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ABSTRACT

The feedback control of a nonholonomic 3D floating vehicle is consid-
ered: namely the control objective is to drive a vehicle moving in 3D
space to a given point and heading along a given line having as control
inputs a 1D linear velocity (surge velocity) and a 2D angular one allow-
ing the vehicle to rotate around any axis normal to the surge one. This
kind of kinematic describes a large class of floating systems including
underwater or space vehicles. In this paper it is shown that a suitable
choice of state variables, i.e. a polar-like set of coordinates, allows to
easily determine a nonlinear time-invariant closed loop law that drives
the configuration error to zero as long as the vehicles is not initially
positioned in the target point. The configuration error is shown to tend
asymptotically towards zero via a Lypaunov analysis. The proposed so-
lution builds on previous work regarding the planar unicycle kinematic
model and its effectiveness is confirmed by a simulation analysis.
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INTRODUCTION

The underactuated degrees of freedom of a rigid body moving in 3D space determine
nonintegrable, i.e. nonholonomic, constraints. This is the case, by example, of an
underwater vehicle having nonactuated sway, heave and roll which is by far the most
common case in real applications. With reference to figure (1) consider a rigid body
having a body fixed reference <b> such that the linear and angular velocities obey

u = u ib (1)

ω · ib = 0 (2)



As for the planar unicycle case [1], [2], [3] and in spite of Brocketts Theorem it has
been shown [4] that also in the 3D case a polar-like description of the system kine-
matic allows a time-invariant closed loop control law to be found that guarantees
asymptotic convergence of the position and orientation error to zero as long as the
system is not initially located in the target position. For a more detailed discussion of
the controllability of such a kind of underactuated kinematic model refer to [5]. The
present paper suggests a more natural approach for the issue of designing a non linear
control law for the polar-like description of the underactuated 3D system. The pro-
posed control scheme is obtained as the result of a two stage process: first a velocity
vector field is defined such that an ideal system free of any nonholonomic constraint
subject to this velocity would exponentially converge to the desired configuration and
then a steering law is computed such that the only actuated linear motion axis of
the nonholonomic system is asymptotically parallel to the previously defined velocity
vector field.
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Figure 1: The model

CONTROL LAW DESIGN

With reference to figure (1) consider the body and target fixed frames < b >=
{ib, jb, kb} and <a>= {ia, ja, ka} and the vector e pointing from <b> to <a>. The
angles between ia, ib and e are θ and α such that when they are different from 0 or π
the unit vectors rθ and rα parallel to ia∧ie and ib∧ie and normal to the planes {ia, e}
and {ib, e} are well defined. Calling vh a velocity vector to be yet defined, β is the
angle between ib and vh and rβ ‖ ib ∧ vh the unit vector normal to the plane {ib, vh}
when β 6= 0, π. The control objective is to design a closed loop law for the linear
and angular velocities u and ω such that the kinematic model of the underactuated
vehicle is asymptotically driven to the origin of the < a > frame along the ia axis
while the constraints given by equations (1) and (2) are satisfied.

The velocity vector field vh

When the vehicle is not located in the origin of the target frame < a >, i.e. e =
‖e‖ 6= 0 and rθ is well defined, i.e. θ 6= 0, π, the reference < e> may be defined as



< e >= {ie, je, ke} where ke ≡ rθ, ie ≡ e/‖e‖, j
e

= rθ ∧ ie. The vector field vh is
defined to be such that the projection of vh on the reference <e> is given by

evh = e[ γe e+ γθ θ (rθ ∧ e) ] =

= γe eie + j
e
γθ θe : γe , γθ > 0. (3)

Given the nature of reference < e >, the field vh is discontinuous when θ = π.
This is actually a drawback of the proposed strategy as when θrθ is not defined
neither equation (3) is. As a consequence the field vh is not defined when θ = π,
while for θ = 0 the vector θrθ is well defined and equal to the null vector so that
θ = 0⇒ vh = γe eie. Notice that by construction a point subject to the velocity given
by equation (3) would exponentially converge to the target provided that et=0 6= 0
and θt=0 ∈ [0, π). The basic idea is that of building a closed loop control law for the
angular velocity of the nonholonomic vehicle that asymptotically drives ib parallel to
vh.

