maps

the space-time séf; in it's own distinct3D Euclidearreference spacé&’; with a map-

ping functionw : V; — I's that, according to the axiom of absolute space, must have
an invertible and isometric restriction on each that isﬂzt : 2, — '3 is invertible

and isometric so that at each instant every observer has it's own, but coherent to all the
other observers, view of the common absolute space. Given an ob8emdrit’s ref-
erence spacks, it's reference frame< 0 > is an orthonormal set &f constant vectors

in V(T's), beingV (I';) the set of all geometric vectors Ify. Notice that constant vec-

tors in referencec 0 > are generally time dependent as viewed by a different observer
as each observer has it's own mappingThis is the reason why time derivatives of
vectors are relative to a specific observer and not absolute quantities. In particular call-
ing (e1, e, e3) the unit vector of reference 0 > each time dependent vectorif(IT’;)

can be thought of du(t) = 37, u;(t) e; and the time derivative af with respect to
reference< 0 > is <2= y(t) = S 4,(t) e; where the dot indicates the usual ob-

server independent time derivative of a scalar functigh) = <u(t). In the view of

a different moving observer, saythe vectorge;, e,, e3) may not be constant with re-
spect to his reference frame1l >, so the time derivative af with respectto< 1 > is
fet= Iy(t) = 37 (is(t) e;+us(t) =t>e;). To better understand the nature of the term

‘kd%zei remember that each mappingnust be isometric and invertible, so that ortho-
normality among vectors is observer independent. This fact is at the ba&iéssbn’ s

Formula

Poisson Formula Having noticed that orthonormal vectors in a reference frame must
be viewed as orthonormal in each other, and indicating (eithe,, es) an orthonormal
set of vectors fixed to referenee 0 >, the following holds:

d 1 d 1 d 1 . -
2t>(ei-ej):< 2t>ei> -ej—l—el--< 2t>ej> :ei-ej—l—ei-ej:0 (21)

whereé; £ d<di> e;. Next the time dependeat,/, (¢) vector is defined as

h=1 (2.2)

e, : h =1,2,3 orthonormal basis of reference 0 >

15 Giovanni Indiveri, Ph.D. Thesis



\ectors

beingA the vector product. Remembering that for any three veetdssc
A(bAc)=Db(a-c)—c(a-b) (2.3)

being- the scalar product, the following is calculated

3 3
1 . 1
(.00/1 Ne;, = —5 Z [ei A (eh A eh)] 5 Z ey eZ eh) — eh (el eh)]
h=1 h=1
1 3
= ‘|’§ en (& - en) + & 6u] = & (2.4)
h=1
whereé;;, is the Kronecker symbol and the substitutign(é; - e,) = —e;, (e; - ;) is
possible due to equation (2.1). The equation
@ei éé, :(.d()/l/\ei (25)
dt

is known as Poisson’s equation and allows to express the time derivative of a vector with
respect to a given reference in terms of it's derivative with respect to a different refer-
ence. To stress it’s physical meaning, the angular velocity vectafrreference< 0 >

with respect to the fixed referenee 1 > will be denoted asv,/;. Equation (2.2) can

not be considered @efinition of angular velocity, but rather the mathematical demon-
stration of the existence of a free vectathat depends on the only relative motions of
two given frames and allows to calculate the time derivative of a vector with respect to
a reference as a function of the time derivative of the same vector with respect to the
other reference. Remembering tljef, e,, e3) are an orthonormal set of vectors fixed

to reference< 0 >, the time derivative of a vector with respect to a given reference
< 1 > will be:

d<1> d<1> 0 d<1>
= n == 26
°./d d
_ Z<<1> Z> +Z<<1> z> p; =
=1
. d<0> 0 0
= d p—l— wO/l AN p =
[
d<1> d<0>
= A 2.7
= L P m pt+won N p (2.7)

In the above calculatlonE ( p;) e; has been replaced tﬁyfgz p because by

definition a scalap is invariant for rotations, |.eédzzp = dt =LHV < i > < ] >,
Notice thatin (2.6) and (2.7) the geometric veCohas been replaced by the free vector

Giovanni Indiveri, Ph.D. Thesis 16
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<0> <1> s y x

X * X y

2.1.Kinematic chain

p as the time derivative of a vector depends on the reference in which it is evaluated
but not on the frame eventually used to represent the vector itself. From equation (2.7)
some properties of angular velocity can be deduced:

d d
;1; Wi = ZT wWij0 (2.8)
wl/O —= —wo/l (29)
Wejfa = Weib + Wh/a (211)
where the last one follows from
d<a> d<b>
= A 2.12
d<b> d<c>
= A 2.13
deor o e G p (2.14)
dt dt ¢/a '

the substitution of (2.13) and (2.14) in (2.12).

\elocity composition rules Equations (2.7) and (2.11) can be used to calculate the
relationship among the linear and angular velocities of a chainreference frames.
From equation (2.11) follows

Wnjo = Z Wifi—1 (2.15)
i=1

As far as the linear velocity is concerned the linear velocity veetgrof frame< i >
with respect to frame: j > is defined as:

d._ ;
Vi = == (0= 0) (2.16)

17 Giovanni Indiveri, Ph.D. Thesis



\ectors

so that
d<o> do> do>
o = O; — Op) = —— (0, — O~ O;_1 — Op) =
Vi/o 1 ( 0) 1 ( 1)+ 1 (Oi-1 = Oo)
dei
= <dt1> (O; —O0;1) +wit1o N (O; — O;1) +Viapo =
Vijo = Vi1t Wit ATi1;+ Vit (2.17)

From equation (2.17) follows:

Vinjo T ZVz‘/O = Zvi/ifl + Z(Wz‘fl/o ATi1;) + ZVifl/o + Vnjo =
i1 i1 i—1

i1
Vnjo = Zvi/ifl + Z(Wz‘fl/o ATi 1) (2.18)
i=1 i=1

asd ., Vijo = .., Vi_1/0+ Vaso. To understand the nature of the second sum on the
right hand side of equation (2.18) notice that

Z(Wz‘fl/o ATi_1;) = Wo/o ATo1 +Wijo Ao+ wWeo ATas +wsArzs+ -0 =
i=1
Wijo AT1g + [(Woy1 +wijo) ATas] + [(Waye +won +wijp) Argal +-- =

= wipA(rig+rez+r3at o)+ Wy A (rog+r3a+ras+ )+ =

Wi AT +Wo1 ATgy + W3 A3+ =
Z(Wifl/o ATiq;) = Z(wi/ifl ATin) (2.19)
=1 =1

Replacing equation (2.19) in (2.18) the linear velocity of thth frame of a kinematic
chainis calculated as a function of the relative velocities of each other frame with respect

to the previous one, i.e.:

n

Vnjo = Z(Vz’/ifl +wifi1 ATip) (2.20)

=1

Considering the special case= 2 both, the rigid body velocity composition rule, and
the Galilean velocity composition rule can be deduced from (2.20). By direct calculation

Vaj0 = Vij0 T Vo1 + W10 AT
so that if the origin of the third frame is callednstead ther®, follows

Vp/O = Vl/O + Vp/l + w1/0 A I'Lp (221)

Giovanni Indiveri, Ph.D. Thesis 18
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with obvious meaning of notation. The relative velocity, of point p with respect to
Oqis null if p and the frame< 1 > are fixed to the same rigid body. Thus<f 0 >

is a fixed @bsolutd reference and 1 > moves attached to a rigid bodyelative
reference), each poiptof the rigid body will have absolute velocity

Vp/() = Vl/O + w1/0 A Tip (222)

beingr,; = p — O, the position vector op respect ta); by definition. As far as the
Galilean velocity composition rule is concerned, equation (2.21) can be written as

d<0>

Vp/o = Vi = (p— 00— 014 0Op) =
d
= Z—T I'Lp = Vp/l + w1/0 A I'Lp =
d d
jl(;> I'Lp = 21> I'Lp —I— w1/0 A I'Lp (223)

which is the desired Galilean velocity composition rule equation.

2.1.3 On useful vector operations properties

As n-dimensional vector quantities are assumed to be elemeiits‘étthe scalar prod-
uct operation introduced in (2.3) with the symbalan be also thought of as a row by
column product, i.ea-b = al’ bV a,b € ®"*!. The vector produch A b can be
thought of as

0 —das a9 bl
aAb=[an]b 2 S(a)b £ as 0 —a bo (2.24)
—Qo9 aq 0 b3

and more generally any skew-symmetric operator can be thought of as a vector product.
This is an important property that may be worthwhile showing. Consider a generic
skew-symmetric operatod: by definition of skew-symmetry given any vectaisv

the following must holdA(u) - v = —u - A(v) which is equivalent to the statement that

for any skew-symmetric operater and any vectox, A(v) - v = 0. Given a generic
skew-symmetric operatot and an othonormal basig, es, e3), consider the vector

as % Zle e; A A(e;) (axis vecto) and the for any vectov the following holds:

3

anv - GZemme»)”:%Z«v-eme»—<A<ez->-v>ez->=

=1

D (v Ales) + (A(v) - ei) e;) = A(v)

=1

| —
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being—A(e;) - v = A(v) - e; by definition of skew-symmetry oft and > (v -
e;) Ale;) =30 v Ale;) = 30 | A(vse;) = A(v) by the linearity ofA. Two simple
consequences of the above result are
e aisunique (suppose, b such thatd(v) =aAv=bAvthenfa—b)Av=0=
a=bh).
o A has)only one real eigenvalue= 0 relative to the eigenvectar.
A frequent kind of vector operation in kinematic and dynamic calculations is the

double vector product (2.3) A (b A ¢) which is linear in each of the three vectors.
Noting by direct calculation that for any three vect@as b) ¢ = [ca’] b where

€101 C1G2 (143
[ca’] = | coa1 can coa3 (2.25)
€3a1 C3Q2 C3a3

[ca] is theexternal vector produgthe double vector product (2.3) can be written as

aN(bAc) = b(a-c)—c(a-b)=

= ([bc’ —cb))a (2.26)
(I3x3(a-c) —[ca’])b (2.27)
(ba"] — LIys(a-b))c (2.28)

being/s.3 the3 x 3 identical matrix.

Another useful result in vector analysisHelmholtz theorem any finite, uniform,
continuous and vanishing at infinity vector fieltl may be written as the sum of the
gradient of a scalap and the curl of a zero divergence vecigi.e.[33]

VF ¢ %**!uniform, finite and vanashing at infinite-
Jp € RaeR!'|F=Vp+VAaa, V-a=0

As the divergence of the rotor of any vector is identically null, from the above follows
that the divergence of a vector fiekIsatisfying the above hypothesis can be written as
the laplacian of a scalar, i.e.

V-F=V.(Vp)+V-(VAa)=V

moreover if the rotor of' is null (F is conservativg thena itself is identically null
[33]. These results are useful in the hydrodynamic theory of ideal fluids that will be
discussed in the next chapter.
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Chapter 3
Dynamics

Within this chapter the dynamics of a robotic structure will be revised and extended to
a fluid environment. The Euler-Newton formulation will be adopted.

3.1 Rigid body Newton-Euler equations

With reference to figure (3.1) the Newton-Euler equations of motion of the rigid body
will be outlined. Reference: 0 > having origin ino is inertial, while reference: 1 >
having origin inu is fixed to the rigid body having center of mass in paintndicating
with p(r) the density of the body, with it's mass, withy it's volume, withr,, . = (c—u)
(Grassman’s notation, see Chapter 2) the positianvaith respect ta: and with'7" it's

kinetic energy the following hold by definition

m = /Vp(ru,p) av (3.1)

mr,, = /Vp(ru,p)ru,p av (3.2)
1

T £ 2 /V P(Top) Vo Vo dV (3.3)

beingp a generic point of the rigid body}l” an infinitesimal volume element equal to
d®(p —u)in (3.1) and (3.2) and td*(p — o) in (3.3). According to equation (2.17) the
velocity v/, of equation (3.3) can be written as

_ deo> _ doo> d<o> .
Vp/o - dt ( ) - dt (p C) + dt (C ) -
= Vpje+ Wejo NTep+ Vejo =
Vp/o = Vc/o + wc/o A Tep (34)

beingv,,. = %%Z(p— c) = 0 V p by definition of rigid body. Replacing equation (3.4)
in (3.3) Koenig's theorem is derived:

1 1
T = —/pr/o-Vp/odVZ—/ch/o'Vc/odV+
2 Jyv 2 Jv
1
5 [ty @A) av =
14

1 1
= —UCQ/O/pdv—l-—wc/o'/prcp/\<wc/o/\rcp)dvz>
2 vV 2 VvV ’ ’



Rigid body Newton-Euler equations

3.1.Rigid body, refer to text

1 1
T = —mvf/o—l——wc/o-]cwc/o (3.5)

2 2

where the inertia matrix operatdy with respect to the center of mass has been intro-
duced. By definition of inertia operator and remembering equations (2.26), (2.27) and
(2.28) the inertia operator with respect an arbitrary point, ®, s

Lw = / Prup N (WAL, dV = (3.6)
v
= </V p Usxs(Tup - Tup) — Tupry )] dV> w =
I, = [L3x3(Tup - Tup) — Tupre ] dV. (3.7)
[ v P 43x3\Fup U,p u,pLy,p . .

The inertia tensor thus defined is symmetric and positive definite. With reference to
figure (3.1) notice that replacing,, = r., — r., in equation (3.7) thgarallel axis
theoremis immediately derived, i.e.,

1, = / p(Tup) [Laxs(Tep - Tep) — rc,prcT’p] av +
%

+/ p<ru,p) []3><3<rc,u ' rc,u) - rc,urzu] av +
v
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Rigid body Newton-Euler equations

— /Vp(ru,p) [I3x3(2Tcp Tow) — rc,prcT’u — rc,urCT’p] dV.

The firstintegral is just,, by definition, the second one is equaktd I53(r.., Tcu) —
rc,urgu] beingr,, . constant, and the third one is null as by definition of center of mass
the following holds:m r... £ [, p(r.,) 1., dV = 0. Thus for any point: the parallel
axis theorem states that

]u = ]c +m []3><3<rc,u ' rc,u) - rc,urzu] (38)

As the hydrodynamic forces applied on a body are usually derived with respect to the
local reference frame, the standard Newton equations of a rigid body will be now cal-
culated in reference: 1 >. With reference to equation (2.7) the absolute velocity of a
generic poinp of the rigid body in figure (3.1) is

d d d
<0><p_0): <0><U,—O)—|— <0><p_u>:

Volo dt dt dt
d
— VU/O—I— Z]I;(p—u)—l—wl/o/\ru,pé
Vp/o = Vu/o + wl/O A Tyu,p (39)

being4<i=(p — u) = %<2, , = 0 by definition of rigid body. Notice that all involved
vectors are free vectors although according to equation (2.7) the most "natural’ ref-
erence frame where to projeet,,, wi/ andr,, is the local referencec 1 >. The
absolute acceleration will be:

d<0> d<1>
Apfo = Tvp/o = va/o + wWi/0 A Vp/o =
d
— 2115> (VU/O + (AJ1/0 /\ ru,p) + wl/o /\ (VU/O —I— wl/O /\ ru’p) =
d 1 d 1

+wi/o A Vuso +wijo A (Wijo ATyyp)

This equation can be used to calculate the Newton force equation
d
2(;> / p(ru,p)vp/odv _ Z F;a:cternal
v i

for arigid body having a time invariant density, in the local reference. By direct calcu-
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Rigid body Newton-Euler equations

lation it follows that

d d
— Z F;a:cternal (311)

%

wherem is the total time-constant mass of the body, its center of mass position
relative to reference: 1 > as given by equation (3.2y,,, is the absolute velocity of
references< 1 > origin u, w1 its absolute angular velocity arld, F5***" is the

sum of all external forces applied on the body. Again notice that by construction the
most natural reference frame where to project all the free vectors in equation (3.11) is
< 1 >. In particular adopting the standard SNAME notation for marine systems the
following hold:

! (VU/0> = <u7 v, w)T

= (p.q.7)"
= (du/dt,dv/dt,dw/dt)"

0)
1 d<1> T
< wm) — (dp/dt,dq/dt, dr/dr)
U surge
Vo= sway
w heave
p = roll
q = pitch
r

= yaw

The Newton equation for the rotational dynamics is related to the absolute angular mo-
mentum balance. In particular callii, the force moment about pointby definition
the following holds:

extern a. d 0
SNz = [ (ray 0 B ol av

= [ P ot 4V (3.12)

Substituting equation (3.10) in (3.12):

/V<ru,p A ap/O)p<ru,p) dV =
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Fluid forces and moments on a rigid body

d
= / <I‘u’p A <2—11/L>Vu/o + Wi/ A Vu/o>> p<rU,p) dv +
14

d
+ / <ru,p A << <1>w1/0> A ru’p>> p(ryp) dV +
; dt

+ / (ru,p A (wl/o A (wl/O A ru’p)))p<ru’p) dV = Z NZS::fernal
v 7

where the integral in the second linerisr, . A (2=v,/, + w10 A Vay,), the one in

the third is/, (djlfwl/o)by equation (3.6), and the on in the fourth can be shown to be
w10 1,w1/0 by some vector manipulations based on the properties shown in paragraph
2.1.3. The second Newton equation for a rigid body can be thus expressed in the local

reference frame having origin i, as

d d
I, < <1l> w1/0> + wijo A Lywipo+mrye A <<—1>Vu/o + w10 A Vu/0>

dt dt
_ Z st’zzfernal (313)
Equations (3.11) and (3.13) can be written in matrix (space notation) form as:
d
M 271; v+ Clwy) v =1 (3.14)
V= (Vayorwip) € R (3.15)

beingr the generalized velocityy/ € %°<¢ the inertia operatot,'(w) € %¢*¢ the Cori-

olis and centripetal operator amd™ = >~ (F]' N7 )T el ¢ @01 the generalized
torque applied to the body. By direct calculation it can be shown that the inertia and
Coriolis-centripetal operators are given by

ot (o ) o
2 m S(w o) —m S(wi/0) S(Tu,)
C<w1/0) o < m S(I’uyc)‘.‘JS/(wl/()) —S?J]:wl/o) > (317)

being S the skew symmetric vector product operator defined by equation (2.24). It
can be shown [32] that while the parametrization of the positive definite rigid body
inertia matrix given in equation (3.16) is unique, the Coriolis-centripetal matrix can be
parametrized in a non-unigue skew symmetric form. The one given in equation (3.17)
has the advantage of depending only.an,, but as shown in [32] other skew symmetric
parametrizations depending on = (vf/o,wlT/O)T are possible. To characterize the

dynamics of a rigid body in a fluid environment the right hand std€ of equation
(3.14) has to be calculated explicitly.
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Fluid forces and moments on a rigid body

3.2 Fluid forces and moments on a rigid body

When a body moves in a fluid environment it experiences external forces due to the
interaction between itself and the fluid. As can be imagined even intuitively, all these
forces are somehow proportional to the fluids density and to the relative speed and ac-
celeration between the body and the fluid. When a body moves in atmospheric air at
low speeds, as for the majority of the robotic applications, these forces are negligeable.
Onthe contrary in underwater applications, due to the high density of water, these forces
are never negligeable even at the lowest speeds. The calculation of hydrodynamic gen-
eralized forces on a rigid body is a classical and well known topic in fluid dynamics
theory that will thus be here only revised in view of the robotic applications of interest.
For a more detailed discussion refer to [34] [35] [36].

