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Abstract: A nonlinear, closed-loop, time-invariant controller that globally stabilizes
an underactuated marine vehicle on a straight course is proposed. Traditional
surface vessel linear course tracking autopilots are designed applying linear control
methods on the linearized model, thus yielding only local results. Indeed due to the
underactuated nature of the system, the model cannot be feedback linearized thus the
most common and perhaps powerful tools of nonlinear control theory are ruled out and
an alternative design strategy must be considered. At present no other smooth, time-
invariant controller globally achieving the control objective is known to the authors.
The overall convergence, stability and robustness to environmental disturbances is
addressed and simulations are provided to show the controllers behaviour. Copyright
c© 2000 IFAC.
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1. INTRODUCTION

Consider a marine vehicle moving in the hori-
zontal plane having only the surge and yaw axis
directly actuated, while the sway is not: this is
by far the most common configuration among ma-
rine systems. The issue of controlling such class
of marine vehicles along a linear course while
traveling at fixed constant speed and in spite of
environmental disturbances has a great practical
relevance. Indeed long range navigation tasks are
frequently carried out traveling among via points
on straight paths at fixed cruise speed. Tradi-
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tional autopilots (Fossen 1994) are designed on
the basis of a linearized dynamic model and are
intended to stabilize the heading only while ne-
glecting the non-actuated sway axis. The more
advanced time-invariant nonlinear solutions pro-
posed in the literature either fail to control all the
three degrees of freedom in closed loop (Berge et
al. 1998) or may be only applied to paths hav-
ing a non null curvature (Pettersen and Nijmeijer
1998b). Basically these limitations arise from the
fact that a feedback-linearization approach is al-
ways attempted while these system models cannot
be feedback-linearized. The present time-invariant
steering solution takes explicitly into account the
lateral distance of the vehicle from the desired
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Fig. 1. The model

linear path and it guarantees that it is globally
asymptotically stabilized to zero together with
the sway velocity and heading direction (in the
absence of constant sway disturbances) in spite
of having non-actuated sway. To the best of the
authors knowledge no other smooth time-invariant
solution to this problem was suggested in the lit-
erature yet while a time-varying one that guar-
antees global practical convergence is reported in
(Pettersen and Nijmeijer 1998a).

The controller is based on the complete nonlinear
model where the sway axis is not neglected. The
major difficulty in designing such kind of controller
is due to the fact that feedback linearization can-
not be applied to this problem (Pettersen and
Nijmeijer 1998b) (Fantoni et al. 1999) (Indiveri
December 1999). On the other hand the system
is controllable and Brocketts Theorem (Brock-
ett 1983) does not prevent the existence of a
smooth time-invariant closed loop stabilizing solu-
tion. Thus a novel design approach recently shown
to be effective in designing closed loop nonlinear
position controllers for the 2D and 3D unicycle
models (Aicardi et al. 2000a) (Aicardi et al. 2000b)
has been applied. The control synthesis procedure
is made of two major steps: first a smooth velocity
vector field is defined such that an ideal point
moving with such velocity would exponentially
converge on the desired linear path. Then a steer-
ing law is defined such that the underactuated
vehicle is exponentially parallel to the previously
defined vector field.

In section (2) the model is described, in section (3)
the steering law is derived and in section (4) its
stability is proven. Section (5) describes a possible
dynamic extension of the kinematic control solu-
tion, section (6) addresses robustness issues while
concluding remarks are finally reported in section
(7).

2. THE MARINE VEHICLE MODEL

With reference to figure (1) the model can be
written as:

v̇ =−a uc r − b v − c v |v|
ẏ = v cosφ+ uc sinφ (1)

