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Abstract—A lumped parameter model of open-frame un-
manned underwater vehicles (UUV’s) including the effects of
propeller–hull and propeller–propeller interactions is presented.
The identification of the model parameters consists of a least
squaresmethod usingonly on-board sensor datawithout requiring
any towing tank tests. The identification scheme is based on sep-
arate tests for the estimation of drag and thruster installation
coefficients, taking into account propeller–hull and propeller–pro-
peller effects first and inerti a parameters subsequently. The
scheme has been experimentally implemented on ROMEO, the
latest UUV developed by CNR-IAN . Experimental results show
both theeffectivenessof theproposed method and therelevanceof
the propeller–hull and propeller–propeller interactions that are
usually neglected in standard UUV models.

Index Terms—Identi fication, modeling, unmanned underwater
vehicles.

NOMENCLATURE

Inertia matrix.
“Added mass” inertia matrix.
Coriolis and centripetal matrix.
“Added mass” Coriolis and centripetal
matrix.
Linear drag matrix.
Quadratic drag matrix.

: surge,
sway, heave, roll, pitch, and yaw veloc-
ities.
Nominal applied force.
Nominal applied torque.
Inertia relative to thedegreeof freedom

including added mass effects.
Linear drag coefficient relative to the
degree of freedom .
Quadraticdragcoefficient relativeto the
degree of freedom .
Nominal applied force (torque) relative
to the degree of freedom .
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Additive noise relative to the degree of
freedom .
Applied thruster voltage.
Propeller revolution rate.
Thrust mapping mode index.
Nondimensional thruster installation
coefficient.

I. INTRODUCTION

I N THE LAST few years, after the satisfactory experiences
of Jason [1] and Ventana [2], the employment of remotely

operated vehicles (ROV’s) for marine science applications has
definitely grown. Among themany different kindsof unmanned
underwater vehicles (UUV’s), anew generation of ROV’ s with
an interchangeable toolsled for different payloads has been de-
veloped. Examplesof such systemsare thedeep-water vehicles
Tiburon [3], [4] and Victor 6000 [5], [6] and the mid-water ve-
hicle ROMEO [7], which are being exploited in a number of
scientific programs [8], [9]. Many of these programs require
high-precision maneuvering in the proximity of environmental
structures, which cannot be altered by the vehicle movements
(e.g., benthic applications for studying the sediment–water in-
terface or visual inspection). Indeed, regardless of the specific
mission requirements, the problem of designing motion con-
trollers for underwater vehicles able to guarantee high-perfor-
mance in terms of precision, agility, and optimization of the
thruster action (i.e., reduction of power consumption and en-
vironment perturbations) has been extensively treated in litera-
ture.

Many different control methodologies ranging from sliding
mode[10], [11] to [12], [13] and adaptive techniques [14],
[15] have been proposed to handle the uncertainties related
to the knowledge of the hydrodynamic derivatives and the
external disturbances. Whatever the control strategy to face
parametric and environmental uncertainty is, anominal vehicle
model and an estimate of the dynamic equation parameters
are necessary for both control and state estimation purposes.
Notice that underwater vehicle linear speeds are usually ob-
tained by model-based state estimation through noisy position
measurements [15] or by noisy and biased low sampling rate
direct measurements, as when Doppler velocimeters are used.
In this framework, the need for performance improvements in
navigation, guidance, and control, required to execute tasks
such as high-precision hovering in theproximity of the seabed,
motivates a deeper investigation on the methodologies for
hydrodynamic modeling and identification of open-frame
ROV’s.



Conventional hydrodynamic derivative identification
methods involve towing tank trials of the vehicle itself [16] or
of a scaled model of the vehicle [17], expecting, in this case,
an error in the estimate of some of the parameters up to 50%
[18]. Thesekind of testsallow acompletemodel identification,
but are lengthy, complex, and expensive. As a consequence,
on-board sensor-based identification of a simplified model is
to be preferred for variable-configuration vehicles as it can be
simply and cheaply repeated when a significant variation in
the systems structure occurs. Indeed, system identification as
opposed to towing tank techniques for marinesystemsparame-
ters identification has been proposed by several authors. As far
as surface vessels are concerned, the use of extended Kalman
filters (EKF’s) has been first suggested and experimented by
Abkowitz [19]. A state-augmentation version of an EKF for
ship hydrodynamic coefficients identification has been pro-
posed by Liu [20] and the tuning of ship models based on least
squares (LS) and EKF to improve performance of dynamic
positioning systemshasbeen addressed by Selkäinaho [21] and
Fossen et al. [22]. As far asunderwater vehiclesareconcerned,
system identification methodologies have been suggested by
Goheen and Jefferys [23]. EKF-based identification of the
surge motion of the NPS Phoenix autonomous underwater
vehicle (AUV) has been presented by Marco et al. [24] while a
LSidentification approach for theIFREMER VORTEX vehicle
is described by Ziani-Cherif et al. [25]. A combined use of LS
and EKF methods for the identification of a ROV has been
described by Alessandri et al. in [26]. Morrison and Yoerger
[27] applied to theROV Hylasaone-dimensional (1-D) system
identification procedure based on numerical minimization of
the error between the trajectories of the vehicle and several
models during a free decay.