The steering law

Given the above definitions of vh and β a closed loop control law for the angular
velocity ω that drives β to zero is to be found. Consider the more general situation
in which two unit vectors ν ≡ vh/‖vh‖ and ib are given such that their angular
velocities are ων and ω and a law for ω is searched such that the vector β ≡ rβ β
is asymptotically null. This control problem may be approached considering the
Lyapunov function

Vβ =
1

2
β · β =

1

2
β2 (4)

and its time derivative

V̇β = β · (rββ̇ + ṙββ) = β · rββ̇ (5)

as ṙβ = ω ∧ rβ ⊥ β. By standard kinematic it follows that

β̇ = rβ · (ων − ω) (6)

so that in order to guarantee that equation (5) is negative definite it is sufficient, by
example, that

rβ
(
rβ · (ων − ω)

)
= −k β : k > 0. (7)

By direct calculation it is found that equation (7) is satisfied choosing

ω = k β + rβ(rβ · ων) (8)

which guarantees exponential convergence of β to zero as can be seen replacing (8)
in (6). Notice that the angular velocity ων of a unit vector ν is always given by
ων = ν ∧ ν̇ so that finally equation (8) may be expressed as

ω = k β + rβ
(
rβ · (ν ∧ ν̇)

)
. (9)

The control signal given by equation (9) satisfies the constraint (2), but may be not
defined in correspondence of those states in which rβ or ν are not defined. These
cases will be more deeply discussed in a following section.



The time derivative of ν

In order to implement equation (9) given that ν is the unit vector parallel to vh,
its time derivative ν̇ must be explicitly computed. With reference to figure (1) and
to the definition (3) of vh, ν̇ may be generated at most by three different kinds of
infinitesimal motions of the frame <b>, i.e. ν̇ = ν̇1 + ν̇2 + ν̇3:

• ν̇1 due to linear movements of e along ie

• ν̇2 due to rotations of e around rθ

• ν̇3 due to rotations of e around j
e

= rθ ∧ ie.

Given that both components of vh are linear in e, ν̇1 = 0 as ν is actually not affected by
the first kind of infinitesimal motions, namely translations along ie leave ν unchanged.
As far as the rotations around rθ are concerned it follows that

ν̇2 = (δ̇ + θ̇) (rθ ∧ ν)

being δ the angle between ie and vh as shown in figure (1). The time derivative of δ
can be evaluated noticing that:

ee · evh ≡ ‖vh‖‖e‖ cos δ = e2
√

(γ2
e + γ2

θ θ
2) cos δ = γe e

2 (10)
ee ∧ evh ≡ erδ‖vh‖‖e‖ sin δ =

= erδ e
2
√

(γ2
e + γ2

θ θ
2) sin δ = erδ γθ θe

2, (11)

from which it follows that cos δ and sin δ are given by

cos δ =
γe√

(γ2
e + γ2

θ θ
2)

(12)

sin δ =
γθ θ√

(γ2
e + γ2

θ θ
2)
. (13)

Finally differentiating equation (12) and using equation (13) the time derivative of δ
is found to be

δ̇ =
γe γθ

γ2
e + γ2

θ θ
2
θ̇. (14)

Assuming all the relevant unit vectors (rθ, rα, ν) to be well defined, the value of θ̇
can be computed noticing that θ changes if and only if there is an angular velocity
parallel to rθ applied on e. The only motion that can generate such angular velocity is
the linear translation along ib which, in fact, causes a rotation of e having an angular
velocity ωe = rα(u/e) sinα. As a consequence of this angular velocity it follows that
θ̇ = rθ · rα(u/e) sinα and thus

ν̇2 =
u sinα

e

(
1 +

γe γθ
γ2
e + γ2

θ θ
2

)
(rθ · rα)(rθ ∧ ν). (15)

As far as the contribution ν̇3 to ν̇ due to rotations around j
e

= rθ ∧ ie is concerned
it must first be noticed that such motions do not affect the value of θ. This can



be shown, by example, considering the effect of a constant rotation around j
e
, i.e.

an angular velocity σ = σj
e
: the absolute time derivative of ie due to such angular

velocity would be given by

d<a>
dt

ie = σ ∧ ie = σj
e
∧ ie = −σrθ

and as the absolute derivative of the fixed reference unit vectors is identically null
(d<a>

dt
ia = 0) it follows that

d<a>
dt

cos θ =
d<a>
dt

(ia · ie) = −σ ia · rθ = 0

showing that the angle θ does not change in consequence of rotations of e around j
e
.