φ̇= r

a=
m11

m22
; b =

dv
m22

; c =
dv|v|
m22

being uc > 0 the constant surge velocity, v the
non-actuated sway velocity, m11 and m22 the
inertia parameters (including the hydrodynamic
added mass components) in the surge and sway
directions, dv and dv|v| the linear and quadratic
sway drag coefficients, φ the vehicles heading, r
the yaw angular velocity and y the lateral distance
from the reference course given by the x axis of
the fixed frame. The control objective is to design
a smooth, closed-loop, time-invariant control law
for r such that the state vector x = (v, y, φ)T ∈ R3

is stabilized to zero. In section (5) it will be shown
that having found such solution the dynamics of
the yaw axis may be also easily included so that
the control input is the yaw torque rather than the
angular velocity. The controllability of such model,
which is an obvious property to every seaman,
can be rigorously proven together with the fact
that it does not admit any input-state feedback
linearization transformation as accounted in (In-
diveri December 1999). In particular writing the
model (1) in standard nonlinear control form, i.e.
ẋ = f(x) + g(x)u, u = r,x = (v, y, φ)T , then the
necessary condition for the existence of a feedback
linearization transformation, namely that the set
{g, [f ,g]} is involutive (Khalil 1996)(Slotine and
Li 1991), is not fulfilled (Indiveri December 1999).
On the contrary as {g, [f ,g], [f , [f ,g]]} spanR3 the
system is controllable (Indiveri December 1999).

It should be noticed that the apparently similar
problem of stabilizing the same underactuated
marine vehicle model in a point rather than on
a linear course does not admit a smooth feedback
solution because of Brocketts Theorem (Brockett
1983) and thus either time-varying (Pettersen and
Egeland 1996) (Pettersen and Egeland 1997) or
discontinuous (Fantoni et al. 1999) solutions must
be considered. On the contrary the present model
is not affected by Brocketts result as the mapping
(1) γ : (x, r) 7−→ ẋ is onto (0, 0, 0)T .

3. THE CONTROL LAW

Consider the smooth velocity vector field vh:

vh = uc i− ky j : k > 0 (2)



being i and j the unit vectors of the x and y
fixed reference axis as shown in figure (1) and
k a positive constant gain. An ideal point (x, y)
moving with velocity vh would exponentially con-
verge on the x axis and proceed along it with
asymptotic velocity uc i. Unfortunately in general
the surge axis, i.e. the only actuated motion axis
of the given system, will not be parallel to the
vh field: the basic idea underlying the proposed
control strategy is to steer the marine vehicle such
that its stern-bow axis (surge) is exponentially
stabilized along the direction of vh. It will be
shown that with a suitable choice of k this strategy
indeed guarantees global asymptotic stability of
state vector x = (v, y, φ)T to zero. Calling θ the
angle between i and vh and

β = θ − φ (3)

the one between the axis of the vehicle and vh the
control objective for the design of r = φ̇ is to drive
β exponentially to zero. This task is accomplished
with a time constant 1/γβ choosing

r = γβ β + θ̇ : γβ > 0. (4)

The time derivative of θ may be evaluated noticing
that

i · vh = ‖vh‖ cos θ =
√
u2
c + k2y2 cos θ = uc (5)

i ∧ vh = k ‖vh‖ sin θ =

= k
√
u2
c + k2y2 sin θ = −k ky (6)

⇒ θ ∈ [−π/2, π/2] ∀ t (7)

being k = i ∧ j the unit vector of the z axis of
the fixed reference. Taking the time derivative of
equation (5) and using equations (6) and (1) it
follows that

θ̇ = −µ (uc sinφ+ v cosφ) (8)

being

µ =
kuc

u2
c + k2y2

> 0. (9)

Replacing equation (8) and (9) in equation (4)
yields

r = γβ β −
kuc(uc sinφ+ v cosφ)

u2
c + k2y2

. (10)

This angular velocity is bounded and well defined
in the whole state space and by construction
it guarantees global exponential convergence of
β to zero: under its effect the vehicle will be
exponentially parallel to the field vh no matter
its initial condition.