3.2.1 The Navier Stokes equation

The Navier Stokes equation is the equation of motion of an infinitesimal volume of
newtonian, incompressible and time-constant density fluid. To derive this equation the
following notation will be usedp will denote the fluid density (dimension& g/m?)),

F the force per unit volume (dimensiofd/m?]), T;; the stress tensor (dimensions
[N/m?]), p the pressure (dimensiof®/m?]), V' a volume element (dimensiohs?])

of surfaceS (dimensiongm?]) having unit normal vectat = (n, ny,n3)” (dimensions

[m]), u = (u1,us,u3)” the fluids local velocity (dimensionsn/s]) with respect to an
inertial frame. A preliminary result for the derivation of the Navier Stokes equation and
other important fluid dynamic properties 5 tﬂn&nsporttheoremGiven adifferentiable
function f(x, ), the quantity/ (t) = [ [ [, f(x,t)dV whereV(t) is a time evolving

volume of surfaceS( ) has time derivative

///V(t) =/ (x.1) dV+/ S(t)fxt)U ds (3.18)

being U,, the normal velocity ofS. An important special case of equation (3.18) is
related to the situation where the voluvi¢t) and the surface&(¢) are relative to the

same fluid particles. In such situatiéh, = u’n = u;n; (Where repeated indexes are

to be interpreted as summed) and by applying the Gauss theorem to the second integral
on the right hand side of (3.18) the following holds

%// V(t)ﬂx’t) dV:///V(t) <%f(x,t)+v-f(x,t)u> dv  (3.19)

beingV £ (8/0x,,0/0z,,0/0x3) the gradient operator. Substituting the fluid den-
sity p to the functionf for a generic volume element in equation (3.19) the principle of
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Fluid forces and moments on a rigid body
mass conservation implie [ [, (52(x.t) + V- p(x,t)u) dV = 0 and thus

0
o (x,t)+ V- px,t)u=0 (3.20)

for the arbitrary ofl’. If the fluid is assumed incompressible and of constant density in

time it follows b

Ep Xut) =0 . — . =

Vp(x.t) = 0 =V-.u agjju] 0 (3.21)
Equation (3.19) can be applied to the momenpanconservation of a generic volume
V of fluid yielding

%///V(t) pusdl = ///V(t) <%(pui)+8i%(puiuj)> dv =
B / / /V(t) <3%jnj - F> v

As the choice ol/ is arbitrary this last equation implies

0 0 0
8t<pu)+8$J<puu3) 8ijJ+
whichin the hypothesis stated in (3.21) implies the Euler's equation of an incompressible
time-constant density fluid

0 0 170
atuZ + u; 8%-”1 =3 <3%-TZ] + Fl> (3.22)
To finally derive the Navier Stokes equation some further hypothesis on the stress tensor
7 must be made. The balance of moments acting on a free element of Murdplies

its symmetry, i.e.7;; = 7, V ij. Moreover it can be shown [34] that the most general
form of stress tensor of an isotropic fluid satisfying (3.21) and whose volume element
dV does not undergo deformation when moving as a rigid body, i.e. with a velocity
v + w A r beingv andw constant, is

beings;; the Kronecker delta symbaqi the pressure angdtheviscous shear coefficient
(dimensiong K g/ms]). Equation (3.23) definesrewtonianfluid; notice that the vast
majority of fluids, including air and water, indeed exhibit a newtonian behaviour. Re-
placing equation (3.23) in (3.22) and using property (3.21) the Navier Stokes equation
is derived

1 1
gu—{— (u-Viu=--Vp+vViu+-F (3.24)
ot p p

being v the kinematic viscosity = 1/p (dimensiongm?/s]). Equations (3.21) and
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Fluid forces and moments on a rigid body

(3.24) with suitable boundary conditions totally describe the flow of a newtonian in-
compressible time-constant density fluid, but are of relevant practical use only in those
very special cases where the geometry and boundary conditions of the problem allow to
find an analytical solution, e.@.D flows past two parallel wallsGouette flow or flow

in a cylindrical pipe Poiseuille flow). Fortunately it can be shown theoretically and
experimentally that the viscous effects in a fluid flow are relevant only in a very lim-
ited fluid volume next to the separating surface with a rigid badin(boundary layer
theory) and that they decay very rapidly in the bulk of a fluid. As a consequence the
standard approach to estimate fluid forces on a rigid body consists in calculating all in-
ertial pressure effects as if the fluid was inviscid, ie= 0, and then to add the viscous
effects estimated by the thin boundary layer theory or experimentally.

3.2.2 Viscous effects

To get a qualitative understanding of viscous effects in a fluid flow it may be useful
to calculate the order of magnitude of the ratio between inertial and viscous forces in a
general fluid dynamic problem. Assuming that the problem is characterized by velocity
U, lengthi, viscous shear coefficient, gravitational acceleration = 9.81 m/s?, and

fluid densityp, consider the ratios [34]

Inertial force pU?1?
Pz s = = U?/gl 3.25
Gravitational force pgl? /9 ( )
Inertial 22
p o Inertia force _pUln UL/ = ULy (3.26)

Viscous force pUl

being the first the square root of tReoude Numbemand the second tHeeynolds Num-

ber of the specific problem. As both fresh and salt water have a kinematic viscosity
v ranging form0.8 - 107% m?/s to 1.8 - 10~% m? /s for temperatures between and

30° degrees Celsius, it follows that the Reynolds number for typical underwater robotic
systems oflm length-scale andlm /s velocity-scale isk? € [0.6,1.2] - 106. This value
actually suggests that in the bulk of the fluid viscous effects may be neglected with re-
spect to the inertial ones. Notice that the different scaling properties of the Reynolds
Number and the Froude Number with respect to variables of intérgsandy are at

the basis of the difficulty in simulating the behaviour of large marine systems by scaled
models. Roughly speaking viscous forces on a rigid body can be thoughtdoags
forces and liftforces The former are parallel to the relative velocity of the body with
respect to the fluid and the latter are normal to it.

3.2.2.1 Viscous drag forces

By dimensional analysis it can be argued [34] that the drag fbjeg experienced by
a sphere of diametermoving in a fluid of density with velocity U can be written as
Firag = 3pU2S Cy4(R) beingS = wd?/4 the frontal area of the sphere a6if(R) the
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Reynolds dependent drag coefficient. Experimental data reported in [34] relative to a
wide range of different sphere diametérand different fluids shows the validity of that
equation. Moreover the plot @f,; versusk shows a sharp discontinuity at abait=

3 - 10° relative to the transition between the so call@ahinar andturbulent regimes.

For more general slender body geometries it is assumed that the drag coefficoamt

be thought of as the sum offactional termC; and apressureor form termC,, i.e.

Cq = Cf + C,. The frictional term is due to the shear drag experienced by the surface
of the body travelling parallel to the relative velocity while the pressure term is due

to the frontal surface of the body normal@o The frictional drag coefficient’; on a
slender body is usually modeled as equal to the one experienced by a flat plate of equal
surface and Reynolds number. As a matter of fact the frictional drag on a flat plate in
steady state laminar regime can be evaluated by means of the boundary layer theory
yielding Blasius resulC’; = 1.328 R~'/2 which is experimentally shown to hold for

R < 3-10°. In the turbulent regime, i.eR > 3-10° , the semiempirical equation

of Schoenherf.242/,/C; = logio(RCy) holds. It is worthwhile noticing that even
within this somehow ’ideal’ framework of steady state flat plates there is a quite large
domain of Reynold numbers, i.e2 € [10° 2 - 10%], in which the experimental data
points reported in [34] are very scattered indicating that in that rande reéither of

the two models can be thought to be totally reliable. Notice that unfortunately many
underwater robotic systems operate in that range of the Reynolds Nutnbks far

as the pressure drag coefficigfit is concerned, there is no general result of practical
interest. It is usually assumed to be roughly independent fitoamd it's value has to

be determined experimentally for the particular body of interest.

Indeed the classical results outlined above are of little practical interest for underwa-
ter robotic applications. The experimental identification of the drag coefficients appears
to be mandatory as even assuming to work with Reynold numbers far from the lami-
nar/turbulent transition zone, which is highly unrealistic in the most common situations,
the great majority of underwater robotic systems can not be modeled as slender bodies
operating in steady state conditions.

3.2.2.2 Lift forces

Lift forces are another consequence of viscosity. Generally speaking there are two kind
of lift forces: hydrofoil andvortex sheddindift forces. A hydrofoil is a streamlined

thin body that behaves as a lifting surfaces, i.e., that experience a force normal to its
surface in a wing-like fashion. The lift forck; ;, applied to a hydrofoil of are& in a

fluid of densityp moving with steady state relative velocitycan be modeled ds; ;, =

%pUQS Ci(R, o) beinga the angle of attack, i.e., the angle betw@eand the tangent

to the surfaces. As a rule of thumb the hydrofoil lift coefficien®; can be thought to

be proportional tex for small values of«/|, e.g.|a| < 10 deg, and sharply decaying to
zero otherwise as for large values of the angle of attack stall occurs. The phenomenon of
hydrofoil lift is of fundamental importance in a wide range of fluid dynamic applications
as propellers, sails, wings, rudders and all kind of control surfaces. Nevertheless in all
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those situations where sharp surfaces are absent or the typical operating velocities are
small, as for the majority of open frame bluff body ROVs or underwater manipulators,
they can be reasonably neglected.

/@D@\
To qualitatively understand the phenomenon of vortex shedding consider a circu-
lar cylinder at rest in a still fluid. If the cylinder is suddenly accelerated to a constant
regime speed normal to its axis separation of the flow will occur downstream. If up-
stream the flow may still be laminar, two initially symmetric vortices will start to grown
in the downstream wake. These vortices can be shown to be unstable and in the final
regime state of the cylinder they will be antisymmetric. The net result of the vortices
instability is a periodic force normal to the cylinder axis and to its speed. This phenom-
enon is very important in many underwater systems: it is responsible for the strumming
oscillations of cables and it may cause oscillations in many different kinds of under-
water structures. As far as underwater robotic vehicles are concerned vortex shedding
is usually neglected for slow motion open frame or bluff body vehicles. In principle
fast slender body vehicles as many AUVs could be subject to vortex shedding peri-
odic lift forces, but in practice it is not too difficult to employ small control surfaces in
the downstream wake that limit the vortices correlation thus greatly reducing the over-

all vortex shedding lift effect. As far as underwater manipulators are concerned their
cylindrical-like links could be reasonably subject to this phenomenon.

3.2.3 Added mass effects

The viscous effects described in paragraph (3.2.2) are not the only cause of forces ap-
plied to a rigid body moving in a fluid environment: indeed when a rigid body moves

in an otherwise unbounded fluid it is expected to experience inertial forces related to
the kinetic energy that the body itself induces on the whole bulk of fluid. These inertial
forces have little to do with the viscosity properties of the fluid and for standard hy-
drodynamic Reynolds numberB > 10%) they are described within the theory of ideal
fluid.

3.2.3.1 Onthe properties of ideal fluids
A first important property of inviscid fluids is Lord Kelvin's theorem stating the "con-
stancy of circulation in a circuit moving with the fluid in an inviscid fluid in which the

density is either constant or is a function of the pressure’ ( [35] pag. 84). Circulation
I" on a closed circuit moving with the same fluid particles is definedlas $, uldx
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beingu the fluids velocity. The time derivative @fis

d. d [ . [d ., d
dtr_dt Cu dx-j{(dtu )dx—l—j{u <dtdx) (3.27)

where the last integral is equfilu” du which is zero. To evaluate the terfi( £ u”)dx
notice that the left hand side of the Navier Stokes equation (3.24) is ex—aéutTy.
Neglecting viscosity, i.ev = 0, and assuming that the only external force applied to
the fluid is the conservative gravitational force, the right hand side of equation (3.24)
can be written aS%V(p—I—pgh) beingg = 9.81m/s? the gravitational acceleration and

h the vertical Cartesian coordinate. Applying Stokes’ theorem to equation (3.27) and

replacingZu’ = —%V(p + pgh), the following holds:

if—jl{(iuT)dx—/ V/\iu TndS——/V/\ lV( + pgh) | -ndS
dt” ). dt /s dt I = pppg

being S any surface bounded by the closed cuevédn the standard hypothesis of in-
compressible fluid (equation (3.21)) the last integral is equal to zero proving Kelvin's
theorem%l“ = 0. From a physical point of view Kelvin's theorem just states that in
absence of shear dissipative stress and under the action of only conservative forces a
circulation state of the fluid is a steady state. Assuming that the initial state of the cir-
culation isI" = 0 Kelvin's theorem implies that it remains null in time and by applying
Stokes’ theorem again

jl{quX:/(V/\ u)’ ndS=0Vt (3.28)
c S

beingS any surface bounded ky From the arbitrary of it follows that the integrand
of the last integral must be identically null in time, thus showing that an inviscid incom-
pressible fluid with no initial circulation igrotational, i.e. VA u = 0. Notice that
equation (3.28) states that the velocity fi@lds conservative and can thus be written as
the gradient of a scalar potentiali.e. the velocity field of an inviscid incompressible
fluid having initial circulation equal to zero can always be writtemas V¢. More-
over notice that as in the same hypothesis equation (3.21) holds, thesoalst be a
solution of Laplace equatio%?¢ = 0, i.e. aharmonicfunction.

The Navier Stokes equation (3.24) for an inviscid fluid=€ 0) subject to the only
gravitational force can now be written in terms of the velocity potentiab yield
Bernoulli's equation:

0 1
5 Vot (Vo V)Vo = —;Wp + pgh) =

o, 1 1
V(g +35Ve-Ve) = —;V(erpgh)i
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o 1 1
a3V Ve Cl) = —Z(p+ogh) (3.29)

beingC(t) constant with respect to the position, but possibly function of tiGig) is
related to the additive constant of the velocity potentiahd can be always chosen to be
zero. The two terms on the right hand side of equation (3.29) are sometimes referred to
as thedynamic pressurg andhydrostatic pressurggh. The Bernoulli equation (3.29),

as the Navier Stokes equation (3.24) for a viscid fluid, are general equations of motion
that can describe a specific physical problem only if solved with the suitable boundary
conditions. As a matter of fact all the information regarding the geometry of the problem
is embedded in the boundary conditions. For a rigid body in a fluid environment the
correct kinematic boundary condition to impose is that the fluid does not flow through
the separating (moving) surface between itself and the body. With reference to figure

3.2.Rigid body underwater

(3.2), assuminap to be the unit vector normal to the separating surface pointing outside
the fluid, i.e. inside the body, ang,,, the velocity of a poinp on the separating surface
defined as in equation (3.9), the above stated kinematic condition is satisfied if and
only if the fluid velocity V¢ and the surface velocity,,,, in every pointp have equal
projection alongn, i.e.

9
on
As it can be shown [34] that two different harmonic functignse, satisfying condition

O = Vg/ol’l = (Vujo + w10 A r.,) ' n (3.30)
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(3.30) may differ only by a constant, equation (3.30) is actually just the right amount
of "extra’ information needed to solve the Bernoulli equation (3.29). In a real viscous
fluid, equation (3.30) should hold not for poini®n the separating surface of the rigid
body, but for the points laying on the external face of the boundary layer within the fluid.
Due to the negligeable thickness of the fluid boundary layer with respect to the rigid
body for the great majority of robotic applications, it is reasonable to assume equation
(3.30) to hold on the separating surface.

3.2.3.2 Dynamic pressure forces and moments on a rigid body

Within the above developed theory of ideal or inviscid fluid the total fdrgg and
momentN,, experienced by a rigid body in a fluid media due to the only dynamic
pressure can be written as

Foy = /pn ds = —p/ <%¢+ %w-w) nds (3.31)
S S

Ny = [ pleanmds=—p [ <%¢ F3Vo- w) (k. A m) dS (3.32)

being ¢ a harmonic function subject to boundary conditions (3.30)he separating
surfacen a unit normal vector and,, a position vector as shown in figure (3.2). To
explicitly solve equation (3.31) and (3.32) one more simplifying hypothesis is needed:
the unboundedness of the fluid. As shown by Newman in [34] if the fluid is assumed to
be unbounded except for the rigid body itself, equations (3.31) and (3.32) with boundary
condition (3.30) can be solved analytically. To match the boundary condition (3.30) the
total scalar velocity potential can be written in terms of a new vectgrc <! and

the generalized velocity (defined by equation (3.15)) as

d=v"v (3.33)

The analytical solution of equations (3.31) and (3.32) as reported by Newman [34] yields
for each component=1,2,3

6 d 3
<1>
Fap, = —E mjiTVi‘l' E EikViWE My (3.34)
i=1 L k=1
6 T 3 3
Nygp, = det> 3.35
dp; = mMjy3q m v+ ErViWEMg 3,4 + £ mVivmy; |(3.35)
i=1 | k=1 k=1

beingy the generalized velocity defined in equation (3. 15)he angular velocitw; s,
e, the Levi-Civita densitydefined such that th¢" component of the vector product
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between to given vectoesandb is (a A b); = Zz,z:1 €irakby, 1.€.

1,2,3
Eikl = 1|fjl{7l: 2,3,1
3,1,2
1,3,2
Eikl = —1|fjl{7l: 2,1,3
3,2,1
g = 0 otherwise

andm;; the components of thedded mass tensatefined as

0
my 2 p [ gy dS (3.36)

beingy, the components of thg vector introduced in (3.33). Each component/dfias
to be harmonic (i.e Yy, = 0) in the bulk of the fluid and has to satisfy the kinematic
conditions

M _ n¥Vi=1,23 (3.37)
on

o, .

8_n = (ru,p A n)i*?} Vi= 4, 5, 6 (338)

on the separating surface As a consequence each added mass compangigfiven
by equations (3.36) depends only on the shape of the boundary s$ri@ce on the
constant (by hypothesis (3.21)) fluid densjty Equations (3.34) and (3.35) can be
expressed in a more compact form writing the added mass tensor as

(3.39)

being eachV/;; a3 x 3 matrix. With such notation equations (3.34) and (3.35) can be
written as

d

de = —<M11 M12) 2;>l/ — w1/0 A [(Mll M12) I/] (340)
d

Ndp = —<M21 MQQ) 211/?1/ — (.01/0 A [(MQl MQQ) I/] (341)

—Vujo A [(Mi1 Mag) V]

or in spatial notatiorr 4, £ (F |

Ng)"

d<1>

dit

Tap = —My v—Cy(v)v (3.42)
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being

a | S{wijp) 0 My My
CA(V) - S<Vu//o) S(wl/o) ] le Moo ] (3'43)

Notice that from equations (3.40) and (3.41) follows that a rigid body subject to a con-
stant linear velocity, i.ev,,, = const. andw, , = 0, in an infinite inviscid fluid does

not experience any dynamic pressure force (although it may experience a non zero mo-
ment due to the term,;, A [(M11 Mi2) v] in (3.41)); this fact is often referred to as
theD’Alembert paradoxin the fluid dynamic literature. Applying Green’s theorem to

the added mass components definition (3.36) it can be shown [34] that the added mass
tensor/4 of a rigid body in an ideal infinite fluid is symmetrical, i.en;; = m;;.
Moreover starting from the energy conservation principle it can be shown [35] [34] that
M 4 is related to the fluid kinetic energy by the quadratic form equation

1
Tfluid = §VT Myv

beingr the generalized rigid body velocity defined in equation (3.15). This property
shows thatl/ is positive definite.

The practical limit of the above formulation describing the dynamic pressure on a
whatsoever rigid body is related to the calculation of the added mass coeffigignts
These have been evaluated analytically (see for example [37]) only for very special
geometries like spheroids or ellipsoids that are of very limited interest in real applica-
tions. To model real underwater systéiy, should be estimated experimentally. More-
over the above formulation has been derived with a number of ideal hypothesis that are
here summarized:

(1) the body in the fluid is rigid

(2) the fluid is incompressible (equation (3.21))

(3) the fluid is ideal, i.e. inviscid, which implies Lord Kelvin's theorem and the irrota-
tional nature of the fluid as derived in equation (3.28)

(4) the fluid is unbounded except for the rigid body itself

If the first two hypothesis are reasonably satisfied in most applications, the last two
of them require some comments. The assumption of inviscid fluid for the derivation of
the dynamic pressure forces is justified by the large value of the Reynolds number in
the great majority of underwater robotic applications; of course viscous effects as drag
and lift have to be taken into account by independent terms in the equation of motion
of the system. As far as the last hypothesis is concerned an illustrative example of what
happens to a sphere moving in the presence of an infinite fixed rigid wall is reported
from [35]: if x andy are two Cartesian axes respectively normal and parallel to the
wall (refer to figure (3.3)), a sphere of radiushas a kinetic energy given to a first
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approximation byl = %(Au2 + Bv?), beingu = & andv = g the surge and sway
velocities,A = m + sm (1 + 2(£)?), B = m + 3m,(1 + &(£)?), m the mass of the
sphere andr ; the mass of the displaced fluid. By applying Lagrange equations to the

wall

L,

X

3.3.Sphere inpresence of a wall

given kinetic energy the forces along thandy axes follow

9 r3 9 9
Fm = 6—4mfy(—2u —I—U)
9 r3
Fy = —S—meyuv

from which it is seen that the dynamic pressure force tends to repel the sphere if this
moves at constant speed towards or away from the waH (, « # 0) and attracts it if
the sphere tends to move parallel to the walH 0, v # 0).

3.2.4 Current effects

Within the above described theory nothing have been said about eventual fluid currents.
From the definition (3.33) and from the equations (3.37) and (3.38) it should be noticed
that if the fluid is subject to a uniform motiowny..4/,(¢), the rigid body generalized
velocityy = (vf/o, wlT/O)T appearing in equation (3.42) must be replaced by the relative
velocity ((Vu/o — Vfiuido)” wlT/O)T. As a matter of fact such a uniform current would
also induce a buoyancy-like force, sometimes cdlledzontal-buoyancyproportional

to the product of the displaced fluid ; times the fluid acceleratioi@%zvﬂmd/o. These

forces are usually taken into account when underwater robotic systems are simulated
[14][38] [23] [39] but are usually neglected in control and identification schemes asitis
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very difficult to measurer,,;4/, and its time derivative. If the current is not uniform, as

in presence of waves, the situation is even more complex as also the gradient of the fluid
velocity is expected to produce a pressure force on the body. This latter phenomenon,
which is fundamental in the modeling of surface systems, is generally neglected in deep
water, but should be taken somehow into account in shallow water [40] [41] [42] [43].

3.2.5 Weight and buoyancy

Weight and buoyancy generalized force may be modeled as

| . —m I3y3 my I35 1ko
< wa > = 9 l —1m S<ru,c) mf S<ru,B) 1 < lko > (344)

Being m; the displayed liquid volumer: the rigid body massg = 9.81 m/s? the
gravitational acceleratior,, 5 the center of buoyancy local position vectey,. the
center of mass local position vector ald, the projection of ther-axis inertial unit
vector on the local reference 1 >.