In the following, a research study focusing on the develop-
ment of a procedure for the modeling and LS identification
of an open-frame variable configuration ROV using on-board
sensor data without requiring any towing tank tests, i.e., re-
markably reducing costs, is presented [28]. A suitable lumped
parameter model for thruster installation effects [29] has been
defined and the thrusters installation coefficients, which take
into account thepropeller–hull and propeller–propeller interac-
tions, have been estimated. Persistently exciting input signals
have been designed considering the model structure, actuator
dynamics, and type of available sensors. The LS identification
procedureconsistsof two steps: 1) thedrag coefficientsareesti-
mated by constant speed testsand 2) on thebasisof their values
a suboptimal sinusoidal input is designed to identify the inertia
parameters.

The proposed methodology has been applied to model and
identify ROMEO, the prototype ROV developed by CNR-IAN
for robotics research and scientific applications.

The paper is organized as follows. Section II discusses the
modeling of ROV dynamics and of the thruster installation
coefficients. The LS-based identification procedure is reported
in Section III . Experimental results obtained by adapting this
procedure to the identification of the ROMEO vehicle are
outlined in Section IV wheregeneral implementation issuesare
also discussed. Finally, Section V ends with some concluding
remarks.

II . MODELING

A. Vehicle Modeling

The dynamic model of a UUV can be derived from the gen-
eral Newton–Euler motion equation of a rigid body in a fluid
medium. If thefluid isirrotational, inviscid, of uniformandcon-
stant density, and of infinite extent except for the rigid body
itself [14], [30], [31], then the equation of motion can be ex-
pressed in spatial notation in the local reference frame as

(1)

where is the
six-dimensional speed column vector relative to the fluid, is
the 6 6 inertia matrix, is the Coriolis and centripetal
matrix, and are theadded massand added
mass Coriolis-like matrices, and are the linear and
quadratic drag matrices, is the weight and buoyancy matrix
( m/s is thegravity acceleration), is the projection
of the -axis global inertial reference frame unit vector on
the local body fixed reference, and are the force
and torque produced by the vehicle’s propulsion system. In
the following, all the quantities considered up to now wil l be
assumed as projected on the local body fixed reference frame.

The experimental identification of a complete ROV model
such as the one given by (1) is not feasible with only stan-
dard on-board sensorsbecauseit would requireacompletestate
knowledge. Indeed, it may be performed with complex and ex-
pensivetowing tank facilitiesasdescribedby Nomotoet al. [17]
or Goheen [16], but such an approach is not indicated for sys-
tems having a variable and mission-dependent configuration.
Moreover, inmany standardmaneuveringconditions, e.g., plane
surge motion or vertical translation, and generally at low oper-
ating speeds, the coupling terms may be reasonably neglected
without seriouslossof information. Asaconsequence, on-board
sensor-based identification experiments usually refer to a sim-
plifieduncoupledmodel that canbededucedfrom(1) neglecting
theoff-diagonal elementsof theadded massmatrix, theCoriolis
and centripetal kinematics, and drag coupling terms. This ap-
proximation relieson the fact that: 1) theoff-diagonal elements
of theadded massmatrix of arigid body having threesymmetry
planes are identically null [30]; 2) the off-diagonal elements of
thepositivedefinitematrix aremuch smaller than their diagonal
counterparts [31]; and 3) the hydrodynamic damping coupling
is negligible at low speeds. The resulting model structure for a
single degree of freedom is

(2)

where is the inertia relative to the considered degree of
freedom, is the 1-D velocity, and are the linear and
quadratic drag coefficients, is the applied force or torque,
and is the disturbance modeling otherwise unmodeled phe-
nomenaascableeffects. Thiskindof uncoupledmodel structure
is certainly the most common in the literature of underwater
vehicles regarding guidance, navigation, and control schemes



[24], [25]. Parameters are estimated assuming the nominal ac-
tuator action known. Theknowledgeof isactually related
to thefact that therelation between applied thruster voltageand
torque has been identified a priori for each single thruster in a
thrust tunnel. A potentially seriousdrawback of such methodsis
related to the fact that the identified thruster model neglects the
propeller–propeller and/or propeller–hull interactionsthat occur
in thevehicleunder theoperating conditions. Propeller–hull in-
teractionsare awell-known and studied phenomenon in surface
vessels[30], however, asfar asUUV’ sareconcerned, they have
seldom been taken into account. To the knowledge of the au-
thors, only Goheen and Jefferys [29] model explicitly such in-
teractionsalthough without measuring directly thecoefficient’s
values; in their words, “the installation coefficientsof athruster
take into account the differences in force that the thruster pro-
vides when operating in the proximity of the ROV, as opposed
to when it is tested in open water.” In the following, these phe-
nomena have been modeled introducing the thruster installa-
tion coefficient , which takes account the aggregate reduc-
tion in the efficiency of the thrusters applying the desired 1-D
force/torque, obtaining the 1-D model

(3)