This fact allows to compute ν̇3 as follows:

ν̇3 =
u · rθ
e

(
j
e
∧ ν

)
(16)

being u · rθ the only component of the systems velocity that may cause a rotation of
e around j

e
. Recalling the above partial results, the time derivative of ν is found to

be:

ν̇ =
u

e

((
1 +

γe γθ
γ2
e + γ2

θ θ
2

)
(rθ · rα sinα)rθ + (ib · rθ) (rθ ∧ ie)

)
∧ ν. (17)

Once again it is observed that this equation is defined only when the relevant unit
vectors are well defined. Replacing equation (17) in (9) a closed loop equation for ω
is found that drives the vehicles axis ib asymptotically parallel to the field vh. It is a
straightforward exercise to show that in the planar case, i.e. when rα = rθ = rβ = ka,
the resulting angular velocity ω is exactly the same one obtained for the 2D unicycle
model [6] applying the same position control strategy.

Discontinuities in the steering law

By direct analysis of equations (9) and (17) it is apparent that the steering control
law may not be defined if β = π, β = 0, θ = π or θ = 0 while the cases α = 0, π
should not worry as the term rα sinα in equation (17) is always well defined. The
most serious case is perhaps θ = π as in this situation the field vh itself is not defined
and so neither is the scalar β. As a consequence the steering control ω will have to
be discontinuous when θ = π. A possible choice for ω|θ=π is

ω|θ=π =

{
0 if α 6 ∈{0, π}
ε kb ε > 0 otherwise.

(18)

Although without entering in the details of the analysis, it is worthwhile to examine at
least qualitatively the consequences of this choice. Assuming that the vehicle moves
in only one forward direction as will be apparent from the next section, the case
θ = π ∪ α ∈ {0, π} corresponds to the situation in which the vehicle is moving along
the positive part of the ia axis of the target frame <a> towards the target (α = 0) or
away from it (α = π). In such situation any infinitesimal angular velocity driving the



vehicle off the ia axis as suggested by equation (18) will bring the system in a region
where all relevant angles and unit vectors are properly defined for the implementation
of equations (9) and (17). Moreover notice that due to the radial symmetry of the vh
field in any neighborhood of the ia axis and due to the exponential convergence of β
given by (9), the implementation of equation (18) when θ = π ∪ α ∈ {0, π} suggests
that the ia axis will not be crossed again once it is left. A similar reasoning justifies
the choice ω|θ=π = 0 if α 6∈{0, π} as in this situation the “singular” axis ia is left
behind by just moving in the given ib direction. The case θ = 0 is less problematic
as actually in such case vh as given by equation (3) is well defined and parallel to ia.
Notice that when θ = 0 the angles α and β are equivalent, i.e. (α|θ=0) ≡ (β|θ=0) and
ν |θ=0 ≡ ie. A possible choice for ω|θ=0 is

ω|θ=0 =


(k β + (u/e) sinα)rβ if β 6 ∈{0, π}
ε kb : ε > 0 if β = π
0 if β = 0.

(19)

The first of the three cases given by equation (19) is obtained from equation (9)
noticing that if ν = ie as when θ = 0, then ν̇ |θ=0 = (rα ∧ ie)(u/e) sinα. This specific
choice of ω|θ=0 when β 6∈{0, π} guarantees that the Lyapunov function (4) and its
time derivative (5) are continuous. The choice ω|θ=0 = ε kb : ε > 0 when β = π follows
from the observation that in such situation the vehicle is moving along the negative
part of the ia axis in the opposite direction of the target. Any infinitesimal angular
velocity will drive the system off this axis in a region where all relevant angles and
unit vectors are suitably defined for the implementation of equations (9) and (17).
Moreover the structure of the field vh suggests that once this happens the vehicle will
not cross the ia axis with β = π again. The last case θ = β = α = 0 corresponds
to the trivial situation in which the vehicle is moving on the ia axis towards the
target and thus it may simply proceed on a straight line. Finally it should be noticed
that thanks to the exponential convergence of β to zero the unit vector rβ used to
compute the angular velocity ω will be actually well defined at all finite times as long
as β|t=0 6= 0, π. This suggests that in the case that the initial configuration of the
vehicle should imply β = 0 or β = π any angular velocity satisfying equation (2) may
be applied at the time t = 0 in order to enter the region of the state space where
equations (9) and (17) may be directly implemented.