3.3 Underwater Remotely Operated \ehicles Model

The rigid body dynamic equations described in the previous sections can be viewed as
the building blocks for more complex robotic system models as the ones of underwater
vehicles or manipulators. In particular the dynamic models of a bluff body UUV will
be derived. Generally bluff body UUVs are designed for low speed operations and are
not equipped with lifting or control surfaces so their dynamic models do not take into
account lift forces. The added mass and viscous drag effects are modeled on the basis of
the rigid body theory described in the previous sections. Although drag is a distributed
force on the surface of the vehicle for the sake of simplicity itis usually modeled within a
lumped parameter formulation. The standard approach to drag modeling consists in the
sum of a linear and quadratic term in the relative generalized six dimensional velocity
v,ie.,

Fdrag =-—-Dyv— DV\V\V’V’ (345)
being the matrixe$),, and D, |, positive definite. A further and very common simpli-
fication [32] consists in assuming, and D, diagonal thus neglecting the viscous
drag coupling. The most common notation for the drag coefficients is

Du = diag(‘)(u;%;ZqupuMq;Nr) (346)
Du\u\ = dia9<Xu\u\ ) }/v\v\ ) Zw\w\; Kp\p\u Mq\q\ ) Nr\r\) (347)

To obtain the complete model of a UUV thruster and cable dynamics are to be consid-
ered. The cable dynamics is sometimes modeled in simulation studies, but even being
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potentially a major source of drag or external applied force on an R@\Wsually ne-
glected in the design of ROV control systems. Indeed as for underwater currents, also
cable forces are usually assumed to be disturbances of a nominal model that neglects
them explicitly. From a practical point of view this can be an acceptable working hy-
pothesis when the vehicle operates in a limited area, the cable is neutrally buoyant and
is not in tension. If these conditions are not satisfied the cable forces applied on an
ROV may be large and should be taken into account by an explicit term in the dynamic
equation. As all the experimental data presented in this work has been collected match-
ing the above stated working hypothesis regarding the cable, in the sequel its dynamics
will not be taken explicitly into consideration but assumed to be a disturbance of the
nominal model.

3.3.1 Thruster dynamics

As far as thruster dynamics is concerned a steady state equation can be obtained by
dimensional analysis [34] yielding

T
pn2d*

= K(J) (3.48)

being.J the advance ratio,

U constant thruster velocity
J = —1 " number of revolutions per second
" | d propeller diameter

T the thrust angy the water density. In the great majority of the applicatidnsn
equation (3.48) is assumed to be constant and the square depend&mre:08 written
asn|n| to take into account the sign of the thrust. Moreover in real application saturation
occurs, thus the usual thrust model is assumed to be [32]

T =anln| —bnuy, (3.49)

beingv, the velocity of advance of the water through the propeller blades. The satura-
tion term may be very important at high speeds, but is usually neglected in standard low
speed operating conditions of ROVs. A dynamic thruster model taking into account the
motor dynamics has been proposed by Yoerger et al. [44] and consists of the following
equations:

d
d—? = [B1—an|n|
T = Cynln|

beinga and 3 constants, and the input torque. Although the topic of thruster dy-
namic modeling and control has received a quite large attention in the past years [45]

Giovanni Indiveri, Ph.D. Thesis 38



Underwater Remotely Operated \ehicles Model

[46] a simple steady state model Bs= a n|n| in which the propeller revolution rate

is assumed to be linear in the applied DC motor voltage, thus neglecting the motor dy-
namics, is actually a very good approximation in all those applications in whétdes

not suddenly change sign. In the sequel the thruster applied force will be modeled as

T=cV|V| (3.50)

beingV the applied DC motor voltage ard constant to be experimentally identified.
A difficulty related with this approach is that, as the identification of ¢fmnstant in
equation (3.50) is generally performed putting the single thruster in a cavitation tunnel
and measuring the thrust as a function of the applied voltage, the propeller hull inter-
actions are neglected. Indeed due to possible propeller hull interactions the operating
conditions of the thruster in the cavitation tunnel may differ from the real ones espe-
cially, but not only, when open frame vehicles are considered. It will be shown in the
next chapter by experimental data relative to the ROMEO open frame ROV that the
propeller hull interaction may be significant and must be taken into account. Another
kind of potentially important hydrodynamic "interference’” phenomenon regarding the
thrusters dynamics momentum dragThis phenomenon occurs when a thruster moves

I

|V

- >

3.4.Momentum drag
normally to its axis. With reference to figure (3.4) notice that in order to produce a flow

parallel to the propeller axis, the fluid must be first accelerated to the same axis normal
velocity V. This produces a drag force in the direction normal to the propeller axis that
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may be modeled as

F,.. = —anV (3.51)
beingn the propeller revolution ratéd/ the axis normal velocity and a constant para-
meter. Momentum drag may be importantin ROV systems as most of them are equipped
with both horizontal and vertical thrusters that allow full translational contradlirand
that frequently operate together. Nevertheless to the knowledge of the author the litera-
ture relative to the modeling of such phenomenon in ROVs is limited to the only work
of K. R. Goheen [38] and papers there cited.

3.3.2 Overall ROV Model

The complete model of an open frame UUV can be written as

(M + MA)dfhl; v+ [Clwrjo) + Calw)v + (3.52)

+Dyv+ Dypvlv| —gW k=14 +6
being all the terms defined as follows:

Mél m I3z —m S(ry.)

m S(ry.) I, ] as in equation (3.16)

N m S(w10) —m S(w1/0) S(Tu,) : ,
C(wi)0) = [ m S(ru.) S(wi o) S (L o) as in equation (3.17)
My M : .
My & | 2 tion (3.39
A l Myr Moy as in equation ( )

S(wi/0) 0 ] [Mn My

as in equation (3.43
My Mm] quation (3.43)

D, = diag(Xy,Ys, Zu, K, My, N,) as in equation (3.46)
D,,‘,,‘ £ diag<Xu\u\7}/v\v\7 Zw‘w‘, Kp‘p‘, Mq‘q‘,NT‘T‘) asin equation (347)

—m Isx3 my Isx3

A
W= —m S(ry.) my S(ryp)

as in equation (3.44)
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k2 ()T
T4, 1S the generalized thruster force

6 disturbance vector
As discussed in the previous sections, the generalized velocity vectiefined in

equation (3.15) has to be replaced with the relative velocity vegtor= ((vy, —
vﬂm-d/o)T,wlT/O)T in order to take into account eventual irrotational uniform constant
underwater currents. Currents with time changing velocity give rise to an additional
hydrodynamic force sometimes called horizontal buoyancy (see section 3.2.4) that can
be modelled and simulated only with the knowledge of the fluids inertial acceleration
which is usually unaccessible. The velocity gradient of non uniform currents may cause
a pressure gradient on the vehicles hull that induces another hydrodynamic load. This
latter phenomenon is generally unmodeled as it would require a complete knowledge of
the current velocity filed.

3.4 Underwater Manipulator Model

The model of an underwater manipulator can be deduced on the basis of the standard
model of a land industrial manipulator and the hydrodynamic forces acting on an un-
derwater rigid body described in the previous sections. Both Lagrange and Newton-
Euler methods have been adopted in the literature for the synthesis of an underwater
arm model. Schjglberg et al.[22] have derived a lumped parameter dynamic model of
an underwater manipulator-vehicle system by an iterative Newton-Euler method. The
proposed model is an extension of the classical land manipulator model as outlined by
Spong et al.[47] to the underwater environment. The resulting dynamic equation has
the same structure of land manipulators, i.e.

M(a)4 + C(q,4)q4+ D(q,9)q +g(q) = T (3.53)

beingq the generalized link coordinate vectof, the sum of the standard inertia matrix

with the added mass oné€, the centripetal-Coriolis matrix including the added mass
terms responsible of the hydrodynamic coupling (D’Alembert paradox) discussed pre-
viously for a single rigid bodyp the hydrodynamic lift and drag generalized forces,

g the weight and buoyancy generalized forces andthe applied joint generalized
forces. The same model structure has been derived with the use of Kane’s equations
by Tarn et al. both for a single-axis manipulator-vehicle system [48] and for multiple
manipulators-vehicle system [24]. A manipulator-vehicle dynamic model may be use
either for simulation purposes, or for control system design.
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As far as simulation is concerned McMillan et al.[23] have described an efficient
simulator based on an articulated-body algorithm taking into account the major hydro-
dynamic forces on a manipulator-vehicle system. They show that the computational
requirement for a mobile six degrees of freedom underwater manipulator is about dou-
ble then for a land system, although the amount of computation still grows linearly with
the degrees of freedom. In their work drag is modeled as a distributed effect on each
link which is approximated with a cylinder. The same kind of drag model is adopted in
[49] where a fixed base patrtially (or totally) immersed manipulator is considered.

Before taking into account the control system design of an underwater-vehicle sys-
tem it is necessary to understand the actual relevance of hydrodynamic effects on an
underwater industrial manipulator and on the overall arm-vehicle system. To this extent
most interesting is the experience of the Deep Submergence Laboratory of the Woods
Hole Oceanographic Institution as reported in [50]: as the major hydrodynamic effect on
a fixed base manipulator is damping, the authors conclude that on their systelha *
performing routine tasks hydrodynamic effects have no significant effect on manipula-
tor control’. On the other hand for a mobile base system the effects of fast manipulator
motion on the vehicle have experimentally shown to be relevant. Intuitively this is
reasonable as it corresponds to a ‘swimming-like” coupling effect between the manip-
ulator and the vehicle. This phenomenon has been extensively analyzed by McLain et
al.[51] [52] [53] [25] both theoretically and experimentally. Their approach basically
consists of two steps: first a model arm, developed on the basis of Sarpkaya’s study of
the added mass and drag coefficients on a cylinder [54], is experimentally identified.
Then the dynamic model of the arm is used to compensate the arm-vehicle coupling
effect by a model-based feedforward signal. Experimental tests carried out with a sin-
gle link arm on an unmanned underwater vehicle [53] show good improvements in the
control performance with only a smab%) increase in vehicle thrust. Nevertheless
the implementation of such approach on a real system would require an accurate and
complete identification of the underwater arm model and a much higher computational
burden with all the drawbacks that this implies. In the words of Sayers et al. \B®n
operating at normal speeds in the real environment the principal benefit resulting from
a full model for combined manipulator/vehicle motion is not the ability to compensate
for dynamic effects on-line, but rather the assistance it provides in planning alterna-
tive motions off-liné. As a matter of fact to avoid a complete off-line identification
procedure an adaptive approach may be considered. Simulation results of an adaptive
scheme for underwater manipulator-vehicle control have been reported by Mahesh et
al.[21] and adaptive algorithms for underwater manipulators have been analyzed also
by Ramadorai et al. [12]. Assuming a full knowledge of the system parameters a feed-
back linearization control of the vehicle manipulator system may be implemented as
suggested Schjglberg et al.[55]. Finally robust control approaches to the problem have
been taken into account in [27].
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Chapter 4
|dentification

In this chapter the topic of underwater robotic system identification will be addressed.
Experimental results regarding open frame ROVs will be outlined.

4.1 Estimation approach

In order to describe the adopted estimation approach some notation will be introduced.
Suppose that a model of some phenomena is given in the form

yo(t) = H(x(t),t,0) (4.2)

beingt the timey,(t) € R*"*! ameasurable quantity (either deterministic or stochastic),
x(t) € ®™*! a time dependent variable afde ?*! a vector of parameters: the
problem of parameter estimation consists in calculating some ’estinéafestimates

will be denoted by a hat) of the parameter veéagiven noisy measuregt) = yo(t)+

e (beinge the measurement noise). Notice that due to the unavoidable measurement
noise the measures(t) of y,(t) are random variables beinfg either a stochastic or

a deterministic model. The approach to the estimation problem is different according
to the nature of the parameter vectr if it is a vector of unknown constants a so
callednon-Bayesiampproach should be followed, otherwis®ayesianone. Within

the Bayesian approach the parameter vector is a random variable having a probability
density function (pdfp(@) and one may argue that a good estimate of it could be the
mode of the pdf o0& conditioned to the measuremests.e.

ply|0)p(6)
p(y)

Within the non-Bayesian approach the parameter vector is an unknown deterministic
guantity which has no probability density function (or better, its pdf is a Dirac function
centered on the unknown valég. A typical non-Bayesian estimator is the maximum
likelihood estimator, i.e. the parameter estim@g,  is the mode of the measurement
probability density function given the deterministic parameter vector,

0 £ arg max p(6ly) = arg max = arg max p(y|0)p(6)

éMLE £ arg max p(yl0) (4.2)

The pdf of the measuremengsgiven® is calledlikelihood functionAy (8) £ p(y|6)

and the estimator described by the above equation is caléedmum likelihood esti-
mator (MLE). The underwater robotic models developed in the previous chapters are
deterministic models that contain only deterministic parameters as masses, drag coeffi-
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cients and geometrical quantities that should be regarded as unknown constants rather
then random variables. This suggests to work within the non-Bayesian framework and
in particular estimation should be performed with a maximum likelihood technique. No-
tice that according to the above statements regarding the stochastic nagtite diie

to the measurement noise in both the Bayesian and non-Bayesian frameworks, the
estimated of the parameter vectd is a random variable either éf is a deterministic
guantity or a stochastic one. Indeed important informations on the model structure can
be deduced analyzing the covariancéofAs a matter of fact the underwater robotic
models to identify are linear in the unknown parameters, thus least squares estimation
can be applied.

4.1.1 Least Squares Technique

Within this paragraph the least squares technique for estimation of models linear in their
parameters will be reviewed in order to introduce the adopted notation and to outline
the criteria that have been used for input and model selection. As all the following
results are standard in the identification literature many of them will be reported only
for reference and without proof.

If the equation (4.1) model happens to be linea in

yo(t) = H(x(t),t) @ = y(t) = H(x(t),1) 6 +e
one can analytically calculate theast squares estimaig.S) 8, s defined as

0,42 argmein Jrs = argmein | y(t) — H(x(t),t) 0 ”2 4.3)

beingJ; s the least squares cost function
Jis = (y(t) — H(x(t),t) 8 )" (y(t) — H(x(t),1) 0) (4.4)

equivalent to the squared norm of the measuring error véletr for a deterministic
model . By direct calculation it follows that

Ors = (H'H)Y *H y (4.5)

showing that the existence of this estimator relies on the existence of the inverse of
H"H (observability conditiol. If the measurement vectgr of a given process is

a stochastic variable having meaiy[y| = HO and covariance’,[(y — HO)(y —

H6)T] = o2I* being[ the identity matrix, then the least squares estimate (4.5) has the
following properties [56]:

(1) itislinear iny

L if H is a deterministic model this is equivalent to the statement that the measurement noise has zero mean
and covariancéo?
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(2) itis unbiasedi.e. E,[0.5] = 6

(3) cov(Bs) = Ey[(01s — 0)(01s — 0)T] = o (HTH) !

(4) cov(@rs) < cov(Byrr) beingfy x the estimate given bgny otherunbiased linear
estimator.

This last property is equivalent to the statement that in the given hypothesis the least
squares estimator is a so calleést linear unbiased estimat¢BLUE). Moreover in
the above equations the functiég is the expectation operator defined as

= /f(Y) py(y) dy

Property(1) is immediate, propertig®) and(3) can be proven by direct calculation
Ey(81s) = Ey[(HTH) " H'y] = (H"H) " H" Ey[y] = (H"H) 'HTH6 = 8
and

0,s—0=H"H)'H'y —0 = (HTH)'H"(y — H) =
cov(Brs) £ Ey[(0rs — 0)(01s — 0)"] =

= (H'H) 'H'Ey|(y — H8)(y — HO)'|[H(H"H) ' =

= (H'H) 'H" o’l HH"H) ' =o*(H"H)™"

cov(@ps) = o?(HTH) (4.6)

Property(4) can be proven as follows [56]: by definition a linear unbiased estinitor
is such thal'y = 8,5 and

Ey@ruw] = By[Cy] = CEy[y] = CHO = 6

for any@ so that

CH=1 4.7)
By direct calculation the covariance &f;;. is
COU(éLUE) = (OLUE )(9LUE —0)'] = E,[(Cy —0)(Cy — 6)"] =

Ey|
Ey[(Cy —CHO+ CHO —6)(Cy — CHO + CHO — 8)"] =
B,[(Cy — CHO)(Cy — CHO)| = CEy [(y — HO)(y — 18)"]C" —
CCto?
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Next consider the positive semi-definite matfix)” beingD = C — (H"H) 'H™.
By direct calculation the following holds:

DDY = (C—(HTH) 'H")(C - (HTH) 'H)T =
= CCT—(H'"H) 'H"CT —CHH"H) '+ (H"H) ' =
cct—H"H) ' >0

which implies property4).

With the same kind of calculations it can be shown that the BLUE estimator for a
process having meahi,[y] = H6 and covariancé’,[(y — HO)(y — H8)'] = S is
given by )

Owrs = (H'S THY 'HTS 1y (4.8)
having covariance

COU(éWLs) é Ey[<éWLS — 9)<9WLS — Q)T] = (HTzilH)il (49)

This BLUE estimator may be regarded a#ighted Least Squarestimator as it can
be seen by direct calculation thf ;s given by equation (4.8) minimizes with respect
to @ the cost function/yy ;¢ defined as

Twis & (y(0) — Hx(1),1) )" £ (y(t) - Hx(1),)8)  (4.10)

Equation (4.6) tells us a great deal about the precision and reliability of the estimates
calculated by the least squares techniquédi ifs a deterministic model then is the
standard deviation of the measurement noise and the covariance of the estimates will be
proportional to it. Even more interesting is the dependaneedf ) on (HTH) .

This matrix depends on the input signgl) that in the identification experiments is
designed by the experimenter keeping into account all the required constraints. Indeed
H is sometimes referred to as thesign matrixin estimation theory. The existence of

the inverse of /7 H is the so calledbservability conditiorwhich of course depends on

the input vecto(t). The relationship between the parameter estimate covariance and
the conditioning of the regressaéf can be understood considering the singular value
decomposition (SVD) [57] off

H = USVT

H ¢ RVPBUeR™MVeRP.UTU=1,VIV=I

S = dia9<317327"'73p)
being sy, sy, - -, 5, the singular values of/. Given this SVD decomposition, from
equation (4.6) it follows that

0_2

Ugi £ (cov(éLS))i = (*(H H)™"); = 0%(579); ' = =

2
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which clearly shows the relationship between the parameter estimate variance, the mea-
surement noise variane€ and the regressor singular valuesx({f) guarantee$/” H

to be nonsingular it is calledersistently excitingor the model. The degree of exci-
tations provided to a system by an input can be measured by several indicators as the
determinant oft/” [, or its trace or its condition number. The issue of designing per-
sistently exciting inputs is the topic of a very wide literature a discussion of which goes
beyond the scope of this work. For a detailed discussion of such topics refer to [56]
[58].

4.1.2 Consistency and Efficiency

The concepts of consistency and efficiency are related to the asymptotic properties of
an estimator as functions of the available “information’. In particular an estimator, for
both a random or deterministic parameter vector, is said ttohsistentf the estimate
converges to the true value in some stochastic sense [59], e.g. in the mean square sense
if

lim E[0—-6)"0—-6)]=0
where the expectation is taken oyeandx. The concept of efficiency is instead related
to the covariance of an estimator. In this regard the covariance of the estimate of either
a random or deterministic parameter vector has to satisfthmer-Rao lower bound
stating that

cov(@) — Mfl) is positive semi-definite
or equivalently )
cov(@) > M !
being M the Fisher information matrixdefined for the deterministic parameter case as
[59]

M= EyKvB In Ay<9)><vﬂ In Ay<9)>T”0:00 = —Fky [ngg In Ay<9>”0:00

beingA, (8) = p(y|@) the likelihood function@, the value of the unknown determin-

istic parameter vectoK, gradient operatoWy = (30-, 70-, > 35)" andV,V, the
Hessian. The Fisher information matrix of a random parameter vector can be defined
as above simply replacing the combined probability density fungtignd) to A, (0).

An estimator is said to befficient if its covariance matrix is equal to the inverse of the

Fisher information matrix.

4.1.3 Onthe normal distribution case

If the processy is normally distributed with mea#’@ and covariance?! the LS es-
timate is efficient and normally distributed with me@ps given by equation (4.5) and
covariance (4.6) [56]. The efficiency of the LS estimator in the normal case can be
proven thanks to the fact thatyifis normal the likelihood function and the Fisher infor-
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mation matrix can be calculated explicitly. The fact that the estimate is itself normally
distributed follows from the fact that linear functions of normal variables are normal
themselves. This last property is very useful as if the parameter vector is known to be
normally distributed with known mean and variance the standard Gaussian hypothesis
testing technique [59] may be applied to the overfitting or model selection problem.
Overfitting of the data by the model can be detected evaluating the variance of the para-
meter estimate. Roughly speaking, if the parameter variance is too large the parameter
itself is said to bestatistically insignificantand it might just as well be put to zero. More
precisely given the two hypothegig andh;:

hO:QiZO

hy:0; %0 }such thap(accepth;| ko true) = o

beingd; normally distributed with standard deviatiof, anda some arbitrary constant
(usually5%), theh; hypothesis is acceptedl;fef—“ > c(a) beinge = 1.96 if a = 5%2. In

percentile notation it can be said that if the barameter relative percentile error is larger

then51.02%, i.e.

Op. 100
100— >
0 1.96

there is 5% confidence limit that the parameter itself is statistically insignificant and
the hypothesig, : 6, = 0 is better to be accepted. Moreover in the normal case the

measurement varianeg normalized sum of the squared residuals (4’%4%%2 =

(y — HO1s)"(y — HO.s)/a? has ay?(v) distribution of mean and standard devia-
tion v/2v beingy £ dim(y) — dim(8) the number of degrees of freedom of the fit. As
a consequence the value of the normalized cost funcﬁtigl(l@m)/a2 can be used to
measure quantitatively the goodness of the fit: a rule of thumb for a moderately good fit
is thaty? ~ v. Actually the value of/;5(01s)/0? is generally used to test for underfit-
ting as ifitis larger then some thresheldixed so that the area under thédistribution
between: and infinity is more them% being usuallyx = 1 or 5, the data is said to be
underfitted by the model. Notice that in order to evaluate underfitting the measurement
variances? must be known. On the contrary, if it is not known, then assuming that the
fit is good, the value oﬂLs(éLS) may be used to estimate the measurement variance
o? as shown in the following section. In such circumstance one is not allowed to use
Jrs (9Ls) to asses underfitting anymore.