The nominal actuator action is assumed to be known,
i.e., computed according to a thrust tunnel identified model.
The inertia and drag coefficients are assumed to be indepen-
dent from how the total thrust is distributed on the vehicle’s
thrusters (thrust mapping ), while the installation coefficient
is definitely expected to depend on , i.e., . The
model given by (3) can be identified by following two different
approaches. Either (3) is divided by the non-null giving
rise to a model in which each parameter depends on the thrust
mapping in an a priori unpredictable fashion

(4)

or the parameter vector is identi-
fied for each mapping , of interest being the dependence on

embedded in the only rather than in each parameter.
Notice that the external disturbance is not necessarily zero
mean; thus, its mean value must be identified. As (3) is homo-
geneousin , in order to implement thissecond, moreappealing
approach, must be known for at least one mapping .
Generally, it isnot difficult to heuristically find aspecific thrust
mapping for which can be reasonably thought to be
1, i.e., a mapping in which thrusters operate in open water as
during the thrust tunnel identification experiments.

B. Thruster Modeling

Themodeling and control of underwater vehiclethruster sys-
tems have received wide attention in the literature in the last
years [32]–[35].

Inmany applications, theservovelocity loopof thecontrolled
thruster systemhasanegligibletimeconstant with respect to the
overall vehicle’s time constant [36], and thus the thruster dy-

namicscan beneglected with respect to thevehicle’sdynamics.
In this hypothesis, the propeller thrust is modeled as

(5)

where is thevelocity of the fluid through thepropeller blade
(velocity of advance) and is asaturation term [31]. By
virtueof thecreeping motion of UUV’s, thesaturation term can
beneglected in many standard operational conditionsaswidely
accepted in the literature [14], [17], [25], [31], [32]. Moreover,
under steady-state conditions, the neglected thrust drag term

wil l be indirectly taken into account by the drag
forces considered in the equation of motion (3) of the vehicle.
Thus, neglecting themotor dynamics, the thruster forcemay be
modeled as

(6)

where is an unknown constant and is the control voltage,
which is applied to the thruster servo-amplifiers. Since the
thruster time constant has been neglected with respect to the
overall vehiclesone, isassumed to besimply proportional to
the propeller revolution rate. It is worth noting that, neglecting
the velocity of advance, (6) is expected to be more accurate
farther from the propeller revolution rate inversion points. In
particular, high-frequency sign changes of that may occur
with pseudorandom binary inputs typical of identification ex-
periments produce unmodeled turbulence next to the thrusters,
making the output thrust computed by the standard model less
accurate. In the following, the nominal actuator action will
be assumed to be computed on the basis of (6) having been
estimated by thrust tunnel experiments.

III . IDENTIFICATION

The structure of (3) is well suited for the separate identifica-
tion of thedrag and inertiaparameters when particular static or
dynamic conditionsare met. In particular, thedrag and thruster
installation coefficients can be estimated by a standard LS pro-
cedure on the basis of the estimated velocity under different
steady-state(constant velocity) conditions. Theconstant regime
velocity corresponding to the different constant applied thrusts
may beaccurately estimated by LSwith only position measure-
ments. The experiments described in the following show that,
evenwhenonly low sampling frequency positionmeasurements
are available (e.g., 3-Hz sampling frequency sonar profilers),
the estimated velocity standard deviation is lower than 3% of
thevelocity. Once thedrag parametershavebeen determined, a
suboptimal sinusoidal force/torque input isdesigned in order to
identify thevehicle inertia. Such input guaranteesobservability
[37] and minimizes the turbulence generated next to the pro-
pellers.

A. Identification of the Drag and Thruster Installation
Coefficients

Under steady-state conditions, i.e., when the applied
force/torque is constant, (3) becomes

(7)



wheretheunknown parametersarethelinear and quadraticdrag
coefficients, the thruster installation coefficient, and the mean
valueof theexternal disturbances. Aslong asareliableestimate
of the velocity is available corresponding to different values of
theappliednominal thrust, theseparameterscanbeestimatedby
a standard LS technique. A set of constant force/torque
inputs are applied to the vehicle with a specific thrust mapping
mode in which thrusters are assumed to operate in open water,
i.e., . Furthermore, sets of constant nominal
inputs

corresponding to propulsion mappings having
different propeller–propeller andpropeller–hull interactionscan
be applied.

As the velocity and nominal force are known, (7) can be
written in regression form asshown in (8)–(10), shown
at the bottom of the page, where represents the mean value
of the external forces acting on the vehicle and with
ranging from 1 to are the thruster installation coefficients
corresponding to the different thrust mapping modes.

According to LS theory, the standard deviation of the es-
timated parameter is computed as

(11)

where is the Gaussian zero mean measurement noise vari-
ance. As suggested in [37], if such variance is unknown, it can
be estimated by

(12)

In the remainer of the paper, the quantity wil l be
referred to as the percentile parameter error.

B. Identification of the Inertia Coefficients

Having identified thedrag parametersasdescribed above, the
basic idea is to consider them to be known and use this knowl-
edge to design a suboptimal experiment for the identification
of the inertial quantities. The model to identify is given by (3)
where the drag and thruster efficiency coefficientsare assumed
known from the identification experiments described above.