4. CONVERGENCE ANALYSIS

By construction the angle β tends globally and
exponentially to zero and as a consequence φ tends
globally and exponentially to θ. Once that this
has occurred the variables y and φ are coupled by
equation (5) which shows that in the limit β → 0
⇒ y = 0 ⇔ θ = 0 or equivalently φ = 0. As a
consequence global asymptotic (i.e. β → 0 which
occurs exponentially in time) stability of the state
x = (v, y, φ)T is guaranteed if (0, 0)T is shown
to be a globally stable equilibrium point for the
vector (v, θ)T in the limit β → 0. Notice that as β
tends to zero x = (v, y, φ)T will remain bounded
as given the model (1) and the control (10) neither
of the state variables admits a finite escape time.
Replacing equation (10) in the first of equations
(1), taking the limit β → 0 it follows that:

lim
β→0

(
v̇

θ̇

)
= A(t)

(
v
θ

)
(11)

being A(t) defined as

A(t) =

 aucµ cos θ − b− c|v| au2
cµ

sin θ
θ

−µ cos θ −µuc
sin θ
θ

(12)

The linear time varying (LTV) system (11) is
asymptotically stable if the eigenvalues of the ma-
trix 1/2(A(t) + AT (t)) are shown to be smaller
than a strictly negative constant at all times (Slo-
tine and Li 1991). The characteristic polynomial
of the matrix 1/2(A(t) + AT (t)) is given by λ2 +
Bλ+ C = 0 being

B =−aucµ cos θ + b+ c|v|+ µuc
sin θ
θ

(13)

C =−µuc
sin θ
θ

(aucµ cos θ − b− c|v|)

− µ2

4

(
au2

c

sin θ
θ
− cos θ

)2

. (14)

The eigenvalues λ± = 1/2(−B ±
√
B2 − 4C) of

1/2(A(t) + AT (t)) are guaranteed to be smaller
than a strictly negative constant at all times if

B ≥ ε ∪ C > 0.

From equations (7) and (9) it follows that

0 < µ(t) ≤ k/uc ∀ t (15)
2
π
≤ sin θ(t)

θ(t)
≤ 1 ∀ θ(t) ∈ [−π/2, π/2] (16)

0 ≤ cos θ(t) ≤ 1 ∀ θ(t) ∈ [−π/2, π/2] (17)

thus the condition B ≥ ε is satisfied if b > ak
being ε = b − ak > 0 and the condition C > 0
reduces to



uc
sin θ
θ

(−aucµ cos θ + b+ c|v|) >

µ

4

(
au2

c

sin θ
θ
− cos θ

)2

. (18)

Given equations (15), (16) and (17) a lower bound
of the left hand side of the above inequality is given
by

2uc
π

(b− ak)

and an upper bound of the right hand side is given
by

k

4uc
max

{
(1− au2

c)
2,

4a2u4
c

π2

}
so that a sufficient condition for both B ≥ ε and
C > 0 to hold is

b > k

(
a+

π

8u2
c

max
{

(1− au2
c)

2,
4a2u4

c

π2

})
.

(19)

This condition guarantees global asymptotic con-
vergence to zero of the state x = (v, y, φ)T gov-
erned by the model (1) under the influence of the
control law (10).

Notice moreover that condition (19) can be always
met with a suitable choice of k for any non null
value of the structural parameters a and b and of
uc.

The above proven global convergence and stability
property of the proposed time-invariant controller
represents the major result of this paper as to
the best of the authors knowledge no other time-
invariant feedback controller able to globally sta-
bilize an underactuated marine system on a linear
course has been presented in the literature so far.

5. YAW DYNAMICS

The smoothness of the control (10) enables the
yaw dynamics to be explicitly taken into account:
indeed if the yaw torque is assumed to be the
control input rather than the yaw velocity r the
following additional state equation needs to be
added to the model (1):

m33 ṙ = (m11 −m22)ucv − d33 r + τ3 (20)

being m33, d33 and τ3 the yaw inertia moment
(including added mass effects), the linear yaw drag
coefficient and the input torque. Within this frame
work r is now a new state variable. In particular
τ3 may be chosen as

τ3 = −(m11 −m22)ucv + d33 r + τN (21)
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Fig. 2. Resulting paths and vehicle orientation for
the kinematic (top) and dynamic (bottom)
steering laws. The initial sway velocity is
v0 = +3 in both cases. The bow of the system
corresponds to the point of the pencil-like
drawn vehicle.

such that the yaw dynamics is reduced to

ṙ = τN/m33. (22)

Calling now r̄ the angular velocity given by equa-
tion (4), namely

r̄ = γββ + θ̇, (23)