As far as deterministic models are concerned,y.bas a joint Gaussian distribution
with mean/78 and known covariancg, the WLS estimatéyy .5 (equation (4.8)) is
equivalent to the MLE estima#,,;» (equation (4.2)). This follows from the fact that

% = 51.02 % (4.11)

If &« = 5% thenc is calculated such that i¥ (x,0, 1) is the normal distribution of having zero mean
and unit variance[“, N (x,0,1)dz =1 —a =0.95 = ¢ = 1.96
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in the given hypothesis the likelihood functidn (0) is

Ay(8) = p(y10) — mexp{—éw— HOY St (y - 116)}

(n £ dim(y)) that is maximized minimizing the exponential argument, i.By s
(4.10). The consistency of the LS, WLS and MLE estimators is a known fact a proof
of which may be found in any text book on estimation theory. As far as the efficiency
of the MLE estimator is concerned the following theorem is reported from [56]: if an
efficient unbiased estimator exists, then it is also the maximum likelihood estimator.

4.1.4 Measurement variance estimation

In order to use equation (4.6) in practice the variasfcef the stochastic procegamust

be known. As noticed in the previous footnote (1), if the made$ deterministic such
variance is the measurement noise variance which is thus usually known. Nevertheless
itis not infrequent that such variance is not known, e.g. i calculated through some
other model of unknown reliability, and must be estimated as well. An unbiased estimate
of o2 is provided by [56]:

52 — JLs(éLs) B (y—HéLS )T(y—HéLS)
~ dim(y) — dim(8) dim(y) — dim(6) (4.12)

In the normal case, i.e. ¥ is normally distributed with mea#/@ and variancer?,
such estimator is optimal in the sense that miaimum variance unbiased estimator
(MVUE) for ¢?[56].

4.2 On board sensor based ROV identification

As discussed in the first chapter of this work, the navigation and control systems design
of variable configuration ROVs are strictly related to the degree of knowledge of the
vehicles dynamic model. As these models are subject to mission dependent changes an
on board sensor based system identification approach is highly recommended in order
to be able to identify the most important dynamic parameters by simple in water tests
rather than complex, time consuming and expensive towing tank techniques. More-
over being the ROV models linear in their parameters a least squares technique will be
adopted as the LS estimator has been shown to be either the maximum likelihood one in
the Gaussian case, or the best linear unbiased estimator in the more general case. Indeed
also other estimation techniques as Kalman filter based ones or estimation error mini-
mization by simulated annealing algorithms have been tested by the author as accounted
in [60] [61]. The experimental results regard the identification of a simplified model

of the heave, surge, sway and yaw axis of the ROMEO ROV of CNR-IAN. ROMEO
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which is depicted in figure (4.1) is abolt: in height,0.9m in width andL.3m in length

and its weight in air is of about50 K'g. As shown in figure (4.1) the bottom of the ve-
hicle carries a skid frame for payload a2dylindrical canisters for batteries while the
upper part is made of a cylindrical canister for the electronidbrusters for propul-

sion in the horizontal pland,for the vertical one, several instruments and sensors and,
on the top, foam for buoyancy. The thrusters, canisters, and instruments are allocated
so that the overall structure of the vehicle is symmetric with respect to boti:thad

yz planes.

4.2.1 Model structure

The experimental identification of a complete ROV model as the one given by equation
(3.52) is not feasible with only standard on board sensors because it would require a
complete state knowledge. Indeed it may be performed with more complex and expen-
sive towing tank facilities as described by Goheen et al.[62] or Fryxell [63], but such
approach is not indicated for systems having a variable and mission dependent config-
uration. Moreover in many standard manoeuvreing conditions, e.g. plane surge motion
or vertical translation, and generally at low operating speeds, the coupling terms may be
reasonably neglected without serious loss of information. As a consequence on board
sensor based identification experiments usually refer to a simplified uncoupled model
that can be deduced from equation (3.52) neglecting the off diagonal elements of the
added mass matrix, the Coriolis and centripetal kinematic coupling terms and the drag
ones. This approximation relies on the facts tfiptthe off diagonal elements of the
added mass matrix of a rigid body having three symmetry planes are identically null
[34], (ii) the off diagonal elements of such positive definite matrix are much smaller
than their diagonal counterparts [38]i)) the hydrodynamic damping coupling is neg-
ligeable at low speeds. The resulting model structure for a single degree of freedom
is:

mf = —1{755 — /{:5‘5‘5]5] + Tg + & (413)
beingm the inertia relative to the considered degree of freed¢itine 1D velocity
(surge, sway, heave, yaw, pitch or roll ratg)andk, ¢ the linear and quadratic drag
coefficients, 7, the applied force or torque anda disturbance modelling otherwise
unmodeled phenomena as cable effects. This kind of uncoupled model structure is cer-
tainly one of the most common in the literature of underwater vehicles: as far as iden-
tification experiments are concerned it has been adopted, for example, to identify the
yaw motion of the IFREMER VORTEX vehicle [64] or the surge motion of the NPS
PHOENIX AUV [65]. Equation (4.13) relative to the heave, surge, sway, and yaw axis
of the ROMEO ROV has been experimentally identified as described in the follow-
ing sections. To estimate the parameter ve@ter (m, ke, k¢ ¢ )" from equation (4.13)
the torquer, is assumed known and a linear regressor is considered. The knowledge
of 7, is actually related to the fact that the relation between applied thruster voltage
and torque has been a priori identified for each single thruster in a thrust tunnel as de-
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l -

4.1.ROMEOQO: the bottom right pictures shows a different payload configuration, a palnkton sampling
equipment
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4.2.The ROMEO ROV
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4.3.Sketched top view of ROMEOSs horizontal thruster configuration.
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scribed in the following section. A potentially serious drawback of such methods could
be related to the fact that the identified thruster model does not take into account the
propeller-propeller or propeller-hull interactions that occur on the vehicle in the operat-
ing conditions. These phenomena are due to the fact that on the great majority of ROVs
more thrusters§ on ROMEOQ) are present on the vehicle and may thus interfere be-
tween themselves or with the hull. As far as the ROMEO ROV is concerned this can be
more easily understood with reference to figure (4.3) in which the horizontal thruster
disposition is schematically depicted. If all four thrusters operate at the same time, itis
reasonable to expect that the front and rear ones on the same side of the vehicle inter-
fere with each other. It is also expected that the front ones will experience a propeller
hull interaction pushing backwards as the rear ones pushing forward. As a consequence
the efficiency of the thrusters is expected to be less then the one measured in the thrust
tunnel. As will be described in the following sections, to model this phenomena an
efficiency parameter has been introduced. This technique has been shown to be effec-
tive for the modeling of both the propeller-propeller interactions and the propeller hull
ones. The experimental results reported in the following show that the propeller-hull
and propeller-propeller interactions have indeed a most relevant effect on ROV dynam-
ics. Nevertheless this topic has not been systematically addressed by the underwater
robotics scientific community: to the knowledge of the author the only relevant refer-
ence to this phenomenon in ROV systems is due Goheen and Jefferys [66] who describe
athruster installation coefficientln their words [66] the installation coefficient takes
*into account the differences in force that the thruster provides when it is operating in
the proximity of the RQ¥s opposed to when it is tested in open water

At last notice that in order to estimafle= (m, k¢, k)" and the eventual efficiency
parameters a two step procedure has been implemented: first a the drag and efficiency
coefficients are estimated by constant velocity experiments, then with the aid of their
knowledge a sinusoidal torque input is designed in order to identify the imertia

4.2.2 Thruster model identification

The modelling and control of underwater vehicle thruster systems has received a wide
attention in the literature of the last years [45] [46] [44]. As shown by Yoerger et. al.[44],
within the theory of ideal fluids a lumped parameter thruster model is given by (section
(3.3.1))

T = Cnln|
g1 — an|n|

beingr the output thruster forcé,;, 5 anda constant parameters,the propeller rev-
olution rate andl’ the input torque. Generally the servo velocity loop of the velocity
controlled thruster system has a negligible time constant with respect to the overall vehi-
cles’ one [19], and thus the thruster dynamics can be neglected. Indeed most often [32]
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the applied thrust is modeled as= C;|n|n — Cs|n|v beingwv the velocity of the fluid
through the thrusterglocity of advanceand—C|n|v a saturation term. In virtue of the
creeping motion of UUVSs, this last saturation term can be neglected in many standard
operational conditions as widely accepted in the literature [32] [14] [44] [64]. More-
over in steady state conditions the neglected thrust drag-t&rnv.|v will be somehow
taken into account by the drag forces considered in the equation of motion (4.13) of the
vehicle. Thus, neglecting the motor dynamics, the thruster force may be modelled as

T =CVI|V| (4.14)

beingC an unknown constant aidthe applied control voltage. In many marine appli-
cations two different’ parameters are requested for the positive and negative propeller
revolution rates, as the thrusters do not behave symmetrically in the two directions, but
most frequently UUV propellers, as ROMEOSs ones, are designed to exhibit a symmetri-
cal behaviour in the two directions. Equation (4.14) has been identified [67] for each of
the eight ROMEDO thrusters putting the whole thruster (motor and propeller) in a thrust
tunnel (figure (4.4)) and measuring the forc@as a function of the input voltage.

Typical results of this measuring and identification method are shown in figure (4.5). It
should be noticed that having neglected the velocity of advance, the proposed model is
expected to be more accurate far from the propeller revolution rate inversion points. In
particular high frequency sign changesipthat may occur during hovering manoeuvres

or would occur with pseudo random binary inputs typical of identification experiments,
produce unmodeled turbulence next to the thrusters making the output thrust computed
by the standard model less accurate.

4.2.3 Off line velocity estimation

As stated above, the proposed identification scheme consists in two steps: first the drag
coefficients are estimated by constant velocity tests, and then their values are adopted
to design a suboptimal inertia identification experiment with a sinusoidal input. Both
steps are based on position measurements only so that a major issue is velocity estima-
tion. As far as the drag experiments are concerned a simple least squares fitting of the
position data is enough, but for the inertia identification tests a different filtering tech-
nique is required. More generally the problem of computing the numerical derivative
of a signal given noisy samples is posed. Among the many possible signal processing
techniques to face this problem attention is focused on the use of the Savitzky-Golay
filters [68]. These are low pass filters designed in the time domain rather then in fre-
guency domain. Within a moving window containingpoints on the left and,. on the

right of the:!" data sample, the, - n,. + 1 points are least squares fitted with a polyno-
mial of degreen and the filtered value of th&" data sample is assumed to be the value

of the polynomial ini. The derivative of the given signal iris thus assumed to be the
derivative of the polynomial in. Notice that the fitted polynomial is adopted in #¥e

point only, as when the moving window is shifted of one point the whole procedure is
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4.4 .Cavitation tunnel tests: preliminary propeller test. The thruster identification has been carried out
putting the whole thruster in the tunnel.
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4.5.Cavitation tunnel identification tests.
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repeated. In order to design a Savitzky-Golay filter the windows left and right lengths
n;, n, and the polynomial degree must be chosen. If the data is processed offtine

can be chosen to be non null so that the filter is non-causal: as far as the polynomial
degreem is concerned it can be chosen adaptively as proposed in [69], but generally
[68] m is fixed to2 or 4. For most applications the moving window can be chosen to
be symmetrical®{; = n,): guidelines for the choice of, andn, may be found in [68].
Savitzky-Golay filters, that are most common among the chemists for noisy spectro-
metric data analysis, are among the most “natural’ tools for derivative estimation. A
detailed analysis of their properties goes beyond the scopes of this work, yet to have
a qualitative understanding of their performance an example based on the equations of
our interest is reported: consider the linear system

being : f = fo+ Asin(wt)
By direct calculation it follows that

Ay sin(wt) — wr(cos(wt) — 1)

b= me T A1)
1

k; (14 w?7?)
fo i fo,  Ajwrt—7sin(wt) — L cos(wt) + L
— — 29 = /T EALW =7 w w
vo= e — (L — et 4t (1 +wr?)

being : 7=m/k

Assumingfy = 35, Ay = 25, w = 0.1963, m = 500, k; = 170, ¢ = 0, the position

2 0n al80s test evolves as shown in the top plot of figure (4.6) having adoptd-a
sampling rate, i.e540 data samples. Adding to this signal the zero mean normal noise
having0.07 standard deviation shown in the bottom plot of figure (4.6) and filtering
the so computed noise corrupted position signal witi*arder Savitzky-Golay filter
havingn, = n, = 10 yields the result displayed in figure (4.7).

4.2.4 Heave model identification

As far as the heave axis is concerned, off-line identification has been performed to es-
timate linear and quadratic drag coefficients and buoyancy force [70]. The data for the
identification experiments consists in depth and thrust measurements collected during
up and down motions performed under the Antarctica ice-canopy during the XllI Ital-
ian Antarctica Expedition (1997-1998). Depth was measured directly by a depth-meter
with a 10 H z sampling rate, while thrust was estimated by the thrust-tunnel identified
model described in the previous subsection. Five different experiments, in the sequel
labelled with numberg to 5, have been performed with inputs of the kind shown in
figure (4.8) each with a different vehicle weight. During experimeand?2 the vehi-

cle was positive, during experimehit was roughly neutral and in the last two it was
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4.6.Above: analytical position signal. Below: additive, zero mean, normal noise having standard devia-
tion 0.07.
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4.7 Estimated and real velocity
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4.8.From top to bottom: Torque, heave position and velocity with respect to time for expesiment

negative. Weight was changed adding on ROMEOSs top, during each experiment, one
diver’s lead weight which reasonably does not affect the hydrodynamic derivatives but
only the overall weight of the system. During all experiments the heading of the vehicle
was kept constant by the action of the heading autopilot. This suggests that momentum
drag due to the horizontal thrusters could be present and should be taken into account.
The heave velocity has been calculated off-line processing the depth signal with a non-
causal Savitzky-Golay polynomial [68] filter of fourth order with a symmetric moving
window of 141 points. As only the stationary values of the velocities were needed for
the identification process, these have been calculated averaging the velocity signal far
from the inversion points to exclude the non stationary system response at each inver-
sion on one side, and the |&8tsamples of each constant input zone that could introduce
bias in the estimated velocity, on the other. The heave motion is described with respect
to a body fixed reference frame having itsxis pointing downward; indicating with

w the heave velocity, witl the thruster applied force, witW the weight and buoy-

ancy force, withm the sum of inertial and added mass, withandk,, | the linear and
quadratic drag coefficients according to subsection (4.2.1) the standard heave model is:

MW = —ky W— kyw wlw|+F+W (4.15)
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wherew and F are assumed to be known far from the inversion points, i.e., in sta-
tionary conditions&y = 0. Equation (4.15) is linear in the unknown parameters and,
calling e, the z axis unit vector, wherv = 0 it can be written in the more convenient
formy, = H, 0, + €, being@, = [ky kww (W'e,)|” the parameter vectoy,, =

T T
wie, wie|wy| —1
T T
S S wye, Wye,|wy —1
[Fie, Fie, ---F. e,]' the measurement vectdy,, = ) . .
wlie, wle,|lw,| -1

the regression matrix angl, the measurement noise. Each stationary velogityis
calculated as described above. As shown in the pictures in figure (4.1) the vertical pro-
pellers of the ROMEO ROV are at the very top of the frame in order to avoid large
turbulence next to the sea bottom that could limit visibility in the presence of sand or
dust. As a consequence when the vertical thrusters push upwards the water flow out of
the propellers interferes with the vehicles structure. Itis then reasonable to assume that
when the thrusters’ force is directed upwards the efficiency of the vertical thrusters will
be affected by a propeller-hull interaction virtually absent when the force is directed
downwards. This suggests to modify equation (4.15) with the introduction of an effi-
ciency parametef such that in stationary conditions the vehicles model can be written
as

NF = ko W+ kyw w|w| - W (4.16)
n=1VFle, >0
n<l1VFle, <0
(e, is thez-axis unit vector pointing downwards) which will be calleth model in the

sequel. Indicating with the subscriptsand« forces and velocities in the downward
and upward directions, the regression form of equation (4.16) can be written as

y, = H,0,+¢,

y, = [FlLe, Fle, .- FL e, 00 ...0/7 ¢ piminxt
[ wle, wle|wy|l -1 0 [ wy w? -1 0 ]
—woe, —wielw,| 1 Flle, wy w1 —Fy
i —W;:fpez —ngézlwup] 1 Fg;)ez ] | Wy wgp IR
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0, = [kw kW\W\ (WTeZ) U]T

beingw andF" the norms of vectorss andF following the standard notation= ||a/.

The third and last considered model takes explicitly into account the momentum drag
discussed in section (3.3.1). As during all the experiments the heading of the vehicle
was kept constant with the horizontal thrusters, their effect on the heave drag may be
modelled byF,,, = —a nyw wheren,, is the mean propeller revolution rate modulus

of the four horizontal thrusters; is an unknown constant parameter andhe heave
velocity. AddingF,,; in equation (4.16) gives rise to tleea-md model which can be
written in regression form as

n=1VFle, >0

Y Y - W :
1 W o+ Ry WIW] = Wt 0 mw {n<1VFTeZ<0

Yma = Hmdemd‘l'gmd

_ T T T T mp)x1
Vg = [Fle,Fle, .- FL e,00-..0]" € R™P)
rw? T To
wie, wpewg| —1 0 Ny Wy €,
T T T
. = wi€e,  WioelWgn| —1 0 nppwie, |
g = =

T T T T
—woe, —w,elw,| 1 Fle, -—n,wle,

T T T
| —we. —woe|w,| 1 Fle —n,wie, |
_ 9 _
W wdl —1 0 Tp1 W4t
2 —1 0
o Wam Wy, Nhm Wdm
- 2
Wy 1 wul 1 4Lyl Nyl Wyl
2
L Wap wup 1 _Fup Toyp Wyp |
_ T T
m - w vwlw z
O = [ ko (W'e.) 0l

Typical values ofn andp range fromd to 7. The identification of the above models

has been performed by the standard least squares technique described in the previous
section. In particular indicating withr = H6 + e the generic heave model, the co-
variance matrix: of the noise vectors is considered unknown as the measurement
vectory is actually calculated through another identified model. Assurhing o2 [

beingo. an unknown constant arddhe identity matrix equations (4.5), (4.6) and (4.12)

may be applied. All the parameter values and relative standard deviations presented in
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4.9.Model residuals/{) and relative estimated standard deviation forzlexperiments

following tables and figures have been calculated respectiveli; agjiven by equa-
tion (4.5), and the square root of the principal diagonal of matfiX [/)~'62, i.e.

e

Go = \/diag((HTH)*lfﬁ) beings? given by equation (4.12). As shown in figure

(4.9) all the models perform well as far as the mean value of the resigiual&/8 is
concerned, but indeed the estimated standard deviatiohthe standard model resid-

uals is from3 to 10 times larger then for the eta or eta-md models. In figures (4.10)
and (4.11) the linear and quadratic drag coefficients are plotted for the different mod-
els and experiments. The extremum values of the coefficients relative to the eta-md
model, which has the smallest variation on théests with respect to the other two
models, are reported by dashed lines. The scattered nature of the linear and quadratic
drag coefficients shown in figures (4.10) and (4.11) for the standard model suggests a
mismodelling error which is partially corrected in the other models that predict much
more stable values df,, andky, . In figure (4.12) the buoyancy force estimate for

the different models is reported. Notice that while the eta-md and eta models are in per-
fect agreement oWs estimate, the standard model is affected by a bia&’@uch that

the vehicles results positively buoyant in allests, which is false This behaviour of

The vehicle was neutrally buoyant during experiment 3, positive during experiments 1 and 2 and negative
during experiments 4 and 5.
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4.10.Linear drag coefficierit,, (Vs/m) for the three models in the five experiments. The dashed lines
show the limits of thek,, eta-md estimate on the 5 experiments. The ranges of the other two models are

larger.
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4.11.Quadratic drag coefficiehy, | (N s%/m?) for the three models in the five experiments. The dashed
lines show the limit of thé,, || €ta-md estimate on the 5 experiments. The ranges of the other two models
are larger.
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the standard model is due to the fact that neglecting the propeller-hull interaction, the
standard model over-estimates the applied upward force and tries thus to compensate it

with a large weight. Table | reports the maximum and minimum percentile relative error

al £ 100% of each parameter, for the three suggested models dnttsts. Both the
estimate of the parameter and its standard deviation have been calculated as described
above.

| Table 1| | Standard Eta | Eta-md |

Max | 2w 228% | 87.2% | 475.1 %
Min Dby 203% | 95% | 154 %

Max | 3= | 86.9% [103% | 11.2%
Min | S 96.2% | 29% | 31%
Max 151 % |664% | 37.4%

AW
W
Min | &% | 88% [76% | 57%
Max | 2% / 105 % | 10.9 %
A7
L]
Ao
Ao

Min ) 21% | 33%

Max / / 125.7 %
Min S / % 28 %
Table I shows that the eta model predicts the most stable parameter values of the three.
The extremely imprecise estimates of the momentum draxj {est2 is negative!) and

linear drag parameters in the eta-md model indicate that the first and last columns of
the regression matrik/,,,; must share large parallel components. This is due to the fact
that the modulus of the revolution rate of the horizontal thrustgrs very similar at

the different speed regimes considered. Moreover, the poor performance of the eta-md
model is clearly shown in figure (4.13) by the very scattered estimageoofthe five

tests as compared to the eta model. The plane and dashed lines in figure (4.13) represent
the mean value of according to the eta and eta-md models. Concluding, the results
reported in Table | and in the above plots suggest that the best model among the three
is the eta model. This means that during common slow motion heave maneuvers of the
ROMEO open frame ROV momentum drag forces (3.3.1) due to the propeller revolution
rate of the horizontal thrusters can be modelled by the standard linear and quadratic drag
forces. On the contrary propeller hull interactions are relevant and need to be modeled
separately by an efficiency parameter. The above reported experimental results show
that the loss of efficiency due to the propeller hull interaction in the heave direction is
more therd0% (7,,,;, = 0.57). The numerical values of the estimated parameters and
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4.12.Buoyancy forcéV (V) estimate for the three models in the five tests.
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4.13.Efficiencyn parameter estimate. The solid and dashed lines are the mean vailuasoofding to
the eta and eta-md models.
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their standard deviation for the three models are reported in the following:

Model type Parameter values
kw = (50 £12) Ns/m
Eta /{?W‘W‘ = (424 + 28) ]\782/777,2
n = 0.57 £ 0.03
kw = (25 £14) Ns/m (4.17)
_ k‘w‘w‘ = (411 + 24) ]\782/777,2
Eta-md n = 0.54 + 0.03
o= 15+8
kv = (116 £ 53) Ns/m
Standard { b = (403 £ 145) Ns?/m?