Thedesign of the inertiaparameter identification experiment
has to take into account some important constraints: i) in the
absence of accelerometers the identification process must be
performed with the only velocity and position measurements
and applied force estimate and ii ) since the adopted propulsion
model is known to be very accurate when the propellers do not
suddenly changerevolution direction, thusthesign of hasto
be kept constant during the whole experiment.

(8)
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Equation (3) can be linearized about the operating velocity
obtaining a linear model, which corresponds to a first order

system with time constant

where (13)

Note that as is thesum of inertia (known) and added inertia
(alwayspositive) and , and areknown, alower bound
of the time constant is known. Moreover as added mass is
expected to beat most 100% of the inertial mass, also an upper
bound of is given.

A common criterion [37], [38] for the choice of the inputs is
tomaximizethecost function , where isthe
Fisher’s information matrix which depends on the adopted in-
puts. In robotic applications, thiscriterion, named the -optimal
criterion, has been successfully adopted by Sweverset al. [39],
[40] for the identification of an industrial arm. In particular, a
first-order system can beoptimally identified with asinglesine
input of frequency [37]

(14)

The input force for the inertia identification experiments is thus
chosen to be of the form

(15)

and are selected so that the corresponding regime ve-

locity is in the standard operating range, and in
order to avoid force inversions. The -optimal frequency
is selected in accordance to (14). The system time constant
needed to compute isestimated a priori by (13) assuming

to beequal to theinertiain air plusaterm ranging from
10% to 100% of that models added mass.

Tocopewith theabsenceof anacceleration measurement, (3)
must be integrated, giving

(16)

where , is the position,

, and isaneventual biasdueto themeanof
and to the numerical integrations performed to calculate and
. Notethat theintegrationprocessdoesnot affect the -optimal

frequency choice as the integral of (3) has the same structure,
in particular the same time constant. As the drag constants, ve-
locity, andpositionareassumedtobeknown, (16) canbewritten
in discrete-time regression form as

... (17)

...
...

... (18)

(19)

and the number of samples.

Within thisapproach, theuncertainty of theinertiaparameter
estimate is expected to be at least of the same order of magni-
tudeasthedrag parameter uncertainty. Asestimating theinertia

is somehow equivalent to estimating the time constant
of the linearized system, by standard error analysis it follows
that . Moreover, the nominal applied force

, assumed to beperfectly known, wil l actually beaffected by
some error. Numerical errors wil l also be introduced into the
computation of given by (17) since, due to the eventual ab-
sence of a velocity measurement, the are calcu-
lated filtering the acquired position signal with an off-line Sav-
itzky–Golay polynomial filter [41] toevaluatethevelocity and
then integrating numerically over time. Numerical integra-
tions must also be performed on the position signal and on the
applied force in order to compute . These considerations and
the fact that the sampling rate of the position measurements is
very low (e.g., 3.3 Hz for echo-sounders used for the surgeand
sway and 10 Hz for the yaw) suggest that the inertia parameter
identification by only on-board position measurements cannot
be expected to be very precise. Nevertheless, experimentshave
shown that, in thecaseof ROMEO, theestimated value isgood
enough to provide reliable and useful models for motion esti-
mation and control purposes.

IV. APPLICATIONS: ROMEO MODELING AND IDENTIFICATION

Themethodology for theidentificationof UUV’ sdescribedin
Section II I hasbeen tested on ROMEO, an over-actuated open-
frame ROV developed by the CNR-IAN for robotics research
and scientific applications.

A. ROMEO Mechanical Design and Thruster Configuration

ROMEO, which is about 1 m in height, 0.9 m in width, and
1.3 m in length, weighs about 450 kg in air and is intrinsically
stable in pitch and roll. It is divided into three sections. A steel
frame, which is 0.6 m in height, supports the two upper sec-
tions, constituted by foam for buoyancy and theelectronicsand
propulsion systems. The bottom section of the vehicle consists
of an interchangeable toolsled for scientific devices, which, in
the standard version, is equipped with two cylindrical canisters
for batteries and payload electronics (see Fig. 1). The overall
structure of the vehicle is symmetric with respect to both the

and planes, and the eight thrusters are arranged two by
two in thecorners, with thehorizontal onesparallel to thediag-
onals of the section. This thruster configuration enables the
full controllability of the vehicle’s motion and the possibility
of distributing the propulsion and control forces according to
constraints of a different nature. Scientific applications can re-
quirea toolsled equipped with dedicated devices, as in thecase
shown in Fig. 2, where a “microness” (zooplankton sampler)
is positioned in the middle. More detailed information about
ROMEO’s mechanical, computer, and software design can be
found in [7].

B. Distribution of the Propulsion and Control Forces

The resultant force and torque exerted by the vehicle’s ac-
tuators are computed as , where is the
control matrix, and , the vector of the actuator thrusts com



Fig. 1. Clockwise from the top right: top view of ROMEO in which the
horizontal and vertical thrusters (labeled FR, FL, RR, RL as described in the
text) and the principal canister are clearly visible; a picture (diagonal view) of
the vehicle in its standard payload configuration; a lateral view of ROMEO;
and a front view of ROMEO.

