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Abstract— Two discontinuous solutions for the kinematic
position and attitude closed loop control problem of an un-
deractuated floating body are considered. The first is de-
rived on the basis of Lyapunovs stability theory while the
second is designed exploiting a novel idea: first a vector
field is defined such that an ideal point free to move in any
direction would exponentially converge to the desired con-
figuration and then a steering law for the underactuated
vehicle is derived such that it is exponentially parallel to
the above mentioned field. Both solutions yield cusp-free
and asymptotically null curvature paths which is a major
practical constraint in real world applications.

I. Introduction

The feedback control of a nonholonomic 3D floating ve-
hicle is considered: namely the control objective is to drive
a vehicle moving in 3D space to a given point and head-
ing along a given line having as control inputs a 1D lin-
ear velocity (surge velocity) and a 2D angular one allow-
ing the vehicle to rotate around any axis normal to the
surge one. This kind of kinematic describes a large class
of floating systems including underwater or space vehicles.
Brocketts theorem [1] prevents the synthesis of a globally
convergent smooth pure feedback control law for such kind
of systems and indeed time varying [2][3] or discontinuous
[4] closed loop solutions have been suggested in the litera-
ture. In spite of their mathematical elegance time-varying
solutions yield quite complex controllers and the resulting
paths may present cusps due to the fact that the vehicle is
supposed to move in both the forward and backward direc-
tions, while the great majority of autonomous underwater
vehicles (AUVs) travel in the only positive surge direction.
This is indeed a major point as even time-invariant solu-
tions [5] are affected by this problem.

As suggested by Brockett himself [1] a suitable (i.e. sin-
gular) choice of state variables, e.g. a polar-like set of co-

ordinates for the unicycle model, may transform a given
system subject to Brocketts negative result into one for
which such theorem does not prevent the existence of a
pure feedback control law. It has been shown that the ap-
plication of this idea to the unicycle model allows to easily
determine a simple nonlinear time-invariant closed loop law
that drives the configuration error to zero as long as the
vehicles is not initially positioned in the target point where
the coordinate transformation singularity takes place [6][7].
The idea of mapping the systems by a non global diffeo-
morphism state transformation such that the transformed
system is not subject to Brocketts negative result is not
limited in the literature to the 2D or 3D unicycle kine-
matic model [6][7] [8][9][4] [10], but has been applied to
several other nonholonomic systems with success [11][12].
Recent results [13] show that with such kind of strategy
it is indeed possible to determine time-invariant, cusp free
solutions that guarantee convergence to the target config-
uration as long as the vehicle is not initially positioned in
the target point. From a strictly technical point of view the
solutions provided by this methodology are not stabilizing
ones as the equilibrium state belongs only to the boundary
of the domain of definition of the transformed state vari-
ables. Nevertheless from a practical point of view this has
actually no importance as the proposed steering laws may
be applied to drive the vehicle to the target from any initial
configuration as long as the starting position differs from
the target one.

The present paper focuses on a brief analysis of the im-
plementation requirements of these laws, and of the sta-
bility and robustness properties that these solutions could
guarantee in real world applications.



UNDERWATER TECHNOLOGY 2000, UT’00, TOKIO, 23-26 MAY 2000 2

II. The model

With reference to figure (1) consider a rigid body having
a body fixed reference < b >= {ib, jb, kb} such that the
linear u and angular ω velocities obey

u = u ib (1)
ω · ib = 0 (2)

being · the scalar product operator and u the euclidean
norm ‖ ‖ of u. The vector e = eie : ‖ie‖ = 1 is defined
to point from < b > to the origin of the target fixed ref-
erence <a>= {ia, ja, ka}. The angles between ia, ib and
e are θ and α such that if they are different from multi-
ples of π then the unit vectors rθ = ia ∧ ie/‖ia ∧ ie‖ and
rα = ib ∧ ie/‖ib ∧ ie‖ the ∧ indicating the standard vec-
tor product, are well defined. The position control prob-
lem consists then in finding u(e, θ, α) and ω(e, θ, α) such
that asymptotically (e, θ, α) → (0, 0, 0) being θ = θ rθ and
α = α rα ∀ θ, α 6= nπ : n ∈ Z. The control objective may
be actually described stating that the scalars (e, θ, α) are
requested to converge to zero, but as their derivatives ex-
plicitly depend on the unit vectors ie, rθ and rα [4] the
controls u and ω will be functions of (e, θ, α) rather than of
their norms. As a consequence of the singularities occur-
ring in the definition of rθ and rα when α or θ are multiples
of π the control laws u(e, θ, α) and ω(e, θ, α) may present
discontinuities.