At last notice that the value of the eta model heave efficiency parameter estimated by the
above described dynamic tests is remarkably similar to the value that has been measured
by static tests performed in a swimming pool: ROMEO has been fixed to adynamometer
as shown in figures (4.14) (4.15) and the maximum heave force has been measured in
both the positive and negative vertical directions. Figures (4.16) and (4.17) show
a zoomed view of the dynamometer showing that the maximum vertical force in the
downward direction is almost double then in the upwards one even in static conditions.
Indeed this result validates the developed dynamic model.

4.25 Yaw model identification

As far as the yaw axis identification is concerned two type of experiments are ana-
lyzed. They will be called type A and B. The first consists of constant applied torque
by all four horizontal thrusters, the second in constant applied torque by only two hor-
izontal thrusters on the vehicles diagonal. With these kind of tests the loss of thruster
efficiency, with respect to the thrust tunnel measured value, due to propeller hull and
propeller-propeller interactions, can be estimated. The vehicle performed about one
complete circle at each torque value. The angular position measured by a Watson in-
ertial sensor and a Kvh compass has been logged (&i90ypoints per trial,10H =
sampling frequency). The constant yaw rate has been evaluated by least squares (LS)
on the part of signal going froms after the beginning of the constant torque (to avoid
the transient) to its end. For the yaw ratestimate the following kinematic model has
been assumed

y(t) = dt+ig+e=HO+e (4.18)
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4.14.Maxium static downward thrust
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4.15.Maximum upward thrust.
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4.16.Zoom of the dynamometer in the static maximum upward thrust

4.17.Zoom of the dynamometer in the static maximum downward thrust
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4.18.Percentile yaw rate error for Kvh measurements experiments A (i), B (ii), and for Watson measure-
ments experiments A (iii), B (iv).

o 1
H £ | 1 | ;02" ;e = noise
t; 1

As the variance of the noigais unknown, the standard LS solution rather then the WLS
one, is calculated to estimate the parameter vector

6= H"H)'H Ty
and thes noise andd parameter variances andog are estimated (4.12) (4.6) as

> = ((y— HO)" (¢ — HB))/(dim(y) — dim(8))
= diag((HTH) 6%

Q»

D N

o

The percentile yaw rate estimated error calculatedioa% for experiment A and B

for both Kvh and Watson sensors is extremely small for every trial, as shown in figure
(4.18) This proofs that the yaw acceleration was indeed negligible during the exper-
imental trials and that the estimated constant yawrate is very precise. Notice that the
considered input torques have been chosen to match the typical operating yaw rate range
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(~ [-10deg /5,10 deg /s]).

T =kap+ k0l +b  LQB Model
T = kot + ko0t LQNB Model
T=ka+b LB Model
T = /W LNB Model
The results of the LS fits for both the Kvh and Watson sensors are reported in the fol-
lowing tables:
Exp. A+ &-dir Watson
Model LOB+| LB+ | LQB-| LB- | LNB- |LNB+
k. [Nms/rad] -1.28 | 42.613| 41.458| 33.25 | 37.498| 47.035
ko [Nms® [rad?] | 241.42] - -35.32 - - -
b [N'm)] 2.05 | 0.54 -0.3 | -0.63 - -
100%[%] 2066 | 12.3 | 419 12.7 5.7 4.2
10072+ [%] 50.43 | - 204 - - -
100%[%] 50.25 | 109.4 | 303 87 - -
Jrs [(Nm)?] 1.0374| 1.7717| 3.2592| 3.4151| 4.1661| 2.0681
v DOF 4 5 5 6 7 6
Exp. A+ &-dir Kvh
Model LOB+ | LB+ | LQB-| LB- | LNB- | LNB+
k. [Nms/rad] 1 40.41 | 42.73 | 32.83 | 38.966| 42.572
k.o [INms® /rad?] | 191.6 - -44.38 - - -
b [N'm)] 1.89 0.29 | -0.53 | -0.90 - -
100“;’] [%] 1932 10 334 | 11.26 | 5.75 3.3
10074 [%] 48.4 - | 1387 - - -
100%[%] 46 174.3 | 131.8| 51.7 - -
Jrs [(Nm)?] 0.58555| 1.2105| 2.4789| 2.7367| 4.4423| 1.2902
v DOF 4 5 5 6 7 6
75

The data of experiment A and B has been fitted with four models derived from the
general equation (4.13). They will be denoted as: LQB (linear drag, quadratic drag,
bias term), LONB (linear & quadratic drag and no bias term), LB (linear drag and bias),
LNB (linear drag and no bias) for the positive direction, the negative ones and putting
positive and negative direction together.
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Exp. A Watson
Model LQB [LQNB| LB | LNB
k. [Nms/rad] | 51.723| 54.09 | 41.623] 41.22
k.- [Nms*/rad?] | -66.25] -83.81 - -

b [Nm] 0.38 - 047 | -
1007 %] 10.85 | 11.27 | 3.96 | 4.56
10072+ [%] 535 | 45.55| - -
1002:[%] 50 - 28| -
Jrs (Nm)?] | 6.0436] 8.0827| 7.8032| 11.08

v DOF 12 13 13 | 14

Exp. A Kvh

Model LQB [LQNB| LB | LNB

k, [Nms/rad] | 50.59 | 50.77 | 40.64 | 40.62
k,ir [Nms*/rad?] | -63.86| -65.12 - -

b [Nm] 0.048| - 0.092| -
1007 %] 10.26 | 9.79 | 356 | 3.47
10072+ [%] 50.52 | 47.34| - -
1002 (%] 3418 - |197.11] -

Js (Nm)?] | 4.7945| 4.8287] 6.3599| 6.4859

v DOF 12 13 13 14

Exp. B + & - dir Watson
Model LB+ | LB+ | LQB-| LB-
k, [Nms/rad] | 33.042| 45.62 | -11.04| 35.52
ko [Nms? Jrad?] | 41.64 - 223.04| -

b [Nm] -0.73 | -1.58 | -2.53 | -0.57
1007 %] 87.26 | 9.92 | 334 | 18.92
10072+ [%] 226 - 78 -
100%:[%] 286 | 46.65| -67 | 142

Jus [(Nm)?] | 2.2525| 2.3408| 1.4136( 2.1917

v DOF 5 6 3 4
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Exp. B + & - dir Kvh
Model LQB+ | LB+ | LOB- | LB-
k. [Nms/rad] | 21.36 | 42 | 0.44 | 34.17
ke [Nms®/rad?®] | 64.12 - 167.24| -

b [Nm] -0.0092| -1.49 | -2.22 | -0.9
1007 %] 158.89| 11.04 | 6404 | 16.32
100%%[%] 162.77| - 818 | -
1002 (%] 27754 | 543 | 55.76 | 71.39
Jis [(Nm)7] 2.6594 | 2.8602| 1.1241| 1.68

v DOF 5 6 3 4

Exp. B Watson

Model LQB [LQNB| LB | LNB

k. [Nms/rad] | 29.34 | 32.51 | 38.08| 37.39
k.- [Nms*/rad?®] | 52.58 | 28.66 - -

b [Nm] 047 | - |-035| -
1007 %] 16.86 | 17.62 | 3.48 | 3.69
10072+ [%] 54.95| 114 | - -

1002 (%] 40.1 - | 5453] -
Jis [(Nm)?] | 4.4195] 6.9175| 5.75 | 7.3617

v DOF 11 12 12 13

Exp. B Kvh

Model LQB [LQNB| LB | LNB

k. [Nms/rad] | 30.57| 35.93 | 37.08 | 35.7
k.o [Nms? /rad?] | 37.08] -1.26 - -

b [Nm] 0.75| - 064 | -
1007 %] 15.23| 18.16 | 3.31 | 4.38
1007 (%] | 69.25| 2751 | - -
100%:[%] 25.94| - 2921 -
Jus [Nm)?] | 4.384] 10.308] 5.2151| 10.309

v DOF 11 12 12 13

The parameter variances have been calculated by equation (4.6) having the torque
variance been estimated by equation (4.12). The above reported tables are quite signif-
icant to understand the most correct way of modelling a pure yaw motion at standard
operating velocities: the high value of the percentile relative error of the quadratic drag
term indicates that at the considered velocities{( 10 deg /s) drag is a linear function
of speed. This is also confirmed by the value of the quadratic drag term itself, that is
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4.19.Yaw rate as a function of applied torque: experiment A, Kvh data

sometimes estimated to be negative, and more intuitively by the plots in figures (4.19)
to (4.22). The bias term, introduced to model eventual unmodeled terms, is actually
unnecessary as confirmed by the value of its estimated relative percentile error, and the
most reliable model is the simple linear no-bias LNB one. The quadratic drag term is
expect to become relevant only at higher yaw rates. The plots in figures (4.19), (4.20),
(4.21) and (4.22) show also that modeling the right hand side and left hand side turns
with different drag coefficients gives only a small fitting improvement that, for the sake
of simplicity, can be neglected without serious loss of information.

At last the efficiency loss due to propeller hull and propeller propeller interactions has
been considered: propeller hull interactions can be reasonably thought to be responsible
of thruster efficiency loss in the B experiment. With reference to figure (4.3) the applied
torque and yaw rate relative to the operation of the only front left (FL) and rear right
(RR) thrusters are denoted by and, : notice that when only the FL and RR thrusters
apply a right turn torque there is no propeller propeller interaction with the rear left
(RL) or front right (FR) thrusters and the outgoing water flow does not interact with the
vehicles hull. As a consequence the efficiency of the two operating thrusters is assumed
to be equal to the one measured in the thrust tunnel. On the contrary, when the same FL
and RR thrusters apply a left hand side yaw rate ui.e.their efficiency is reasonably
thought to be reduced by a propeller-hull interaction due to the thruster disposition. As
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4.20.Yaw rate as a function of applied torque: experiment B, Kvh data
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4.21.Yaw rate as a function of applied torque: experiment A, Watson data
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4.22 Yaw rate as a function of applied torque: experiment B, Watson data
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a consequence the followirgda-modelsare tested and identified:

C Ty ] 1}4 0 X
nLNB = : : [ TIT ] (4.19)
L 0 i 1})7 —T_
e ] [ee 10 k,
nLB = b (4.20)
L0 ] v 1 -7 U
[Ty ] I 1}’+ Uil 0 k,
nLQNB : = : : iy (4.21)
L0 1 [y Y| -7 m
[Ty ] I Yy 1/’+W’+’ L0 kkr
QB |l = Y (4.22)
L 00 [ v v |y n
Exp. B eta-model Watson
Model 7nLNB | nLB | nLONB | 7,LQB
k. [Nms/rad] 36.11 | 39.23| 24.79 | 27.13
k.o [INms® [rad?] - - 62.14 | 57.79
b [Nm] - | -054] - -0.27
n 0.89 | 1.07 0.82 0.92
100?; ‘ (%] 429 | 951 | 23.12 | 28.38
100‘,;“‘ %) - - 49.16 | 57
100‘(;‘[ 7] - [10838] - 209
100 [ 0] 8.06 | 19.58| 8.63 22.9
Jrsg [( m)? 6.13 | 5.693| 4.4542 | 4.3545
v DOF 12 11 11 10
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Exp. B eta-mod Kvh

Model nLNB | nLB | nLQNB | nLQB
k. [Nms/rad] 33.66 | 38.19| 23.08 | 27.84
kvl [Nms®/rad?] - - 54.07 | 43.98
b [N'm)] - -0.83 - -0.51
n 0.8 1.07 | 0.73 0.91
100?,:‘ (%] 429 | 9.01 | 24.89 | 28.95
100‘,;‘7‘ [%] - - 52.85 | 71.08
100‘Jb‘1[ 0] - 69.7 - 117.13
100 [%] 8.70 | 18.57| 10.22 | 24.59
JLs [( m)? 6.1242| 5.159| 4.6204 | 4.3066

v DOF 12 11 11 10

Then < 1 value of they estimate and its very low value of the relative percentile
error shows both, that the expected efficiency loss actually takes place, and that it can
be correctly modeled by the parameter. Moreover the simpieNB model is con-
firmed again to be the best one as both the bias and quadratic drag relative errors given
by the other models are very large. When experiment A is considered also propeller-
propeller interactions among the thrusters on the same vehicle side, i.e. FL-RL and
FR-RR, should be also taken into account. As it is not feasible to distinguish, in this
case, between the loss of efficiency due to propeller-hull and propeller-propeller inter-
actions, they are modeled by a unique parameter as follows. From the above exper-
imental results and the consequent discussion, the most reliable model is the simple
LNB one. Moreover, with reference to the above tables, comparing the residual least
squares cosl; ¢ (4.4) of the experiment B LNB modeli{ s = 10.3(Nm)? for the Kvh
data and/j;s = 7.36(Nm)? for the Watson data) with the experiment;BNB one
(Jrs = 6.12(Nm)? for the Kvh data and/;,s = 6.13(Nm)? for the Watson data), the
nLNB model guarantees the best performance. Intuitively;tie¢B model estimate of
k. is the most reliable as the torque values adopted inltihe8 model are the closest to
the thrust tunnel identified ones. Consequently an efficiency parameter modeling both
the propeller propeller and propeller hull interactions occurring in experiment A can be
introduced as: o

) AT 4 = k) (4.23)
beingk, the linear drag)LNB model estimatey , the experiment A efficiency para-
meter to be identified and, the thrust tunnel model experiment A torque. From the
above tables it follows that the. linear dragjLNB model estimate is

>

» = 36.11 Nms/rad : Watson
= 33.66 Nms/rad : Kvh

>

r
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As a consequence, the LS estimate) pfrelative to equation (4.23) is:

na
Watson : n,=0.854+0.04 = 100—2 =4.7% Jps = 8.26Nm
Na

Ona
Kvh : n,=081+0.03=100—2 =3.7% Jrs = 4.38Nm
Na

where the parameter errors have been calculated according to equations (4.12) and (4.6).

In conclusion the yaw motion of the ROMEO ROV vehicle in the velocity range
[—10deg /s,10deg /s] is best modeled by apLNB model having a linear drag para-
meterk, = 34 + 2 Nms/rad (KVH value). Moreover the above results have shown
that modeling the left hand side and right hand side turns with different models is un-
necessary and that the propeller hull and propeller propeller interactions may reduce the
ideal thruster efficiency of about% or 20%.

4.2.6 Surge model identification

The considered surge model is the same simplified uncoupled one (4.13) adopted for
the other degrees of freedom, i.e.

Myt = —kyu — kypulu| + 7, + ¢ (4.24)

The experimental data used to identify this model consists in the applied voltage on
the four horizontal thrusters and the vehicles position with respect to the swimming
pool wall as measured by3a3 H z sampling rate sonar profiler. In order to identify the
drag coefficients a constant force has been applied to the vehicle and the corresponding
regime value of the surge velocity has been estimated fitting by least squares the position
measurements. Moreover, to evaluate the loss of efficiency in the surge direction due to
propeller propeller and propeller hull interactions, the input force has been applied with
three different thrust mappings denoted in the following by A, B and C: with reference
to figures (4.1), (4.2), (4.3) the three type of experiments consist in

A Only the front thrusters are used: their efficiency, with respect to the thrust tunnel
identified model, is assumed to b&0% when pushing forward and eventually less
when pushing backwards due to interference between the thruster outgoing water
flow and the vehicles hull.

B Allthe 4 thrusters are used: their efficiency, with respect to the thrust tunnel identified
model, is assumed to be eventually reduced by the interference of the front and rear
thruster water flows between each other and with the vehicles hull.

C Only the rear thrusters are used: their efficiency, with respect to the thrust tunnel
identified model, is assumed to k80% when pushing backwards (negativedi-
rection) and eventually less when pushing forward due to interference between the
thruster outgoing water flow and the vehicles hull.

The underlying idea is that when the front thrusters push backwards or the rear one
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4.23.Surge velocity percentile relative error for experiments A, B and C

push forward, their efficiency may be affected by a propeller hull interaction due to the
fact that in such circumstances the outgoing water flow is directed towards the vehicle.
Moreover when allt thruster operate in the surge direction the outgoing and ingoing
flows of the front and rear thrusters may be affected by the presence of each other
thus giving rise to a propeller propeller interaction. The estimated velocity for each of
the three kind of experiments is very precise as shown in figure (4.23). The relative
percentile errors displayed in figure (4.23) have been calculate@bas /4 beinga the

least squares estimate of the surge velocity @ands estimated standard deviation as
given by the application of equations (4.5), (4.6), (4.12) to the kinematic model

r = ut+e¢
x sonar measurements
The nominal applied surge forcésange from10/N to 60N. Indicating withwu 4,
Uy, Ucy, YA, U ,Uc  TAy, TBisTotsTa—» T andro_ the row vectors contain-
ing the norms of each regime surge velocity and corresponding nominal applied thrusts
of experiments A, B and C in the positiye-) and negativé—) directions, the consid-

As estimated by the thrust tunnel model
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ered surge models are

TA+ _ Uay Uap|tay] 0 kT (4.25)
0] | uct Uctluct| —Toy | ;;W
e ] we |0 ||
To- Uo—- Uc—-|Uc- _
= k
i 0 ] i Us UAfluAfl —T A ] T;@Lu\ (426)
TA+ Uay  Uay|uayl 0 k
To— Uc—- Uc_— ’U,C, ’ 0 v
0 = ) I Euju) (4.27)
s up-|ug | —Ta 0
0 Ucy UcylUcy| —Toy “

being (4.25) relative to the forward direction drag coefficients and the rear thrusters
propeller hull interaction efficiency coefficient, (4.26) relative to the backward direc-
tion drag coefficients and the front thrusters propeller hull interaction efficiency coeffi-
cient and (4.27) relative to a model that does not distinguish the positive and negative
directions. Eachy andr vector in the above equations (4.25), (4.26), (4.27) has dimen-

sionl1 x 1. Applying the least squares technique to the three models (4.25), (4.26) and
(4.27) yields

ki = (38£T)Ns/m ki, = (333£24)Ns>/m? 7} = (0.72%0.02)
ky, =(B3£7)Ns/m k,, = (347 £24)Ns*/m* 7, = (0.80 +0.02)

ky = (50 £ 8)Ns/m  ky, = (322 + 26)Ns?/m? 7, = (0.76 + 0.02)

where the parameter errors are the standard deviations as calculated by equations (4.6)
and (4.12). To evaluate the performance of the considered models the residual cost
J1s(0) (4.4) and the relative degreesf freedom are reported:

Ty =5433N? vt =22-3=10 Zs_ 286N

Jg=4516N? v =22-3=19 2 =237N?

Jrs =241.1TN? p=44—-3=41 <L =588N?
showing that in the considered thrust and velocity ranges the best performance is achieved
distinguishing two different models for the forward and backward motion which is not
surprising in consideration of the open frame structure of the vehicle shown in figure
(4.1) and (4.2). For a qualitative evaluation of the reliability of the proposed model refer
to figure (4.24) where the experimental data of the C experiment is fitted by

— - - : T
To. = kyuc + l{:u‘u‘uc,]uc,] ‘ue, <0

+ _ ot + T
NuTor = kyucy +kyuci|ucy] :u eg >0

Giovanni Indiveri, Ph.D. Thesis 86



On board sensor based ROV identification

100

Experiment C

60

N
o

N
o

Surge thrust [N]

-80 I I I I I I I
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Surge velocity [m/s]

4.24. Experiment C fitted data.

Finally the loss of efficiency related to the propeller propeller and propeller hull in-
teractions occurring when all four thrusters are adopted for a forward motion has been
estimated with the data of experiment B: assuming the drag coefficients in the forward
direction to bek,| = (38 £ 7)Ns/m andk, , = (333 £ 24)Ns*/m? the least squares
fitting of the model

kfupy + k‘:ju‘UBJr’UBJr’ = TBNau
yields

Nan = (0.75 £ 0.01)

showing the relevance of the considered phenomenon. The above reported analysis
refers to the vehicles configuration shown in the fir§irom top to bottom and from left
to right) pictures in figure (4.1). To evaluate the sensitivity of the drag and efficiency
parameters on the vehicles payload configuration, experiments A, B and C described
above have been repeated with a plankton sampling equipment mounted on ROMEO
as shown in the bottom right picture in figure (4.1). Fitting these data with the models
given by equations (4.25) and (4.26) yields

kb= (40£12)Ns/m k= (305 £ 38)Ns2/m? n} = (0.68+0.03)
k, =(25£7)Ns/m k, (405 £ 24)Ns*/m?* n, = (0.61 +0.02)

ulul —
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4.25.Estimated surge velocity versus the nominal, i.e. thrust tunnel model, applied force with the plankton
sampling payload configuration.

and .