Fig. 2. ROMEO in plankton sampling payload configuration.

puted according to (6). In thecaseof over-actuated vehicles,
is non-square with and .

In thecaseof ROMEO, thehorizontal control of surge, sway,
andyaw isuncoupled from thevertical control of roll, pitch, and
heave. Two control matrices

and

are defined such that and ,
where and

are the hori-
zontal and vertical vectors of the actuator thrusts, and

and
are the normalized

horizontal and vertical force-torque vectors. In the adopted
notation, is the module of the angle between the horizontal
thrusters and the vehicle’s longitudinal axis, while , , and
are the thruster armswith respect to thevehiclecenter of mass,
respectively, for yaw, roll, and pitch motion. The subscripts

, and stand for horizontal/vertical, front/rear,
and left/right, respectively, indicating the thruster’s position as
shown in Fig. 1.

Since therearemorecontrol inputs than controllabledegrees
of freedom (DOF’s), it is possible to find “optimal” distribu-
tions of the control actions with the constraint , sat-
isfying some physical constraints or minimizing a particular
cost function. This is, for instance, the case of the Moore–Pen-
rose pseudo-inverse , such that

minimizes the quadratic energy cost function
[31].

The possibility of mapping the control forces onto the actu-
ator thrusts in different ways has been exploited in order to de-
sign and executededicated experiments for the identification of
uncoupled hydrodynamicseffectsand of propeller interactions.
Thus, aset of different distributionof thecontrol forceshasbeen
defined as summarized in Table I. For each mapping mode, the
motion direction where the propeller can be assumed to work
in open water without remarkable interactions with the vehicle
hull and other propellers is indicated, if existing.

C. Thruster Model Identification

Neglecting the motor dynamics, the thruster force can
be modeled as a function of the control voltage applied to
the thruster servo-amplifiers according to (6). In the case of
ROMEO, the thruster model has been identified with a LSpro-
cedureputting thewholeactuator (motor, propeller, and nozzle)
in a thrust tunnel and measuring the force as a function of a
set of input voltages . The experimental relationship between
the input voltage and thrust at bollard conditions is shown in
Fig. 3. The thruster coefficient of (6) has been identified
to be and with a percentile error of
3.0% and 3.7% for positiveand negative thrust, respectively.

D. Experimental Identification

TheROMEO’s dynamics in the surge, heave, yaw, and sway
DOF’s have been modeled and experimentally identified. In
all the experiments, the required velocities for all the DOF’s
have been estimated off-line on the basis of position measure-
ments with a noncausal Savitzky–Golay polynomial filter [41]
of fourth order with a symmetric moving window of different
lengths according to the specific DOF.

Heave trials, performed under the Antarctica ice canopy
in order to improve the vehicle’s performances in executing
under-icescientific surveys[7], revealed thestrong interactions
between the vehicle’s hull and the vertical propellers. The
combined estimation of the heave linear and quadratic drag



TABLE I
THRUST MAPPING MODES

Fig. 3. Nominal thrust (N) versusapplied voltage(V ) according to thethrust
tunnel data.

coefficients, weight-buoyancy force, and thruster installation
coefficient has been performed by processing data collected
during up and down steady-state motions. Five different
experiments, numbered 0–4, have been performed with inputs
of the kind shown in Fig. 4 each with a different vehicle
weight. During experiments 0 and 1, the vehicle was positive,
during experiment 2 it was roughly neutral, and in the last two
experiments it was negative. Weight was changed by adding
on ROMEO’s top, during each experiment, one diver’s lead
weight (about 0.7 kg in water) which reasonably doesnot affect

Fig. 4. Heavedragcoeff icientsidentification tests. Top: nominal appliedheave
thrust (N) versus time (s). Bottom: relative 10-HZ sampling rate measured
depth (m) versus time (s).

the hydrodynamic derivatives but only the overall weight.
The vehicle’s depth was measured by a 10-Hz sampling rate
depth-meter.

During all experiments, the heading of the vehicle was kept
constant by the action of the heading autopilot. Nevertheless,
as reported in [28] and [42], where different models of the ve-
hicle’s dynamics have been evaluated, the momentum drag in
the vertical direction due to horizontal thrusters can be em-
bedded in the standard linear heave drag term. According to



Fig. 5. LS estimated velocity (m/s) versus nominal applied thrust (N) in the
heavedirection for fivedifferent vehicleweightsand relativeidentified models.

Section III-A , during the th experiment, the vehicle’s model
in stationary conditions can be written as

(20)

where
heave velocity;
weight-buoyancy force in experiment 0;
weight added to ROMEO in each experiment.

The parameter vector has been
identified with a standard LS procedure as shown in Section
III-A . The results are reported in Table II . The measured and
estimated relationships between the nominal thrust and the ve-
hicle’s heave velocity are shown in Fig. 5.