III. Two possible solutions

Given the above polar-like kinematic model and position
control problem statement, two different solutions have
been recently proposed [13][14] both providing cusp-free
paths, but affected by isolated discontinuity points. The
first is based on the following idea: first a velocity vector
field vh = γe eie+j

e
γθ θe : γe , γθ > 0 is defined such that if

the origin of the frame <b> was free to move with no non-
holonomic constraint, moving with such velocity it would
globally and exponentially converge to the target along the
desired direction. Then a steering law for ω is computed
such that ib is globally and exponentially parallel to vh
while the velocity of advance u of the vehicle is chosen to
be ‖vh‖. The application of the same idea to the planar
case is described in [9]. When all the suitable unit vectors
involved are well defined, the resulting control laws turn
out to be

ω = k β + rβ
(
rβ · (ν ∧ ν̇)

)
: k > 0 (3)

ν̇ =
u

e

((
1 +

γe γθ
γ2
e + γ2

θ θ
2

)
(rθ · rα sinα)rθ+ (4)

+ (ib · rθ) (rθ ∧ ie)
)
∧ ν

u = ‖vh‖ = e
√
γ2
e + γ2

θ θ
2 (5)

being ν the unit vector parallel to vh, i.e. ν = vh/‖vh‖, β
the angle between ib and vh and rβ = ib ∧ ν/‖ib ∧ ν‖ the
unit vector normal to the plane {ib, vh} when β 6= nπ : n ∈
Z. For a detailed description of this control solution refer

to [13] where the convergence and stability properties are
addressed together with the discontinuities and their effect
on the overall system performance.

The second solution builds on the results presented in [4]
and is described in detail in [14]. The main idea consists
in deriving a steering law that guarantees the candidate
Lyapunov function

V = 1/2(α2 + hθ2) : h > 0 (6)

to have a negative definite time derivative and the config-
uration error (e, θ, α) to asymptotically converge to zero.
This is achieved choosing u = γe e : γe > 0 that being
always positive guarantees the absence of cusps from the
paths. Denoting with cx the projection of the vector x on
reference < c>, the complete solution [14] consists of the
controls:

u = γe e ; γe > 0 (7)

bω = K bα+ γe (bα+ h bθ̃)
sinα
α

; K, h > 0 (8)

bθ̃ =

 0 0 0
0 1 0
0 0 1

 θ (9)

that, as for the other solution, may present discontinuities
when the relevant unit vectors fail to be properly defined.

If the position control task should degenerate in the one
of reaching the origin of frame <a> regardless of the direc-
tion of arrival it would be sufficient to choose γθ = 0 and
h = 0 in the two solutions. Lengthy, but straightforward
direct calculations show that in such case the two solutions
are equivalent, as can be intuitively understood from figure
(1). In particular both solutions would guarantee exponen-
tial convergence of α to zero with u = γe e.

IV. Implementation considerations

If on the one hand it can be claimed that neglecting the
vehicles dynamics may cause poor performance of the con-
troller, it must also be observed that the estimation of the
systems velocity vector, required to implement any solution
taking the dynamics into account, is by no means trivial
or even possible for certain classes of underwater vehicles.
On the contrary the suggested solutions may indeed by im-
plemented measuring “only” the scalar distance from the
target (e) and the vehicles attitude from which all the re-
quired angular variables may be computed. Of course the
measurement and/or estimation of these quantities will de-
pend on the available sensors of the specific vehicle.