Jfs=109.6N? v+ =20-3=17 2k = 64N>

Jrg=39.6N? v =21 -3=18 2k =29N’
showing that the considered payload indeed has an important, although not dramatic,
influence of the dynamics of the vehicle. The importance of the efficiency parameter
role may be better understood plotting the estimated regime velocities versus the nom-
inal applied thruster forces relative to the experiments A (only front thrusters) and C
(only rear thrusters) as shown in figure (4.25). The solid line in figure (4.25) refers to
the model

To. = kyuc + k:;‘u‘uc,]uc,] ‘ue, <0
T
MaTor = kytucy k), ucilucy| :u'e; 20
and the dashed one to the model
- - - T
NuTa- = k us + l{:u‘u‘uA,]uA,] cu e, <0
T
Tar = kluay+ k,j‘u‘uA+’uC+’ cue; >0
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4.2.7 Sway model identification
The considered sway axis model is
mio = kv + kypvlv| + 7,4+ ¢

in accordance with equation (4.13). As for the surge motion, the sway drag coefficients
have been estimated by constant applied thru3different thrust mapping configura-
tions:

A With reference to figure (4.3), only the left thrusters are used: their efficiency, with
respect to the thrust tunnel identified model, is assumed &% when pushing
right (positivey direction) and eventually less when pushing left (negajidérec-
tion) due to interference between the thruster outgoing water flow and the vehicles
hull.

B With reference to figure (4.3), only the right thrusters are used: their efficiency, with
respect to the thrust tunnel identified model, is assumed16dy& when pushing left
(negativey direction) and eventually less when pushing right (positi\drection)
due to interference between the thruster outgoing water flow and the vehicles hull.

C Allthe 4 thrusters are used: their efficiency, with respect to the thrust tunnel identified
model, is assumed to be eventually reduced, in hatinections, by the interference
of the left and right thruster water flows between each other and with the vehicles
hull.

The measured data consists in the thruster applied voltage and the vehicles position
as measured bya3 H »z sampling rate sonar profiler with respect to the swimming pool
wall. The sway velocity is estimated applying least squares to the position measure-
ments giving rise to very precise estimates (less th&# arror) as shown by the plots
in figure (4.26).

The velocity standard deviation has been calculated according to equations (4.6) and
(4.12). Given these data and in accordance with the surge case, the folbmiodels
have been considered:

] ] ) -
R e I s B N RS (4.29)
0] | VB+ vpy|vpy| —Thy ] ;;\f\
(o] | 0 1]
TB— o Vp- VUp_|Up— k;*
0 T s wvajua| —Ta o (4.29)
. ' Lo
TA+ VAt UA+’UA+’ 0 X
Tp— o Up— UB*’UBfl 0 v
0 | T |va vafoa] —ra || "o (4.30)
N
0 VB Vi|vBr| —Thy v
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4.26.Relative percentile sway velocity error.
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being7 44,74 ,vay,v4,vB:, s, Tpy andrg_ vectors whose components are the
norms of the thrust tunnel model calculated thrust and the norms of the least squares
estimated sway velocities. As the experimental data has been acquired for nominal ap-
plied thrusts of norms ranging fro®/V to 60V with 5NV increments, each of the above

7 andv vector has dimensionl x 1. Equations (4.28) and (4.29) assume different drag
coefficients in the positive and negatiyelirection, while equation (4.30) assumes full
symmetry with respect to theaxis. The resulting parameter vector estimates according
to the three models are:

kf = (148 +27)Ns/m k) = (3024 127)Ns?/m? n} = (0.87 +0.05)
ky = (104 22)Ns/m K, = (735 121)Ns?/m? n, = (0.95% 0.04)
ko, = (150 £ 20)N's/m k:v‘v‘ — (363 £ 101)Ns?/m? 7, = (0.90 = 0.04)
(6

v\v\ o

and the residual least squares cHst(0) (4.4) is:

Jie =37089N? 1t =922-3=19 Zs =195N?
Jrs=19487N? p~ =22 -3=19 Z2—10.26N?
Jis = STI6N? y=44—3=41 Jus — 21 4N?

The performance of these models can be graphically evaluated by the plots of the ex-
periment A and B data fitted as follows:

T4 = klv+ l{:v‘v‘vlvl :7he, >0

n,Ta = k,v+k, vlv|:7vhe, <0

vulv|
in figure (4.27),

8 = k,v+k, vv|:1he, <0

ntrg = kfv+k

vulv|
UMU!U! :7He, >0

in figure (4.28). As far as the experiment C (all four thrusters) is concerned, its data
can be fitted with a model that takes into account the propeller propeller and propeller
hull interactions of the horizontal thrusters, and assumes the drag coefficients in the two
directions to be:, k:j‘v‘, k, andk ool previously identified by experiment A (only left
thrusters) and B (only right thrusters) as described above. In particular the following is
considered:

netey = kjv+k) eIl The, >0 (4.31)
NeTo- = k,v+ l{:v‘v‘vlvl :The, <0 (4.32)

and with the usual least squares technique the efficiency paramgtensl; ., are found
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4.27.Experiment A fitted data.
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4.28.Experiment B fitted data.
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to be:

nd = (0.7840.02)
ne = (0.7640.03)

The performance of the model taking into account the propeller propeller and propeller
hull interactions of the four thrusters as described by equations (4.31) and (4.32) is
graphically shown in figure (4.29) where the model calculated sway velocity is plotted
with the experimental data of experiment C.

Experiment C

Sway velocity [m/s]

Sway force [N]

4.29.Experiment C fitted data.

4.2.8 Inertia parameters identification

An identification procedure of the inertial parameter of a decoupled model of an UUV is
proposed. The main idea is to consider the drag parameters known and use this knowl-
edge to design a sub-optimal experiment for the identification of the inertial quantities.
The model to identify is given by equation (4.13) here reported for reference

mé = —ke€ — ke €l€] +neTe + e (4.33)

wherem is the inertial parameteg, is the velocity,¢ the accelerationr, the nomi-
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nal cavitation tunnel identified force (or torque),the propeller interaction efficiency
parameterk;, k¢ the linear and quadratic drag coefficients anthe noise. 7 is
considered known as the propulsion system has been modeled and identified as shown
in section (4.2.2). The drag and efficiency coefficients are also assumed known from
the identification experiments described above. Within this framework the design of
the inertia parameter identification experiment has to take into account some important
constraints: due to the absence of accelerometers the identification process must be per-
formed with the only velocity and position measurements and force estimate. Moreover
the adopted propulsion model is known to be very accurate when the propellers do not
suddenly change revolution direction so a second constraint on the experiment design
is to keep constant,s sign during the whole experiment. Supposjrg be

5 — 50 + Af sin(wt) (434)
with £,, A, constants and\, << &, equation (4.33) can be linearized to
mé="F—k & (4.35)

beingk; = ke + 2|&o| keje) and7e = 07 + kejl|€o/¢0- EqQuation (4.35) corresponds to
a first order system

k!
o V(s) = — (F'(s) + m&,) (4.36)
with time constant m
T=mlk = ————. (4.37)
ke 4 2|&o| kel

The linear system (4.36) will have an output as equation (4.34) if the ifpid the
sum of a constant and a sinusoidal wave of frequeandyotice that asn is the sum of
inertia (known) and added mass (always positive) and .|, {, are known, a lower
bound of the time constantis known. Moreover as added mass is expected to be at
most100% of the inertial mass, also an upper bound @ given. This estimate can be
very useful to choose the exiting frequencyf the input force. A common criterion
[58] [56] for choice of the inputs is to maximize the cost function

J = —logdet M (4.38)

being M Fisher’s information matrix which depends on the adopted inputs. In robotic
applications this criteriondcoptimal criterion) has been successfully adopted by Sw-
evers et al. [71] [72] for the identification of an industrial arm. Classical identification
theory [56] states that a first order system as (4.36) can be optimally identified (accord-
ing to criterion (4.38)) with a single sine input of frequency

1
ot = ———. 4.39
Wopt \/§T ( )

The input force for the inertia identification experiments is thus chosen to be of the
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form:

f(t) = f() + Af sin(woptt) (440)
The f, constant is selected so that its corresponding regime velggdgyn the standard
operating rangel ; is selected to bé& ; < f, so that force inversions are avoided and
the d-optimal frequency,,, is selected in accordance to equation (4.39). The system
time constant needed to compute,,, is a priori estimated by equation (4.37) as the
drag coefficients are known amd is supposed to be equal to the inertia inrajg, plus
a term ranging from 0% to 100% of m,;, that models added mass. The outpih of
the linear system (4.35) with inpét = f(¢) given by equation (4.40) is reported for
reference:

- - Ay sin(wopit) — WoptT(cos(wopet) — 1)
1 = t/T @ 1 — e ¥T =7 op op op
£< ) 506 + k:l < ¢ ) + k:l 1 + wgptTQ

beingr given by equation (4.37).
To cope with the absence of an acceleration measurement, equation (4.13) must be
integrated giving

mE) —m &g = (1) — ke (C(1) — Co) — ke 1(t) +50 (4.41)
mé&(t) —mé&y—keCy—bt =y
beingy(t) fo T¢(¢v)dv, (t) the position I (t) fo )|dv, andb an eventual

bias due to the mean efand to the numerical mtegratlons performed to calcutedad

1. Notice that the integration process does not affect the d-optimal frequency choice
as the integral of equation (4.35) has its same structure, in particular the same time
constant. As the drag constants, velocity and position are known equation (4.41) can be
written in discrete-time regression fonm= H @ being

[ — k£C1 - kf\f\ll
Py — keCy — ke L

y = : (4.43)
L on — keCn — keje| dn
& -1 -t

w= | (.40
L&y —1 —in

0 = [m7<m£0+kfgo)7b]T (445)

and N the number of samples. Notice that the linearized system frequency related to
equation (4.37) for the translational DOFs is below the Nyquist frequehég/{ =)
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relative to the slowest on-board sens@&$1i = for sonars). For surge, ~ 38Ns/m,
Kyl = 333Ns?/m? assumingn ~ 675Kg andug = 0.2 m/s, v = 1/7 = k;/m =
Rut 20 Runl — 0.25H 2,

Within this approach the uncertainty on the inertia parameter estimate is expected
to be at least of the same order of magnitude of the drag parameter uncertainty. As es-
timating the inertian is somehow equivalent to estimating the systems time constant
T = m/k;, by standard error analysis it follows that/7 = 6k, /k; ~ 10%. Moreover
the applied force, assumed to be known perfectly, will be actually affected by some
error that must be reasonable thought to be of ab@it Numerical errors will be also
introduced in the computation gfas due to the absence of a velocity measurement the
I quantity is calculated filtering the acquired position signal with an off line Savitzky-
Golay polynomial filter to evaluate the velocifyand then integrating numericalfy¢|
over time. Numerical integrations must be also performed on the position signal and on
the applied fore in order to compuge These considerations and the fact that the sam-
pling rate of the position measurements is very |8 {7 = for sonars used for the linear
DOFs andl0 H = for the yaw) suggests that the inertia parameter identification by only
on board position measurements can not be expected to be very precise. Nevertheless
the estimated value is generally good enough to provide reliable and useful models for
modeling and control purposes.

4.2.9 Surge inertia parameter identification

The above described technique has been experimentally implemented on the surge and
yaw axis of the ROMEO RQW he surge experiments have been performed applying

an input force as the one given by equation (4.40) with the only front thrusters: with
reference to figure (4.3) and to section (4.2.6) this means that the drag coefficients are
assumed to b&, = (38 £ 7)Ns/m, ky, = (333 £ 24)Ns*/m? and the efficiency
parameted. The results of three different experiments labeled SWifrde inertia),

SUI2 and SUI3 are reported. In accordance with the input design criteria described in
the previous section the applied force Nrewton, in each experiments is:

ot
fu=35+25 sin(%)

beingT = T, = 26.8s, 15, = 40.2s and’l; = 53.6s in the SUI1, SUI2 and SUI3
experiments corresponding to frequenaigs= 0.23H z, vy = 0.16 Hz, v3 = 0.12H 2.

With reference to section (4.2.6) the regime veloeigycorresponding to the constant
surge forcef, = 35N can be estimated to bg ~ 0.2m/s so that assuming the drag
coefficients to bé:, = 38Ns/m andk,,| = 333N s*/m? as stated above and the inertia

m = 450 + 50%(450) = 675K g equations (4.37) and (4.39) suggest an optimal input
frequencyw,,, ~ 0.15H 2. Figure (4.30) shows the data relative to the SUI1 experiment.
From the top left plot in clock wise direction the following are displayed: the input force,
the 3.3H = sampling rate sonar profiler position measurement, the difference between
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4.30.Surge inertia parameter estimation experimen. For a detailed describiton of the plots refer to the
text.
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4.31.Surge inertia parameter identification experiment.

the trapezoidal rule numerical integral of the velocity signal (last plot) and the measured
position and the velocity signal computed with a Savitzky-Golay offdifierder filter
having a symmetrical window &f1 points. The solid curves in the position and force
plots refer to the data actually adopted for the identification process while the dashed
ones show the whole batch of data. Notice in the sonar measurement data the presence of
two multiple echoes at the beginning of the batch. Applying the LS estimation technique
outlined in the previous section to the data of the SUI1 experiment, the inertia parameter
is estimated to be

SUI1 experimentm = (884 £ 55)Kg
being the estimation error computed on the basis of equations (4.12) and (4.6). Itis
worthwhile remembering that this estimation error calculation method is approximated
as the measurement variarcan equation (4.6) is replaced by its estimated value given
by equation (4.12). This is equivalent to the tacit assumption [68] that the fitis "good’,
i.e. Jps(0)/v ~ 1 beingr the number of degrees of freedom of the fit. In the present
situation the fit is actually quite poor @5(9)/11 = 687N2s%. As a consequence, and
on the basis of the considerations developed in the previous section, the above reported
inertia parameter estimation error must be underestimated. This is also confirmed by
the scattered values of obtained processing the data of experiments SUI2 and SUI3:

SUI2 experiment :  m = (554 £ 31)Ky
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SUI3 experiment: m = (632 £ 39)Ky

and by the large values of the residual cabts(8) /v = 676 N2s* (SUI2) andJ,s(8) /v =
1032N2s% (SUI3). Figure (4.31) shows the data relative to the SUI2 experiment. From
the top left plot in clock wise direction the following are displayed: the nominal input
force, the3.3H z sampling rate sonar profiler position measurement, the difference be-
tween the trapezoidal rule numerical integral of the velocity signal (shown in the last
plot) and the measured position and the velocity signal computed with a Savitzky-Golay
off line 4 order filter having a symmetrical window dfl points. The solid curves

in the position and force plots refer to the data actually adopted for the identification
process while the dashed ones show the whole batch of data.

As pointed out in the previous section the proposed methodology for ROVs iner-
tia parameter identification is very simple, low cost, reasonably fast and based only
on standard on board sensors: the major drawback being a relatively large estimation
error. Nevertheless as standard ROV manoeuvres are performed with very limited ac-
celerations, the above estimated values of the inertia parameters, although affected by
an apparently large estimation error, can be successfully adopted to model the system
for filtering and control purposes. To quantitatively evaluate the reliability of the esti-
mated surge model the position measurement data of experiments SUI1 and SUI2 has
been compared with the model predicted position relative to the same input forces. In
figure (4.32) the position measurement of experiment SUI1 has been plotted with the
position predicted by two models having inertias= 550 K g andm = 860K ¢ and the
drag coefficients fixed to their nominal values = 38 N's/m andk,, = 333N s?/m?.
while in figure (4.33) the position measurement of experiment SUI2 has been plotted
with the position predicted by two models having inertias= 705K g (~ mean of
550K ¢ and860K g) and drag coefficients, = 38Ns/m, ky. = 333Ns?/m?* and
ko = (38 + T)Ns/m, kyu = (333 + 24)Ns*/m?. The position error between the
model and the experimental data is remarkably small during the whole length of the
trials for both experiments.

4.2.10 Yaw inertia parameter identification

In order to implement the above described methodology for the yaw axis the system time
constantr must be a priori estimated to compute the input torque frequengy As
described in section (4.2.5), the yaw model in the standard yaw rate operating range is
linear. Moreover the yaw inertia identification experiments have been performed apply-
ing the input torque with a thruster mapping having unit efficiency, i.e., with reference
to figure (4.3), the front left (FL) and rear right (RR) thrusters have been used for posi-
tive torques and the front right (FR) and rear left (RL) ones have been used for negative
torques. As a consequence the considered yaw model is
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4.32.Experimnetal and simulated data relative to the input force of experiment SUI1. Simulated data
refers to then displayed and:,, = 38N's/m, k| = 333N s?/m?,
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4.33.Experimnetal and simulated data relative to the input force of experiment SUI2. Simulated data
refers tom = 705K g and to the displayed drag coefficients.
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4.34.Yaw inertia parameter identification experimentYAI1.

being/, ROMEOs:-axis moment of inertiaf the applied torque as given by equation
(4.40) andk, the full efficiency yaw drag coefficient, = 35Nms/rad. The time
constantr = I,/k, of equation (4.46) can be a priori estimated replacing/fothe
moment of inertia, along the its height, of a parallelepiped having a uniformly distributed
450K g mass, widthl.3m, length0.8m, i.e. I, = £450(0.8% + 1.3%) ~ 87.38 Kgm?.

The corresponding input frequency, according to equation (4.39), is

k.

Wopt AL 0.23Hz (4.47)
Two different experiments, labeled YAl 4w inertia) and YAI2, will be considered.
During the YAI1 experiment the input torque was provided by the only rear left and
front right thrusters (figure (4.3)), so that unit efficiency is assumed to hold for negative
velocity and torques. In accordance with equation (4.47), the input torque frequency
during the YAI1 experiment has been chosen tabe 0.26 H z and the applied torque

fin Nm was

f = —5+4sin(0.26t)
in order to avoid propeller inversions. The position was measured Withia sampling
rate compass and the velocity has been computed with an offfirerder Savitzky-
Golay filter having a symmetric window of full lengthl points. The input torque,
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4.35.Experiment YAI1 measured position and expected model position Aith= 35Nms/rad,
I, = 93K gm2.

the filtered yaw rate and the yaw measurement of the YAI1 experiment are reported in
figure (4.34). Implementing the estimation algorithm described in section (4.2.8) yields

YAI1 experiment:/, = (93.0 & 0.6) K gm?

being the estimation error computed with the usual technique based on equations (4.12)
and (4.6) probably underestimated for the reasons outlined in the previous two sections.
Nevertheless the identified model performance is acceptable, as shown in figure (4.35)
where the experimental position data of experiment YAI1 are compared with the model
predicted position. The YAI2 experiment refers to an input torque signal of frequency
w = 0.39H z provided by the front left and rear right thrusters. Torque unit efficiency

is assumed for positive torques and velocities, so the input torque signal was

f =54 4sin(0.39¢)

The angular (yaw) position was measured withOd/ = sampling rate compass and,

as for the YAI1 experiment, yaw rate has been computed with an off4ffh@rder
Savitzky-Golay filter having a symmetric window of full lengti points. Applied
torque, computed velocity and measured position of experiment YAI2 are reported in
figure (4.36). The resulting estimated value of the ineftiaccording to the experiment
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4.36.Yaw inertia parameter identification experimentYAI2.
YAI2 is
YAI2 experiment:1, = (100.0 + 0.7) K gm?
4.3 Summary

Within this chapter an identification procedure for the drag and inertia parameters of
an open frame ROV and the results of its implementation on a real system have been
presented. The identification procedure is based on on-board sensor data rather then
towing tank experiments. Although in principle towing tank methods allow a better es-
timation accuracy (in particular of the inertia coefficients), they are usually performed
on a scaled model of the vehicle rather then on the real system [73] with all the related
drawbacks. Moreover such towing tank methods are much more expensive, complex
and time consuming. A simple set of inputs and the relative model fitting technique
have been defined for the on board sensor based estimation of drag and inertia coef-
ficients of a decoupled ROV model: the major advantage of the proposed approach
consists in the possibility of estimating the propeller-hull and propeller-propeller ef-
ficiency parameters that would be otherwise unobservable. Moreover thanks to their
simple nature the tests may be repeated when the vehicle changes configuration in or-
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4.37.Rationale of the identification procedure design.

der to tune the control and navigation systems when required. It is worthwhile pointing
out that the identification procedure has been designed taking into account the vehi-
cle model structure, the type of available sensors and the actuator dynamics. Moreover
during the experimental implementation of such procedure on the ROMEO ROV both
the system model and the identification procedure itself have been “‘tuned’ on the basis
of the experimental results. The logical flow chart of the work described in this chap-
ter is reported in figure (4.37). The developed procedure has been adopted to estimated
the drag and inertia coefficients and their variances for the surge, sway, heave and yaw
axis of the ROMEO ROV: the data relative to numerous experimental trials has been
processed and the results are reported in detail. It has been shown that yaw drag in the
typical operating yaw rate range, i.¢/| < 10deg /s, is better modeled by an only
linear term rather then both a linear and quadratic one: this is important as it suggests
that as far as the yaw axis is concerned linear control techniques may be successfully
adopted. At last it has been shown that the propeller-hull and propeller-propeller in-
teractions may have a most important relevance in the dynamics of open frame ROVs
and should thus be taken explicitly into account. To this extent an efficiency parame-
ter, closely related to the thruster installation coefficient described by Goheen et al.[66],
has been introduced and its value and variance have been estimated in all the cases of
interest.
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Chapter 5
Motion control and path planning

In this chapter some original results regarding the motion control and path planning of
nonholonomic systems with reference to underwater vehicles will be outlined.