The linear velocity law

Having computed a steering law that guarantees asymptotic convergence of β to zero,
the most natural choice for the linear velocity is

u = ‖vh‖ = e
√
γ2
e + γ2

θ θ
2 . (20)

With such law for u the vehicle will asymptotically follow the velocity field vh with a
well defined angular velocity as the ratio u/e required in equation (17) is defined in
the whole state space at all finite times. This follows from the observation that the
state equation for e is given by

ė = −u cosα (21)
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Figure 2: Path resulting from the application of the proposed closed loop control
strategy. Refer to the text for greater details regarding this example.

thus replacing equation (20) in (21) it is found that

e(t) = e|t=0 exp
[
−
∫ t

0

√
γ2
e + γ2

θ θ(τ)2 cosα(τ)dτ
]

(22)

showing that if e|t=0 6= 0 then e is strictly positive at all finite times. Indeed the
application of the proposed strategy guarantees that e tends to zero asymptotically
-actually exponentially- and at the same time it guarantees that the singular point
e = 0 where α and θ are not defined is never touched during the closed-loop time
evolution of the systems. Moreover having the linear velocity given by equation (20)
constant sign it guarantees the absence of cusps in the vehicles path thus satisfying
a major requirement for real world applications.

SIMULATIONS AND CONCLUSIONS

The above presented approach has been tested by simulations one of which is here re-
ported for reference. In figure (2) the path resulting from initial position (x0, y0, z0) =
(10, 10, 10) and orientation (roll, pitch, yaw) (φ0, θ0, ψ0) = (0, 0, π/2) with gains
k = 1, γe = 1/2 and γθ = 3/4 is reported together with the time history of the
surge and of the variable β that converges exponentially as expected. The pitch and
yaw velocities computed with the proposed closed loop law relative to this case are
plotted in figure (3). It has been shown that adopting a polar like description of
a 3D vehicle it is possible to design a closed loop control law having only isolated
discontinuity points that drives the position configuration to zero. Strictly speak-
ing the proposed solution does not solve the point stabilization problem for the 3D
nonholonomic systems as the target configuration (e = 0) lies on the boundary of
the polar-like state space domain, but is not part of it. Nevertheless this has vir-
tually no importance from the practical point of view as the proposed strategy can
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Figure 3: Time history of the yaw and pitch variables relative to the path displayed
in figure (2).

be applied from any neighborhood of the null measure set e = 0. The use of polar-
like variables to design time-invariant controllers for mechanical systems that would
otherwise suffer from Brocketts negative result is not limited in the literature to the
unicycle model but has been recently adopted [7] to control a planar space robot with
a two link manipulator. Because of the presence of a null measure set (containing
the equilibrium) from which these control laws fail to converge they are sometimes
called “almost” smooth. The proposed control design methodology exploits the prior
definition of a velocity vector field that would exponentially drive the configuration
error of a nonholonomic constraint-free systems to zero. It is actually sufficient to
define a steering law that asymptotically orients the nonholonomic vehicle along the
direction of this field to achieve the control objective.

REFERENCES

1. A. Astolfi, “Exponential stabilization of a wheeled mobile robot via discontinuous control,”
ASME Jou. of Dyn. Sys. Mea. and Cont., March 1999.

2. M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop steering of unicycle-like
vehicles via lyapunov techniques,” IEEE Robotics and Automation Magazine, pp. 27–35, March
1995.

3. G. Indiveri, “Kinematic time-invariant control of a 2D nonholonomic vehicle,” in 38th IEEE
Conference on Decision and Control CDC’99, (Phoenix, USA), December 1999.

4. M. Aicardi, G. Cannata, and G. Casalino, “Smoothness of a feedback control law for a non-
holonomic 3D vehicle,” in IFAC 3rd Int. Workshop on Motion Control, (Grenoble, France),
pp. 239–244, September 21-23 1998.

5. O. Egeland, M. Dalsmo, and O. J. Sørdalen, “Feedback control of a nonholonomic underwater
vehicle with a constant desired configuration,” Int. Jou. of Robotics Research, vol. 15, no. 1,
pp. 24–35, 1996.

6. M. Aicardi, G. Cannata, G. Casalino, and G. Indiveri, “On the stabilization of the unicycle
model projecting a holonomic solution,” in 8th Int. Symposium on Robotics with Applications,
ISORA 2000, (Maui, Hawaii, USA), June 11-16 2000.

7. R. Mukherjee, M. Kamon,“Almost sooth time-invariant control of planar space multibody sys-
tems,” IEEE Trans. on Robotics and Automation, vol. 15, no. 2, pp. 268-280, April 1999.