With referencetoTable II , noticethat, according to theabove
identified model (20) and in perfect accordance with the actual
experimental setup, theestimated buoyancy forceduring exper-
iments 0 and 1 points upwards, during experiment 2 is roughly
null, and during experiments3 and 4 pointsdownwards. On the
contrary, if the same data are processed assuming that the ap-
plied force is the nominal one in both the positive and nega-
tive directions, thus totally neglecting the propeller–hull inter-
actions that occur during vertical surfacing motions, the results
displayed in Fig. 6 are obtained [28], [42]. In order to compen-
sate for the overestimated upward force due to the neglected
propeller–hull interactions, weight is overestimated, always re-
sulting in a value larger than the actual value.

It isworth noting that preliminary testsperformed in aswim-
ming pool revealed that the vertical thrusters behave as in a
thrust tunnel (open water) when pushing down and with an effi-
ciency reduction of about 40% when pulling up in static condi-
tions. This value is almost equal to the identified value of 0.56
of the thruster’s installation coefficient, reported in Table II . As
shown in Figs. 7–10, ROMEO hasbeen fixed to a load cell in a
pool, and themaximum static heaveforcehasbeen measured in
both the positive and negative vertical directions.

Trials to identify thevehicle’smodel on thehorizontal plane,
i.e., the surge, sway, and yaw 1-D models, have been executed
in a swimming pool. The vehicle’s heading was measured at a
10-Hz sampling rate with a KVH-DGC100 compass. In order
to reduceany possible interferencewith thedeformationsof the
magnetic field induced by the reinforced concrete structure of
the pool, the automatic compass calibration and compensation
procedurehas been executed and the vehicle’s rotations at zero
linear speed were performed in the middleof the pool. The po-
sition in the horizontal plane was measured with respect to the
pool walls at a 3.33-Hz sampling rate by a couple of Tritech
ST-200 echo-sounders mounted on the front and left sides of
the vehicle. Al l the nominal thrusts have been estimated by the
thrust-tunnel identified model described in Section IV-C.

During theidentification testsof theyaw drag, thevehiclehas
been excited with torque input signals in arangeof steady-state
yaw ratesbetween 20 and 20 deg/sasshown in Fig. 11. The
vehicle worked in yaw front-left rear-right mapping mode in
order to enable the thrusters to work in open water when pos-
itive torque was applied and with remarkable interactions with
thehull in caseof negative torque( ). In addition, tests
performed in horizontal all mapping modes enabled the evalu-
ation of – , a second horizontal thruster installation
coefficient that takes into account both the propeller hull and
thepropeller–propeller interactionsoccurring among horizontal
thrusterson thesamesideof thevehicle. Theestimated param-
eters – arereported in theupper
section of Table III.

If only the steady-state yaw rates normally bounded at 10
deg/s are considered in order to identify the vehicle’s yaw
model under typical operating conditions, theresultsreported in
the middle section of Table II I are obtained. For a quantitative
understanding of the reported data, notice that, if a process

is normally distributed, so is the LS estimated
parameter vector , as linear functions
of normal variables are normal themselves. This last property
is very useful since, if the parameter vector is assumed to
benormally distributed with known variance, then thestandard
Gaussian hypothesis testing technique [43] may be applied
to the overfitting or model selection problem. Overfitting
of the data by the model can be detected by evaluating the
variance of the parameter’s estimate. Roughly speaking, if the
parameter’s variance is too large, the parameter itself is said
to be statistically insignificant and it might just as well be
put to zero. More precisely, if the parameter’s percentile error
is larger than 51.02%, there is 95% confidence limi t that the
parameter is statistically insignificant, i.e., null.

On the basis of this result, the quadratic drag term in
ROMEO’s yaw model at low yaw rates, i.e., normally bounded
at 10 deg/s, was negligible and a linear model has been identi-
fied estimating theparameter vector –

as reported in the lower section of Table III.

The estimated linear drag , which includes all the drag ef-
fects, ishigher than in thecaseof thelinear andquadraticmodel,
aswell asthe coefficient. Propeller–hull interactionsseem
to increase when higher propeller revolution rates are consid-
ered also.



TABLE II
ROMEO HEAVE MODEL: ESTIMATED DRAG, THRUSTER INSTALL ATION COEFFICIENTS, AND WEIGHT-BOUYANCY FORCES

Fig. 6. Buoyancy force estimates with unitary and identified thruster
installation coeff icient and the corresponding error bars.

Fig. 7. Static pool test to measure the maximum downward thrust in
vertical-all mapping mode.

Thesystem timeconstant for thevehicle’syaw motion has
been estimated a priori to compute the input torque frequency

. The yaw model in the standard yaw rate operating range

Fig. 8. Zoomed view of the picture reported in Fig. 7 showing the maximum
(static) measured downward thrust.

Fig. 9. Static pool test to measure the maximum upward thrust in the
vertical-all mapping mode.

has been assumed linear, and the yaw inertia identification ex-
periments have been performed by applying the input torque
withathruster mappinghavingunit efficiency, i.e., thefront-left
and rear-right thrustershavebeen used for positive (clockwise)
torqueand the front-right and rear-left thrustershavebeen used



Fig. 10. Zoomed view of thepicturereported in Fig. 9 showing themaximum
(static) measured upward thrust.