5.1 2D motion control of a nonholonomic vehicle

Three major issues of robot motion control are the state stabilization problem, the path
generation problem and the path tracking problem. If the system at hand has nonholo-
nomic constraints, as for wheeled vehicles or under-actuated underwater vehicles, these
problems are particularly challenging. The literature regarding the stabilization of non-
holonomic systems is very large and, as a detailed overview of the topic goes beyond
the possibilities of this work, only the results of interest will be here reported. For a
wider discussion of the current state of the art in the control of nonholonomic systems
referto [74] [75] [76]. The main difficulty in the stabilization of nonholonomic systems

is related to the theorem of Brockett [77]:

Theorem (Brockett, 1983)Given ¢ = G(q)u with g(go)up = 0 and ¢(-) continu-
ously differentiable in a neighborhood @f, then there exists a time invariant continu-
ously differentiable control law which makég, o) asymptotically stable if and only
if dim(q) = dim(u).

Indeed many systems of practical interest may not be asymptotically stabilized via
smooth time invariant feedback due to this result. Among these the unicycle kinematic
model:

T = ucoso
Yy = wusing (5.1)
¢ = w

beingx, y the Cartesian coordinates with respect to the inertial frame >, u the

linear velocity,¢ the orientation with respect to theaxis andv the angular velocity as
shown in figure (5.1). To tackle this difficulty most authors have focused their attention
either on smooth buttime varying state feedback approaches, or on time independent but
noncontinuous state feedback approaches. As far as underwater vehicles are concerned
examples of such control laws are provided by Egeland et al.[78] and Pettersen et al.[79].
A most interesting way of analyzing the asymptotic stabilization of the unicycle model
given by equation (5.1) is related to a remark of the above cited Brockett Theorem given
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5.1.Unicycle kinematics
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by the same Brokcett [77]if we have
q= Zgz‘(Q)Uz‘ tq(t) € R”
=1

with the vectorsg;(q) being linearly independent af, then there exists a solution to

the stabilization problem if and only ifn = n. In this case we must have as many
control parameters as we have dimensionsgofOf course the matter is completely
different if the set{g;(qo)} drops dimension precisely at.” As shown by the works

of Casalino et al.[1] and Badreddin et al.[80] , this last observation plays a key role in the
solution of the unicycle stabilization problem: if the unicycle kinematics is represented
in polar-like coordinates

e & /12 —I—y2
0 = ATAN2(—y,—x) (5.2)
a = 0—¢

as shown in figure (5.1) Brocketts Theorem does not hold anymore as the state itself is
not defined fore = 0. With this choice of the state variables the state equations are

€ = —uUcosw

. sin «

& = —wHu (5.3)
€

. sin «

0 = u

€

and a smooth time invariant state feedback law for global asymptotic stability is not

prevented by Brocketts result. Examples of such possible control laws are reported in
[1] [2] and [80]. Indeed the idea of simply adopting a different state representation

in which Brocketts Theorem does not hold to solve the smooth state feedback global
stability problem for general models of nonholonomic systems is very appealing and

has been dealt by A. Astolfi [81].

5.1.1 A state feedback solution for the unicycle model
Casalino et al.[1] presented the smooth feedback law
u = yecosa:vy>0 (5.4)
sin o
w = ka+vycosa——(a+h0):k,h>0 (5.5)
«

that globally stabilizes the unicycle system given by equation (5.3) in the origin. A ma-
jor draw back of this result that prevents its straightforward application to the control of
the planar motion of real systems as underwater or air vehicles equipped with actuators
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5.2.Initial position(0, 1) with orientationg = 7 /4.

in only one direction is the unicycle-like nonholonomic constraint according to which
angular velocity can be assigned independently. This is equivalent to the obvious state-
ment that a unicycle-like vehicle can turn on itself thus moving on an infinite curvature
trajectory, while a wider class of moving systems (like bicycles, cars, torpedoes or air-
planes) can only move on bounded curvature paths. To have a qualitative understanding
of the behaviour of the above algorithm (equations (5.4) and (5.5)) refer to figures (5.2)
and (5.3). Notice that within the unicycle-like approach of Casalino et al.[1] given by
equations (5.4) and (5.5) the velocitycan take both positive and negative signs: in-
deed the resulting path inversion points correspond to null linear velectjoreover

the closed loop equation for the position ereos

é = —ryecos® a

showing that is always decreasing. This is certainly a most interesting aspect of the

above outlined algorithm as it guarantees exponential convergerceAsfdescribed

in the papers of Caccia et al.[28] [30] and Casalino et al.[82] the control strategy given

by equations (5.4) and (5.5) can be successfully adopted for the planar motion control
of underwater vehicles that can steer having null surge velagitf 0, « = 0), but in
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5.3.Errrore and orientatior) with respect to time relative to the previous figure.
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many underwater vehicle applications the system can (or is preferred to) move in the
only forward direction and can not turn with= 0. With these ideas in mind the above
outlined approach can be modified to introduce the (bounded) curvature explicitly in
the model and to prevent inversions in the sign of the linear velacity

5.1.2 A state feedback solution for a more general model

A simple way to introduce the curvature in the unicycle model is to consider the bicycle-
like kinematics given, in Cartesian coordinates, by

T = ucoso
y = wusing (5.6)
¢ = uc

being the control signatsand the curvature. With the polar-like variable choice given
in equation (5.2) this model is transformed in the following:

€ = —UuUcosw

o = —u <c — 51na> (5.7
€

b o— usinoz

€

Notice that within this model the linear velocitycan not change sign, as when= 0
the state stops moving. Thus in order to converge to the origin of the state sjace,
take the null value only in the target stdte0,0). In order to design a globally stable
smooth state feedback control law for the system given by equation (5.7) a Lyapunov-
like based approach will be followed. The control law synthesis method is inspired by
and closely related to the previous works of Casalino et al.[1] and Aicardi et al.[2].
Having noticed that the state equation (5.7) derivative is identically null when0
suggests to try the control law

u=-ye:vy>0 (5.8)
The point is now to guarantee, by a suitable choice, dhat within some finite time
cosa < 0 (so thate starts decreasing) and asymptoticgllya,0) — (0,0,0). To
calculate: consider the state equation (5.7) given (5.8), i.e.,

& = —recosq

& = —ne <c — 51na> (5.9
e

0 = ~sina
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and the quadratic Lyapunov candidate function
V= %(a2+h92) :h>0 (5.10)
having time derivative
V = ad + hol = y(asina + hf sin o — aec) (5.11)

This last equation suggests the choice ak:

sin o 0 sin

c= I i e (5.12)
€ e o €

so that the time derivative of the candidate Lyapunov functidsecomes
V=—8a><0 (5.13)

As in the model of Casalino et al. [1] and as will be shown in the sequeh, plagameter

in equation (5.10) is needed to guarantee thaf. )0 ¢ = 0. Moreover being/
positive and radially unbounded equation (5.13) implies that it tends towards a non-
negative finite limit, thus

o]

lima =

t—o00

I

lim 6 =

t—o00

The above and the fact theitis uniformly continuousimply by Barbalat’s Lemma that
V tends to zero, so that = 0. Substituting equation (5.12) in (5.9) gives:

€ = —yecosw

@ = — <ﬂa+hesmo‘> (5.14)
(07

0 = ysin o

From the facts that — 0, ¢ — 0, and that is uniformly continuous, again by Bar-
balat's Lemma it follows that the limit

lim & = —vh0 =0

t—o00

and thus the limit valué of # must be zero. Moreover notice from the last of equations
(5.14) that given the above results afsiends asymptotically towards zero. The above

V = —2vfBac is bounded.
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results show that

a — 0;&6a—0

0 — 0:0—0

S0 as — oo there must be some finite valueifayt*, starting from whichos o < 0
and thus

e ——ve<0=e—0
The behaviour of the above developed closed loop control, i.e.,

u=rve:v>0
(5.15)

sin o 0 sin o

+h—
€

C =

—I—ﬂg:ﬂ,h>0
a e

depends on the choice of the parameters, h. In particular whileu is obviously lim-
ited as long as andy are finite, the limitlimc, . 4)—(0,0,0) ¢ Must be analyzed: when the
state(e, «, 0) approaches the origifd, 0, 0) the state equations (5.14) can be approxi-
mated by the linear system

o B —vB3 —hy o
(5) - 139105 619
e = —ne (5.17)

and ;
«
c= g<1 + 3) + hg
so that in order to reach the targét 0,0) on a straight line (i.e. with null curvature)

the real part of the dominant pole of equation (5.16) must be strictly largenthBg
direct calculation the eigenvalues of the system matrix of equation (5.16) are

AL = % <—fyﬂ + \/72ﬂ2 - 4h’y?> (5.18)

so the requested conditiofe(\ )| > -y is equivalent to
h>1;2<p<h+1

Moreover by direct analysis of equation (5.18) it follows that it 1
A<0< g<2vh

beingA = ~23?—4h~? so that the system is stable and under dampe2 for3 < 2v/7,
stable and critically damped far< 3 = 2/h, stable and over damped ¢/h < 3 <
h+1.Ifh>1andd <2UB > h+ 1orif h =1V g the curvature diverges as the
target state is approached, thus the importance ok tbarameter in equation (5.10).
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5.4.Paths starting on the unit circle with gains= 1, » = 2, § = 2.91. From left to right and from top
to bottom the starting orientatiafy is: 0, 7/2, w, 37/2.

A most important property of the proposed algorithm is the boundedness of the control
input c. Equation (5.15) shows that| < w and thatc tends to zero as
grows. The above linear analysis shows that ¥ the gédiasdh are suitably chosen
tends to zero also &8, «, #) tends to zero. Moreover notice that the linearized system
given by equations (5.16) and (5.17) actually holds for small valuesaofd whatever
e andd are, as the only adopted approximation has b&en ~ « andcosa ~ 1. As a
consequence the only requirement necessary tmbe minor than a prescribed upper
bound during the whole state trajectory, is that during the convergencénahe state
space region whergn o ~ «, the errore is kept larger then some limit valusg,;,, .
Intuitively this means that if an upper bounds given one, as in most real systems,
the initial errore, must be larger then some limit valu&«y, 0o, ¢) depending on the
initial values ofa. and® and onc.

For a qualitative understanding of the resulting paths refer to figures (5.4) and (5.5).
In figure (5.4) various paths starting on the unit circle with different orientation are dis-
played, while figure (5.5) shows the influence diadifference on the initial angular
positiong, on the path. With reference to the above reported stability analysis, all the
simulations reported in figures (5.4) and (5.5) are relative to gain values that guarantee a
stable and over damped convergence tf zero, in particulary = 1, h = 2, 8 = 2.91.
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5.5.Paths starting ifi, 1) with orientations, = 7/4 (dashed line) and, — 7r/4 (solid line) with gains
v=1, h=2, 3=2091.

The convergence to zero aof 0, ¢, v andc for the two paths reported in figure (5.5) is
shown in figures (5.6) and 5.7).  The developed control strategy can be adopted ei-
ther for path tracking of a given 2D curve, or to navigate among via points or to design
an autonomous navigation algorithm: a simple path tracking controller can be realized
assuming that the target state space p@in, 0) moves along the desired curve. This
approach has been analyzed by Aicardi et al.[2] for the unicycle model (equation (5.3))
with the control law given by equations (5.4) and (5.5) and can be extended to the kine-
matic model equation (5.7) controlled by equations (5.15) with minor changes. As far
as autonomous navigation is concerned, the proposed control strategy is appealing be-
ing globally convergent and requiring only position and orientation errors that can be
reasonably measured by standard on board vehicle sensors. Yet for a practical imple-
mentation on real systems two aspects of the proposed control law must be considered:
the maximum vehicles curvature radius and actuator saturation. The curvature upper
bound constraint can be managed assuming to approach the target form a sufficiently

Giovanni Indiveri, Ph.D. Thesis 116



2D motion control of a nonholonomic vehicle

alpha

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900
~ =
:El_z AN . — - . i
-4+ - i
-6F 4
I I I I I I I I
0 100 200 300 400 500 600 700 800 900

5.6.Convergence af, 8, ¢ for the paths starting in (1,1) with initial orientatigy = /4 (dashed lines)
and¢, = —77/4 (solid lines).
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5.7.Convergence aof andw for the paths starting i1, 1) with initial orientations¢, = /4 (dashed
lines) andp, = —77/4 (solid lines). Notice the different time scales of the convergeneeavfde.
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distant point. As discussed abovepifconverges to a region whesen o« ~ o being

e greater then some limit*(«ay, 0y, €), thenc will converge to zero without ever ex-
ceeding some prescribed upper bodndictuator saturation must be considered with
reference to the proportional control law= ~e equation (5.8). Notice that as longas

is strictly positive, the value of does not affect the convergence properties of the state
(ash andg do) but only the convergence rate, so one could argue that chopsufg-

ciently small can always avoid saturation problems. Indeed in some applications, as the
path tracking problem where the moving target is always reasonably close, this is the
most simple way of dealing with saturation, but in other circumstances, as autonomous
navigation on long distances, it is not. The pointis then to understand if and how actua-
tor saturation due te = e affects the convergence of the state to the taj@ét 0) and
eventually design a different bounded control law#orActuator saturation occurring

with a straight forward implementation of equations (5.15) can be modelled as:

u = e sat(ye, @) : v >0 (5.19)
beingsat a discontinuous function defined as

sat(x,y) = { ivv”a;”iyy Vy>0 (5.20)
that models dard saturation of:. With only marginal technical differences related to
the discontinuity okat(ye, @) for ye = @, the whole control law design procedure going
form equation (5.9) to equation (5.15) can be replicated replaging(~ye, @) to ve:
as a result equations (5.9), (5.11), (5.13) and (5.14) should be multipliegt bye, @)
and this will not affect either the global stability properties or the convergence analysis
of ¢ — 0 developed for the unsaturated case as longiaginite andz > 0 (obvious).
Indeed this is a satisfactory result as it suggest that a straight forward implementation
of equations (5.15) will guarantee convergence even in presenchastlasaturation
onu as the one modelled by equation (5.19). As an example the simulation shown in
figure (5.5) relative to the starting configuration 1, —77 /4) with gainsy = 1, h = 2,
£ = 2.91 has been repeated with the same gains saturating the linear veldcity5,
i.e. @ = 0.5 in equation (5.19). The resulting path and the values,df, ¢, « andc
for the saturated and unsaturated cases are reported in figures (5.8) and (5.9). Another
way of approaching the saturation problem is to choose a smooth and bounded control
law for . compatible with the actuator dynamics. Perhaps the most simple choice is to
computeu as:

p—— (5.21)
~+1

so that, as shown in figure (5.10),is SI’CTL’IOO'[h goft saturation), bounded bya and
linear ine whene < a. Replacing equation (5.21) in equation (5.9) and computing
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5.8.Paths with saturated (solid line) and unsaturated (dashed:lifgfer to text for details.
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5.9.Saturatedi{ = 0.5, solid lines) and unsaturated (dashed lines) results for the same initial configura-
tion (1,1, —77/4) and same gaing= 1, 5 = 2.91, h = 2.
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5.10.Saturated velocity input signal
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andV gives
e = e cos (v

Cefa+1

. ve sin o
= — — 5.22
“ e/a+1 <C e > (-22)

0 = Lsinoz

e/a+1

. d 1 .
= e/afy—l— 1 (asin oo + hf sin @ — cecy)

which suggests to chooseas

<sina 0 sin «
C =

+h-— +ﬂ%> (efa+1):8>0 (5.23)

With such a choice of the derivative of the candidate Lyapunov functigns once

again given by equation (5.13) and the whole global stability analysis described above
for the unsaturated = e control law can be easily replicated: the conclusion is that the
system given by equation (5.7) is globally asymptotically stable under the action of the
control signals: andc given by equations (5.21) and (5.23) (or equations (5.15)). Indeed
whene < a the two control strategies are identical an so are the stability properties of
the system. On the contrary whens- a the linear velocityu tends to its upper bound

~a (rather then to infinity) and tends to the finite, but not null, value of:

sin o

1
lim ¢ = — <sina+h8

Ee— 00 a

+ ﬂoz>
«
This shows that the parameter must be tuned keeping into account a trade off between
the maximum allowed linear speed and the maximum allowed curvature. Notice
however that the curvature of the path generated by the controls given by equations
(5.23) and (5.21) will generally be larger then the curvature relative to the unsaturated
scheme: indeed the curvature given by equation (5.23) is the same one given by equa-
tions (5.15) multiplied by(e/a + 1) > 1. The bounded, smooth and ‘slow’ depen-
dence ofu from e given by equation (5.21) is payed in terms of a larger curvature. This
is clearly visible in the simulation results shown in figures (5.11) (5.12).
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5.11.The solid and dashed line paths correspond to the implementatiorsoftthaturation scheme being
a=1,v=0.8,h=2,5 =291 and the unsaturated scheme bejng 1, h = 2, 3 = 2.91.
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5.12.The solid and dashed lines are relative tostifesaturation scheme and to the unsaturated scheme
of the paths shown in the previous figure.
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5.2 Path Planning

Having developed a time invariant control law that globally and asymptotically stabi-
lizes the car like systems given by equation (5.7) in the origin, attention is now focused
on the path planning problem. As discussed by Aicardi et al.[2] for the unicycle model,
assuming the target to move on a reference path such control scheme can be successfully
employed to design a path tracking controller. The pointis thus to generate a suitable ref-
erence path. In order to better define what should be considered a “suitable’ reference
path, some notation must be introduced. In the followiogmrfigurationwill denote the

vector describing the position and orientation at a certain time of the given system. The
configuration of &D vehicle is given, e.g., by &D vector(z,y, ¢) as shown in figure

(5.1). Consider an elongated rigid body in a fluid environment as an open frameROV
slender body AUMor a laminar plate grasped by a robotic manipulator moving (for sim-
plicity) in the planez = 0 (refer to figure (5.13)): as discussed in chat@eglecting

time varying currents the hydrodynamic load in deep wateb«:) where wave effects

are virtually absent is due to drag, lift and added mass forces. Drag is anti-parallel to the
velocity and drag coefficients are proportional to the surface of attach. Liftis normal to
the velocity direction, proportional to its value and to the angle of attach provided it is
small enough<{ 12° as an order of magnitude, stall occurs for higher values). Added
mass forces are proportional to acceleratigﬁ%,% through added mass coefficients
which depend on the body’s shape. To avoid large sway drag forces and surge added
mass forces that cause major hydrodynamic load on an elongated body the lateral sway
velocity v and the linear accelerati% should be kept null. Notice that the constraint

on null sway makes the present problem very similar to the nonholonomic car-like path
planning problem. Yaw velocity and acceleratio@;—’ should be minimized as the large
lateral surface produces strong moments along #oas. Lift forces can be controlled
through the value of surge velocity Thus assuming that= 0 and that surge veloc-

ity is kept constant and small to avoid added mass stresses and limit lift effects, the major
dissipative force acting on the body will be caused by drag rotation moment irdihe
rection that at low speeds (see chapgdes linear inr. The energy associated with such
drag moment is proportional tprdf = [r%ds = [rkds = u [ k*ds wheres is the
curvilinear coordinatel = r /u the paths curvature andthe constant surge velocity.