As far as the stability of the proposed solutions is con-
cerned it should be noticed that the point stabilization
problem is actually not solved in the strict sense as the
equilibrium (e = 0) is not part of the domain of defini-
tion of the control law, but lies on its boundary. This is
an obvious consequence of the use of polar-like variables
but it is not a problem from the practical point of view:
indeed the configuration error is driven to zero from any
initial configuration such that e|t=0 6= 0. Notice moreover
that not only the paths are cusp-free as shown previously,
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but with a suitable choice of the controller gains it is al-
ways possible to guarantee that the target is approached
on a null curvature path. In particular it is necessary to
select the gains such that the angular variables converge to
zero faster than e (see [13] for details). These fundamen-
tal practical constraints are not easily satisfied within the
time-varying control framework.

The major price to be paid for the nice properties above
reported is the presence of discontinuities in the steering
law. A detailed description of the configurations in which
these occur and of a possible way to deal with them is
found in [4][13]. Notice however that the singularities oc-
curring when e 6= 0 and some of the necessary unit vectors
are not defined may be regarded as “isolated”, in the sense
that the corresponding configurations are unstable in closed
loop and the suggested control laws are well defined in any
neighborhood of those configurations. This is why with a
suitable definition of the steering law in correspondence of
those singularities, in spite of introducing a discontinuity
point, these configurations are left behind and the overall
error may still converge to zero.
The situation is different in a neighborhood of e = 0. In the
ideal case of no measurement noise the scalar e will tend to
zero continuously and exponentially and thus both θ and
rθ will asymptotically be continuous time functions. In the
more realistic case of imperfect state measurement the an-
gle θ will “jump” (see figure 1) from θ ≈ 0 to θ ≈ π when
e is in a neighborhood of the origin and affected by mea-
surement noise. This of course may cause a high frequency
discontinuous steering control action similar to what oc-
curs with sliding mode discontinuous controllers. This phe-
nomenon may be limited introducing a deadband zone, i.e.
a small set in the state space containing e = 0, in which
the steering input is put to zero. The size and topology of
such set must be tuned according to the state measurement
noise. From a practical point of view this does not seem
to be a serious problem as the application of the suggested
controllers will still guarantee to make the configuration
error smaller or equal to a threshold depending on the pre-
cision of the state estimation and measurement techniques
employed.

V. Conclusions

The proposed control strategies have been tested with
some simulations here described. First the controller given
by equations (7) and (8) has been adopted to steer to the
origin a systems being initially positioned in x0 = 5, y0 =
5, z0 = 5 and having initial attitude φ0 = 0, θ0 = 0, ψ0 = 0.
The gain parameters were fixed to K = 2.5, h = 2, γe = 1.
The resulting path is shown in figure (2) and the control
inputs together with the decreasing Lyapunov function (6)
in figure (3).

The controller given by equations (3) and (5) has been
tested for the same initial configuration with gains fixed to
k = 1, γe = 1/2, γθ = 0.7. The resulting path is reported
in figure (4) while the control inputs and the function V
given by equation (6) are shown in figure (5).

Two kinematic discontinuous closed loop controllers to

drive an underactuated underwater vehicle in a given point
with a given orientation have been presented. The imple-
mentation of these laws requires the only knowledge of the
distance from the target and the attitude of the vehicle.
Notice that similar purely kinematic solutions for the pla-
nar case were most successfully implemented on the under-
water vehicles Roby2 and Romeo of CNR-IAN, Genova,
Italy [15](and references therein). On the basis of these
promising results it can be expected that also the here sug-
gested 3D extensions will behave fine when tested. The
drawbacks and advantages of the proposed solutions with
respect to other existing ones have been outlined and dis-
cussed.
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Fig. 1. Kinematic polar-like model
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Fig. 2. Path resulting from the application of the controller given by equations (7) and (8) designed such that the Lyapunov function (6)
has negative definite time derivative.
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Fig. 3. Control inputs and Lyapunov function (6) relative to the path reported in figure (2). Refer to the text for details.
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Fig. 4. Path resulting from the application of the controller given by equations (3) and (5) designed such that the β → 0.
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Fig. 5. Control inputs and Lyapunov function (6) relative to the path reported in figure (4). Notice that V is not always decreasing.
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Fig. 6. Time history of the exponentially decreasing angle β relative to the path shown in figure 4.