Fig. 11. Top: nominal applied yaw torque (Nm) versus time (s). Middle:
relative 10-Hz sampling rate measured heading (deg). Bottom: estimated yaw
rate (deg/s) for yaw drag parameter identification.

for negative (counterclockwise) torque. As a consequence, the
considered yaw model is

(21)

where istheROMEO’s -axismoment of inertiaand isthe
applied torque. Thetimeconstant canbeestimatedapriori re-
placing for themoment of inertia, along itsheight, of aparal-
lelepiped having auniformly distributed massof 450 kg, length
1.3 m, and width 0.9 m, i.e.,

kg m . The corresponding input frequency, according to
(14), is Hz. Duringtheconsideredexperiment, the
input torque was provided by the only rear-left and front-right
thrusters, so that unit efficiency is assumed to hold for nega-
tive velocity and torque. In accordance with (15), a sinusoidal
input torque of amplitude 4 Nm and offset 5 Nm has been
applied in order to avoid propeller inversions. The yaw rate
was estimated using a symmetric window of 41 points. Im-
plementing the estimation algorithm described in Section III-B
yields kg m where the estimation error is com-
puted with the usual technique based on (11) and (12).

The identified model performance isacceptable, asshown in
Fig. 12, where the input torque, the filtered yaw rate, and the
yaw measurement are reported. In this experiment, assuming
the estimated inertia and drag coefficients for the linear model
of thevehicleyaw motion, aphaselag between theinput torque
and the output yaw rate of about 37.5 is expected when an
input signal with a period of 24 s is applied. A time lag of
2.6 s is measured, which corresponds to a phase lag of 39 .
In Fig. 13, experimental results obtained by applying two sinu-
soidal torque inputs with offsets of opposite sign are reported.
During this experiment, the vehicle worked in the yaw front-
right rear-left mapping mode, so that propeller–hull interac-
tions reduce the applied torque when it is directed clockwise
(positive), as plotted in the top diagram. The measured and es-
timated, i.e., computed integrating (3), yaw rate are plotted in
the bottom diagram, showing an accurate prediction of the ve-
hicle’s behavior.

Finally, we consider ROMEO’s surge and sway models.
During these experiments, the vehicle’s heading was kept con-
stant and theposition was estimated with respect to acoupleof
perpendicular walls of the pool. In the case of the surgemodel,
the drag, inertia, and thruster installation parameters have been
computed for ROMEO moving both forwards and backwards
in the standard and microness toolsled configurations showed
in Figs. 1 and 2. To evaluate the loss of efficiency due to pro-
peller–propeller and propeller–hull interactions, the input force
hasbeen applied with threedifferent thrust mappings, i.e., surge
front, surge rear, and horizontal all. Thrusters are assumed to
work in open water when only the front ones push forward
and only the rear ones push backward, while propeller–hull
interactions are assumed to be present when only the front
thrusters push backward or only the rear ones push forward
( ). When all four thrusters are used, their efficiency
is reduced by the combined effects of the propeller–hull and
propeller–propeller interactions ( – ). Different
coefficients, denoted by the superscripts and , have been
assumed for the vehicle moving forward and backwards. The
vehicle moved at steady-state velocities normally bounded at
0.35 m/s. See Table IV for the estimation results for positive
and negative surge motion in the case of technological and
microness payload configurations.

Then, experimentsfor theidentification of thevehicle’smass
in the surge direction were performed by applying a sinusoidal
input force of amplitude 25 N and offset 35 N, corresponding
to a regime speed of 0.27 m/s, with only the front thrusters,
i.e., assuming the efficiency parameter equal to one. In accor-
dance with (13), the drag coefficient of the linearized system
is (Ns/m). Assuming the inertia

kg, (13) and (14) suggest anoptimal input fre-
quency Hz. Fig. 14 shows the data relative to the
surgeinertiaidentification experiment, whereasinusoidal input
of period 26 s has been applied. The input signal frequency is
higher than the suboptimal one in order to allow the vehicle to
reach the regime speed and to be excited with a couple of si-
nusoidal periods in a maneuvering space of about 20 m. From
top to bottom, the following are displayed: the input force, the
3.3-Hz sampling rate sonar profiler position measurement, and
the velocity signal computed using a symmetric window of 21



TABLE III
ROMEO YAW MODEL: ESTIMATED DRAG AND THRUSTER INSTALL ATION COEFFICIENTS

Fig. 12. Top: nominal applied yaw torque (Nm) versus time (s). Middle:
relative 10-Hz sampling rate measured heading (deg). Bottom: estimated yaw
rate (deg/s) for yaw drag parameter identification.

points. The solid curves in the position and force plots refer to
the data actually adopted for the identification process while
the dashed ones show the whole batch of data. Two multipath
echoes are visible in the middle of the batch of the sonar mea-
surement data. A mass kg hasbeen estimated,
so that aphase lag between the input forceand theoutput surge
speed of about is expected when an input signal with a pe-
riod of 26 s is applied. A time lag of 2.7 s is measured (see
Fig. 14), which corresponds to a phase lag of .