This calculation suggests to consider the minimization of the cost funétien | k?ds

with fixed boundary configurations as a path design criterion. Notice that such crite-
rion produces smooth paths that are, as far as their “elastic energy” is concerned, the
closest possible to a straight line. This makes the suggested criterion appealing also for
wheeled land robots and indeed the problem of finding a smooth and minimum cur-
vature trajectory between two given configurations has received a very wide attention
in the robotic literature, specially regarding the steering of nonholonomic mobile ro-
bots. From the pioneering work of Dubins [83] who calculated the shortest path of
bounded curvature among two configurations, many other authors focused their atten-
tion on the generation of bounded curvat2fepaths. In synthesis Dubins’ results state
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5.13.Laminar plate moving at constanand with fixed yaw axis direction parallel to

that the shortestD path of bounded curvature between to fixed configurations may be
traced joining straight lines and circular arcs of curvature smaller or equal to the maxi-
mum allowed. Dubins results have been extended to the case of a vehicle moving both
back and forward by Reeds and Shepp [84]and more recently the issue of computing the
shortest path for a nonholonomic vehicle either in an obstacle free workspace or in pres-
ence of obstacles has been discussed and refined, among the others, by J.D.Boissonnat
et al.[85], X.N.Bui et al.[86], Desaulniers et al.[87], Reister et al.[88], A.M.Shkel et
al.[89], Bicchi et al.[90], Moutarlier et al.[91], Desaulniers et al.[92] and Szczerba et
al.[93]. Kanayama et al.[94] suggest the use of paths generated joining cubic spirals and
arc of circles to minimize two cost functions related to curvature and jerk energies while
A.M.Hussein et al.[95] generate smooth paths optimizing the integral of the square ac-
celeration instead of curvature. One of the cost functions used by Kanayama et al.[94],
and that is at the center of the present paper, is the integral over the path’s lengths of its
square curvature. A similar optimal criterion has been taken into account also by Reuter
[96] within an optimal control approach. Indeed the minimizatiorf éfds with fixed
boundary configurations is a problem with an interest of its own as such cost function
can be physically interpreted as proportional to the elastic energy of the curve. Due
to this fact the sought plane path is sometimes calledehst energy curven litera-

ture. Indeed this interpretation makes the problem appealing also to researchers of other
fields as A.M.Bruckstein et al.[97], B.K.PHorn [98] and M.Kallay [99] who addressed

a very similar problem to the one here discussed within a different framework and for-
mulation. It will be shown that Horn’s [98] and Kallay’s [99] results can be viewed

as the projection on a plane of a more gensgfalEuler-Poisson equation.
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5.2.1 Curvature

Consider a generic differentiable curGeparametrized by the coordinageso that in
Cartesian coordinates the points@firex = C1(€), y = C5(§), z = C5(&). The paths
curvilinear coordinate is defined as

3

32/ ‘%@‘)‘ d¢ (5.24)

0
being
d N dCy dCy dCs

—C £ - ==
aco — %ac Teac T
(e1,e2,e3) : reference unit vectors

and the unit tangent vectdr is defined as

. dC /|dC
T:%/‘% (5.25)

Differentiating equation (5.24) it follows that

ds dC‘

i = €T (5.26)
so that the unit tangefit can be computed as

_dC
 ds

By definition the curvature is a vector given by

» dT
 ds

(5.27)

K (5.28)

so that in the D case T ”
ke —=k=|—

ds ds

beingdf the angular deviation relative to a stépalong the path. In manyD appli-

cations thesigned curvature

P (5.29)

d
is adopted. Notice that havir unit constanbi norm, by definitiok andT are normal,
i.e. k- T = 0. To compute the curvatufeof a generic curv€& = (C1(£), C2(€), C5(&))
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the following formula is most useful

2

ic , &°C

kf2 — dg d2£
dC|’
dg

(5.30)

Equation (5.30) can be proved by direct calculation as follows: denoting with the sym-
bol’ the derivative with respect oand with/m the norm ofdC/d¢, i.e.

dC
LY - |2~
equations (5.25), (5.26) and (5.28) imply
C = mT (5.31)
C'" = m'T+m’k (5.32)

Next with reference to the vector property given by equation (2.3) and to the above
equations folC’ andC"”, consider

2

dC d?C

T A BE| T (CAC)- (CACH)=((CACHYANC).C' =

— _C// . (C/ /\ (C/ /\ C//)) — _C// . (C/<C/ . C//) _ C//(c/ . C/)) —
_ (C// . C”)(C/ . C/) _ (C/ . C//)Q — (m/Q € m4k:2)m2 _ m2m/ 2 _
= mPk?
which concludes the proof. In terms of the Cartesian coordinat&s, y(¢), z(€))
equation (5.30) yields

y’z” _ Z/y//)Q + (a:’z” _ z’a:”)2 + (a:’y” _ y’a:”)2

1{72_<
- (a:’2+y’2—|—z’2)3

(5.33)

Moreover from equation (5.32) it follows that
m=C"T=m’k=C'(T-T)-T(C"-T) =

/ iz /
m*’k =TA(C'"AT) =k = C Afg/,fc)

showing the relation between curvature vector and second derivative of a curve.

5.2.2 Planning criterion: a variational calculus approach

The above discussion regarding the energy that a rigid body dissipates dWing a
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motion in a fluid suggested the minimization of the integral of the square curvature of
the path over length with fixed boundary configurations, i.e.

Jr = / ks (5.34)
( <$<0)7y<0)78<0)> = (%;yo,eo)

in2D <$<L)7y<L)78<L)) = (ajL;yLy QL) (535)
i—/ = tanfy ; % = tanfy,

(2(0),4(0), 2(0),p(0),4(0),7(0)) = (2o, Yo, 20, Po, 90, T0)
in3D (x(L),y(L),2(L),p(L),q(L), (L)) = (x1,Yr, 21, PL,9L,7L) (5.36)

p,q,r : Euler angles

Where in the2D casef, andf; are the initial and final angles between the curve
and thez-axis. A most natural setting to solve the minimization/efwith the given
boundary conditions is classical analytical variational calculus which is preferred to a
numerical optimal control solution as through variational calculus the general Euler-
Poisson differential equation that the solution must satisfy can be computed. Notice
that in equations (5.34), (5.35) and (5.36)s not fixed and if L. — oc it is always
possible to find a path for whichl; — 0 as can be understood from figure (5.14).

The cost on line segments is null and its value on the arc of c@ is %, so if
points P; and P, tend to infinity alsor will and .J; will tend to zero. The junctions
between straight lines and the arc of the circle where curvature is not defined can be
made smooth with a Cornu spiral [100] which will not affect the cost whkgrand

P, tend to infinity. Solutions of infinite length as the one shown in figure (5.14) can
not be found by variational calculus as they belong to the closure of the open set of
curves inft?. It will be demonstrated that if/(s) — 6o| > = holds for some, a finite

length solution never exists, so either an additional constraint on total length must be
added or the cost function must be changed in order to penalize length. Notice that the
minimization of.J; given by equation (5.34) as a planning criterion is somehow the dual
problem of the most popular Dubins problem that has been extensively analyzed in the
literature as discussed above. As a matter of fact the proposed planning criterion consists
in finding the ‘least curvature” path, i.earg min .J;, of bounded length as opposed to

the shortest path of bounded curvature, i.e. Dubins criterion. Within the nonholonomic
vehicle path planning literature similar approaches have been considered by Kanayama
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Xo

5.14.Infinite lenght solutions: a geometrical interpretation.
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et al.[94] and Reuter [96]. In particular Kanayama et al.[94] consider the minimization
of J; given by equation (5.34), but over a given fixed length: having fixed the length it

is not possible to satisfy boundary conditions as given in equations (5.35) on both the
starting and ending configurations, but at most on one of the two. This is a consequence
of the fact that the only solution of the minimization &f with fixed length, as stated

in [94], is an arc of a circle [101]: with reference to equation (5.29) and indicating with
 the derivative with respect to the curvilinear coordingtee. k = % £ ¢/(s),

L
min/o Q’st:ifixed@)%e’?( ) — 5889/9

0"(s) = 0= 0'(s) = const.
In the great majority of the practical situations length is not given a priori, but only
the initial and final configurations are. Indeed if the cdgtis to be interpreted as
proportional to the “elastic energy” of the path or to the energy dissipated by rotational
drag to join two given configurations, equations (5.35) must be satisfied. The cost
function considered by Reuter [96] within an optimal control framework is given by

L L 9
JRé/<a/{;2+ﬂ<d2k‘> )ds:aJI+ﬂ/<%> ds
0 0

with non-fixed length. The major advantage of considering such a cost function is that
having./r a dependance on bothandk”, boundary conditions may be imposed on the
direction, the curvature and the curvature derivative at the boundary positions, i.e. the
minimum of Jz must be computed adding to the boundary conditions given by equa-
tion (5.35) the conditions(0) = ko, k(L) = kg, k'(0) = ki, k'(L) = k). Nevertheless
in [96] only the numerical solution of the optimization problem min ./ is addressed
and such solutions solves the problem of intesegtnin .J; only if 5 = 0, thus a vari-
ational approach solution to the minimization.bffor a generic curve parametrization
will be presented for both th&/) and2D case.

With reference to equation (5.30) and remembering that for the arbitrary parame-
trization¢ the infinitesimal curve length elemedt can be written ags = (/2 4y % +
2/ 2)1/2 peing’ the derivative operator with respectgpothe cost function; is

(s)=0=

3

f
<y/z// /// /// // /)2
n o= / : € + / e (5.37)

$/2+y/2—|—2’/2 5/2 $/2+y/2+z/2)

&y

N <y//x/ //y/) dg
<$/2+y/2+z/2)5/2

0
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The 2D case, which must be optimized with boundary conditions given in (5.35), is
obtained forz = constant — 2/ = 2’ = 0. Indicating respectively witld7, GG, and

&y
G5 the three integrands of equation (5.37) the following hald= 77, [ G; d¢ and
0

5 ds
§ R A i

As eachd; is positive by definition, equation (5.37) will be minimized if and only if
each term of (5.37) will be; thus the minimization conditions for a generic t8fm
must be sought. Lets consider for exam@leand the minimization of = foff G5 d€.
Assuming . o
r — T

Fécg:<fg+y2+j%w2 (5.39)
and indicating withF), its partial derivative with respect to any quantityhe solution
(z(€),y(€),2(£)) to the minimization ofy = fff F' d¢ has to satisfy Euler-Poisson’s
equations [101]:

d d?
F,— —Fy+—F.u=0
d¢ +'d§2
d d” 5.40
@—%@+%ﬂy=o (5.40)
d
F,——F,=0
d¢

If the total length had been fixed t&* the optimal curve would have to satisfy (5.40)
with fixed boundary configurations as given by equations (5.3%)/inor equations
(5.36) in3D, and¢ ; such thatf(ff (z' 2 +9/ 24 2/ 2)V2d¢ = L*; if, on the contrary, the
total length is not fixed equation (5.40) must hold with fixed boundary configurations
given by equations (5.35) or (5.36) and with the constraint of null variaNondue

to the moving boundary,. The expression of the variatiohv due to the moving
boundary¢ ; can be calculated extending the same techniques [101] adoptedAvhen
depends on a single function and it’s first derivative, ile.= F'(z,y(z),y (x)), to

the present situation wheré = F' (¢, z,y, 2z, 2"y, 2", 2", y", 2”). Assuming equation
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(5.40) to be satisfied the variation due to moving boundary is

Ay = |:F o y//Fy,/ — y/ (Fy’ — diny” +

d
—QTHFSEH — (Fm’ - d_me”) — Z/Fz’ (ng—l—

3
—I—Fy//’Ef (Sy} + Fm”lff (SQT/f + (Fy/ — diny”)

_I_ (FCE/ - %Fm//)

(5.41)

oy
£ !

oxs+ Py, 6z
¢ f ’§f f

For fixed boundary configurations, as required by (5.35)4h éx; = dy; = 625 =

éxy = by = 62 = 0 andé¢; # 0 as the final configuration is assigned, but length is
not. Thus to guarantee nullv the term in square brackets of equation (5.41) must be
null. With reference to equations (5.40) and (5.39) notice that [, = F, = 0 and

F: = 0 by definition of /" so that the following first integrals must hold:

F:c’ - iFm” = —m
d§
d 5.42
by = gelv = —a 42
Fz’ = —G3

for some constanty, as anda;. Moreover, by direct calculation follows that

F — y”Fy// — a:”qu =-F

and that
d d
——F — - F— ”F//— ”Fm// =
" d " d "
= X [Fm/ — —Fm//] + Yy [Fy/ - —Fy//] + 2 Fz/

dg

Substituting equation (5.42) in this last equation and integrating implies

dg

<y//x/ _ y/x//)Q

- @2ty 2+ 2)52 = tayy +az + 5 (5.43)

This differential equation must be solved with boundary configurations given by equa-
tions (5.36) and eithef(ff (' 24y 2+ 2/ 2)V2d¢ = L*if L* is fixed, orAv = 0 being

Av defined in (5.41) if maximum length is not fixed. This latter hypothesis implies
= 0 as can be shown substituting (5.42) in (5.41). Moreover equation (5.43) that has
been derived fo#' = (5 can be shown to hold, with different constantsi = 1,2, 3
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and g, also forGG; and(Gs. As a consequence substituting these equations in (5.38)
the genera8 D Euler-Poisson equation solving the optimization problem (5.34) for an
arbitrary parameterizaticis found to be:

2 ds dC(¢)
k:dg_a- i +b (5.44)
wherea andb are constants that depend on the given boundary conditions. As follows
from the above discussiohjs either null if no length constraint is imposed, or eventu-
ally non null in order to satisfy a given lengflt. As torsion is not specified, equation
(5.44) by itself, projected on a plane and with given boundary configurations, uniquely
determines 2D curve, but not 8D one. In the2D situationz = constant with a
curvilinear parameterizatio = s equation (5.44) is reduced to the same equations
calculated in the plane starting from a Cartesian parameterization [98] [99], i.e.,

k*(s) =a-T(s) +3=acos(d — )+ (5.45)

being the vectoa = (a4, a»), « it's norm andp it's phase. Equation (5.45) had been al-
ready presented by Horn [98] in 1983 and then discussed by Kallay [99] and Bruckstein
et al.[97] in 1986 and 1990 within the computer graphics research community. Nev-
ertheless in these previous works the variational problem was solved for a one valued
real functiony : it — R and the so computed Euler equation was then ‘extended’ to
the case of D curvilinear parametrized curve:(s),y(s)). Indeed the2D result is

the same, but a priori this fact is not obvious as the set of real valued fungtions
among which the solution was initially computed is a subset of the larger s4D of
curves(z(§),y(£)). Moreover having approached and solved the minimization prob-
lem directly in the family oD curves, the most generab solution given by equation
(5.44) has been obtained [102] and a much deeper insight in the interpretationjof the
parameter has been presented.

5.2.3 Solution properties

With reference to equation (5.45) the following properties hold:

i) If no constraint is imposed on maximum length (i.8. = 0, see (5.41)) and
|6(s) — 6o| > 7 for somes equation (5.45) has no solution other than= 0, i.e. a
straight line of infinite length, a solution of the kind depicted in figure (5.14). More-
over when a finite non-constrained length solution exists=(0, butcos(d — ¢) > 0
on the whole path) it is never a finite radius circular arc (constant non null curvature)
as equation (5.45) shows that constant curvature would imply a constant unit tangent
vectorT(s), i.e. a straight line once again.

i) To completely determine the path from equation (5.45) the constants, and,
eventually, must be calculated on the basis of boundary conditions (5.35). As sug-
gested by M.Kallay [99], if the paths curvature is strictly different from zero over the
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whole length, this may be accomplished solving numerically the following nonlinear
system

" conto)
zyp= [ %(0) do
fo

%(0)

9f .
yy = [ 20 g9 (5.46)
)

Gfl
L :deQ
0o

beingk given by equation (5.45). If, on the contrary, the paths curvature is null for some
s as whenk changes sign, equations (5.46) are not defined and a different approach
must be adopted. The issue of computing the path for given boundary configurations
integrating equation (5.44) will be discussed in the following section for both constant
and non constant sign curvature paths. The initial configuration can always be thought
as(zg = 0,y = 0,00 = 0) as this is equivalent to choosing the reference frame. The
last equation of (5.46) is needed to calculaté the final length is assigned. Notice
once again that ifé(s) — 0| < 7 V s belonging to the path then the length needs not
to be penalizedq = 0) and the curvature can be computed for every point of the path
ask = ++/a- T being the sign fixed according to the curve direction. Following the
previous observation the parameter needs to be fixed to a non null positive value only
if the range of the values @fs) along the path is such that T can not stay positive
for everys. Nevertheless from an engineering point of view fixing the total length is
as unreasonable as dealing with infinitely long paths. The most natural approach is
to weight curvature and length through some parameter. Indeed within the developed
formulation (equations 5.40 through 5.42) it can be shown that if the cost function to
be minimized is changed from equation (5.34) viked L to fOL(k:2 + 1) ds with non
fixed L, beingu a positive constant that penalizes length, the Euler-Poisson equation
to be solved has exactly equation’s (5.45) structure with the fixpdrameter in place
of the unknowns, i.e. k%(s) = a- T(s) + p. This is not surprising ag (or 3) can
be thought of as a Lagrange multiplier that transforms/iF@nstrained minimization
of (5.34) problem, in the equivalert-unconstrained minimization OJf0L<k‘2 + p) ds
problem. Given this different and more appealing interpretation of the freely fixed
will be sufficient to solve the first two equations of (5.46) in order to calculasad
thus the optimal path.

i) If boundary conditions (5.35) are such thts) ~ 0 over the whole length of
the path than the tangent vectB(s) can be approximated B¥(s) = (1,0(s)) so that
equation (5.45) implies

do
%:@28<8)+ﬂ+@1

being% = k by definition of curvature. Integrating this equation with initial condition
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0(0) = 0 yieldsf(s) = 225> + s1/F + o OF

k(s) = %s + 3+ (5.47)

i.e., the curve is a clothoid or Cornu spiral. Cornu spirals are curves defineg;py-
k.s+ko and are used mostly in highway and railway design to link smoothly (up two sec-
ond derivative) two curves possibly of different curvature [100] as two circles of differ-
ent radius, straight lines and circles, two different straight lines, or similar. Special-case
clothoids are circlesk{ = 0, kg # 0) and straight linesk(. = kq = 0). In robotic appli-
cations they have been first analyzed by Kanayama et al.[103] and used for smoothing
trajectories by Fleury et al.[104], but apparently had never shown to be minimal en-
ergy wherd(s) ~ 0. The major limit in their use is due to the difficulty in calculating

k. andk, for given boundary configurations. Nevertheless in the hypottig¢sjs~ 0

(the only case of interest) clothoids can be approximated by a cubic polynomial with
the same degree of approximation usedIifs) = (1,6(s)). From equation (5.43)
when: = 2/ = 0 (2D) and¢ — z (Cartesian parameterization) and approximat-
ing (1 4+ y'%(z)) ~ 1V x (which is equivalent tdl'(s) = (1,6(s)) V s) follows that
y"?(2) = ay ¥ () + oy + B = y(x) = 3.0 _, an2™ i.e. acubic polynomial satisfying

the two boundary configurations.

5.2.4 Solution examples

The major difficulty in the implementation of the above repor2ddiresults is related

to the calculation of the parametegiven the final boundary configuration (as noticed
previously the initial configuration can always be taken tqté, 0) as this is equiv-
alent to choosing the reference frame). Equation (5.44) can not be trivially integrated,
thus a numerical algorithm is required. Two different cases may be distinguished:

e constant sign, non null curvature paths
e non constant sign curvature paths calledhapedpaths in the following

As far as the first case is concerned the parameters0O and of equation (5.45)
can be computed as

2
9f 8
argmin | | x5 — / o do (5.48)
ap 0o Ey/acos(d—p)+ 3

O sin 0 ’
+ — do
o /0 +y/acos(0 — ) + 3

being (z,y,,0;) the given final boundary configuration ad > 0 a constant that
needs to be non null only if for the givem, y,,0) no solution exists fop = 0, as
when|d,| > 7. The sign in front of the square roots is unambiguously fixed according
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5.15.0ptimab0° curve, obtained assumirid, 1, 7/2) as final configuration an@ = 0, and cubic spline
90° curve.

to the desired curve direction. The minimum problem given by equation (5.48) can be
solved by standard numerical methods as the simplex method. Examples of the paths
obtained with this approach are displayed in figures (5.15) and (5.17)a pheameter

of S-shaped paths can not be computed with the above suggest method as by definition
of S-shaped path the curvature takes a null value for some valokd.  As shown

by the example reported in figure (5.18), where= 0 for the sake of simplicity, once

that the curvature reaches a null valu® &volvesk has to change sign as not so doing
would imply a discontinuity in the derivative @&f with respect t@. Indeed once that

the curvatures sign is fixed at the starting configurati@r, 0), the apparent possible
ambiguity inks sign choice is completely solved by the above observation?*isach
thatk(0*) = 0 is reached the curvature changes sign. In order to conapfiatea given

final configuration and with reference to equations (5.6) consider the kinematics of an
ideal point following theS-shaped path with unit velocity

cosf (5.49)
= sinf (5.50)
0 = k=++/ajcos6+ aysind (5.51)

A possible algorithm to compute= (ay, as) is

a = argmin Jg
G1,a2
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5.16.Square curvature for an optin8aP curve and a cubic spline path versus thgosition.
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5.17.Paths of constant curvature sign for final configuration, 7/4) and varius values qf, i.e. 3.
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5.18.From top to bottom&? = a - T andk as functions of in the hypothesis that is always positive
or that it changes sign &t beingé”such that(6") = 0.

Giovanni Indiveri, Ph.D. Thesis 140



09

08 ——  Optimal
--- Cubic

0.7

0.6

05F

0.4

0.3F

0.2

0.1

T I I I I I I I I o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5.19.0ptimal and cubic spline paths to the configuratior, 0), 3 = 0.

being.Js computed according to
e STEP(i) : initialize ks sign at the starting configurati@f, 0, 0)
e STEP(ii) : integrate (Euler integration has been employed in the worked examples)
equation (5.51) with the sign fixed at stép from ¢ = 0 to § = 0*, beingf* such
thata; cos 0" + ay sin 6" = 0, and from@™ to 6, with the opposite sign.
e STEP (iii) : having computed(¢) at step(ii) such that/(0) = 0 andd(t;) = 6, in-
tegrate equations (5.49) and (5.50) to yield, 0,) = fotf cos 0(t)dt andg(a,0;) =
fotf sin 0(t)dt
e STEP (iii) : Js = (z; — T(a,0;))* + (y; — 7(a, 0;))%
Examples of paths computed according to this algorithm are given in figures (5.19)
and (5.21). In the reported examples the minimizatioghas been performed by
the simplex method provided by the Matlab software. Notice that in all the presented
examples the square curvature of the optimal paths is dramatically lower then the cubic
spline square curvature over the whole path. Cubic splines have been used to compare
the optimal solution behaviour as they are the least order polynomials satisfying the
given boundary configurations. Although these numerical solution methods are straight
forward they are not suitable for on line path planning algorithms thus future work will
investigate alternative approaches to the calculation of the constants in equation (5.44).
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5.20.Square curvature versus thposition of the cubic spline and optimal paths havihgl, 0) as final

configuration;5 = 0.
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5.21.Cubic spline and optimal paths for tfie1, —/4) final configuration withg = 0.
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5.22.Square curvature versuposition for the cubic spline and optimal paths relative to the final con-
figuration(1, 1, —m/4).
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