Notice that, according to the classical theory of ideal fluids,
the surge added mass coefficient of an ellipsoid of total length

, total height , and total width in an ideal fluid of den-
sity is given by , where and

. According to the plots of reported in [44] and as-
suming kg/m , the surge added mass coefficient of
an ellipsoid having the length, width, and height of ROMEO
is kg, i.e., sensibly lower than the estimated value of
about 440 kg as kg, suggesting that the geometry
of an open-frameROV such asROMEO cannot besuccessfully
approximated by simple shapes.

Fig. 13. Yaw model validation. Top: nominal and actual yaw torque (N)
versus time (s). Bottom: relative measured and model-predicted yaw rates
(deg/s).

To evaluate the reliability of the estimated surge model, the
speed measurement data of other experiments have been com-
pared with thespeed relative to thesame input forcespredicted
according to themodel (3). In the top pictureof Fig. 15, theap-
plied surge force is plotted (notice that the vehicle worked in
surge front mapping mode, i.e., with ), while the mea-
sured and estimated surgevelocity areshown in thebottom pic-
ture.

Thesway dragand thruster installationcoefficientshavebeen
identified analogously. For details, refer to [45].

V. CONCLUSIONS

A procedure for the identification of the drag and inertia pa-
rametersof open-frameROV’ sand the resultsof its implemen-
tation on a real system have been presented. The identification
procedure is based on on-board sensor data rather than towing
tank experiments. Although, in principle, towing tank methods
allow for abetter estimationaccuracy (inparticular of theinertia
coefficients), they are usually performed on a scaled model of
the vehicle rather than on the real system [17] with all the re-
lateddrawbacks. Moreover, such towing tank methodsaremuch



TABLE IV
ROMEO: ESTIMATED DRAG AND THRUSTER INSTALL ATION COEFFICIENTS FOR FORWARD AND BACKWARD SURGE MOTION IN TECHNOLOGICAL AND

MICRONESS PAYLOAD CONFIGURATION

Fig. 14. Surge inertia parameter identification experiments. Top: nominal
applied surge force (N) in surge front mapping mode versus time (s). Middle:
sonar measured position (m) at 3.3-Hz sampling rate. Bottom: estimated
velocity (m/s). The dashed lines show the whole batch of data, while the solid
ones are relative to the subset of data employed for identification. Two sets of
missing sonar measurements are visible between 70–85 s.

moreexpensive, complex, and timeconsuming. A simpleset of
inputs and the relative model fitting technique have been de-
fined for the on-board sensor based estimation of drag, inertia,
and thruster installation coefficientsof adecoupled lumped pa-
rameter ROV model.

The major advantage of the proposed approach consists of
the possibility of successfully modeling the propeller–hull and
propeller–propeller effects through a thruster installation coef-
ficient that isestimated with thesamedataadopted for thedrag
coefficient estimation. Moreover, thanks to their simple nature,
the tests may be repeated when the vehicle changes configu-
ration in order to tune the control system when required. It is

Fig. 15. Surge model validation. Top: nominal applied surge force (N) in
surge front mapping mode versus time (s). Bottom: relative computed and
model-predicted surge velocity (m/s).

worth pointing out that the identification procedure has been
designed taking into account the vehicle’s model structure, the
type of available sensors, and the actuator dynamics. Constant
velocity tests with different thruster mappings are suggested
for the identification of the drag and thruster installation coef-
ficients knowing which sinusoidal input tests are designed for
the estimation of the inertia parameters. The developed proce-
dure has been experimentally tested on the surge, sway, heave,
and yaw axis of the ROMEO UUV. The data relative to nu-
merous experimental trials and to two payload configurations
have been processed and the results are reported in detail. It
has been shown that yaw drag in the typical operating yaw rate
range, i.e., deg/s, is better modeled by a linear term
only rather than both a linear and a quadratic one: this is im-
portant as it suggests that, as far as the yaw axis is concerned,



linear control techniques may be successfully adopted. It has
been shown that the propeller–hull and propeller–propeller in-
teractionsmay havean extremely important relevancein thedy-
namicsof open-frameROV’ sandshould thusbetakenexplicitly
into account. Experimental datarelativeto theROMEO vehicle
show that thethruster’sefficiency loss, with respect to theopen
water thrust tunnel thruster model, due to propeller–propeller
andpropeller–hull interactionsisgreater than10%for eachcon-
sidered axisand reaches thesignificant valueof 44% for heave.
Indeed, theproposed identification schemefor thethruster’s in-
stallation coefficient is simple, low cost, and effective. Finally,
it should benoted that theproposed modeling and identification
scheme does not necessarily require the thrust tunnel identifi-
cation of the thrusters. Assuming (6) to hold, the
vehicle’smodel (3) canbedividedby theunknown and, once
a set of suitable thrust mappings with unitary installation coef-
ficients have been heuristically defined on the basis of the ve-
hicle’s structure, the whole identification procedure can be im-
plemented adopting thethrusters’ input voltage asthecontrol
signal.
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