τN may be chosen such that the yaw rate r
exponentially converges to the desired value r̄.
Indeed the Lyapunov function VN = (r − r̄)2/2
has a time derivative equal to:

V̇N = (r − r̄)(τN/m33 − ˙̄r) =

=−γτ (r − r̄)2 : γτ > 0

if τN is chosen as

τN = m33 ˙̄r − γτ (r − r̄) (24)

˙̄r = γβ(θ̇ − r) + θ̈ (25)

where θ̇ is given by equation (8) and θ̈ is its
time derivative (bounded and well defined on the
whole state space). Notice that given the model (1)
both the state variables and the control signal will
remain bounded as r → r̄. Replacing equations
(23) and (25) in (24) the torque input τN

τN = (m33γβ + γτ )(θ̇ − r) (26)

+ γβγτ (θ − φ) +m33θ̈

is found to have a PD (proportional - derivative)
structure being the reference signal θ itself a
function of the state. Straightforward calculations
based on equations (1) and (8) show that θ̈ may
be written as:
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Fig. 3. Time history of β, v, φ and of the control
r given by equation (10) relative to the path
plotted in the top of figure (2).
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Fig. 4. Time history of the applied torque τN
as given by equation (26) and of the state
components v, φ and r relative to the path
plotted in the bottom of figure (2). The effect
of the simulated measurement noise is clearly
visible.

θ̈= 2y
k

uc
θ̇2 − µr[(1− a)uc cosφ− v sinφ] (27)

+ µ(b+ c|v|)v cosφ

being µ given by equation (9).

6. ROBUSTNESS ANALYSIS

Robustness with respect to measurement noise or
parameter uncertainty can be analysed by stan-
dard means relying on the conventional Lyapunov
theory and will not be developed here. More in-
teresting is perhaps the robustness to environmen-
tal disturbances, in particular to wind or current
forces acting on the non-actuated sway axis. Such
disturbance may be modelled by a non null force
of norm fd pointing in direction ψ with respect to

the fixed frame and the resulting sway dynamics
is

v̇ = −a uc r − b v − c v |v|+ fd sin(ψ − φ).(28)

The equilibrium sway velocity veq would be given
by the solution of the implicit equation:

b veq + c veq|veq| = fd sin(ψ − φeq) (29)

being φeq the equilibrium heading given by

ẏ|veq,φeq = veq cosφeq + uc sinφeq = 0⇒ (30)

φeq = arctan
(−veq

uc

)
. (31)

Assuming ψ to be known fd, which is generally
unknown, may be estimated thanks to the mea-
surements of v that have been assumed available
throughout the paper. The linear time varying
filter

˙̂v = −a uc r − b v − c v|v|+ f̂d sin(ψ − φ) + kobs ṽ

˙̂
fd = sin(ψ − φ) ṽ

ṽ = v − v̂ ; kobs > 0

may be shown to be asymptotically convergent
applying Barbalat’s Lemma to V = ṽ2 + f̃2

d ,
f̃d = fd − f̂d. Thus also φeq and veq may be
estimated by equations (29) and (31) replacing f̂d
to fd in equation (29). A steering law to converge
on y = 0 in the presence of an unknown and non
null fd term in equation (28) may be designed with
the same procedure outlined in the case fd = 0 by
replacing

vh = z i− j (ky + λ) (32)

λ = v̂eq cos φ̂eq (33)

z =


∣∣∣∣∣v̂eq cos φ̂eq

tan φ̂eq

∣∣∣∣∣ if φ̂eq 6= 0

uc if φ̂eq = v̂eq = 0

(34)

to the vh field given by equation (2). Equation
(32) has been actually derived imposing the angle
between vh|y=0 and i to be φeq. It should be
noticed that equation (32) reduces to (2) when
veq = φeq = 0, i.e. when fd = 0. The resulting
steering law is equivalent to equations (4) and (8)
where

µ =
kz

z2 + (ky + λ)2
> 0

rather than equation (9). The complete conver-
gence and stability analysis of this observer-based
solution recalls the one reported in the case fd = 0
and will be the subject of future work.



7. CONCLUSIONS

The above described steering laws (10) and (26)
with fd = 0 have been tested by simulations and
some examples are here reported. Paths resulting
from the application of these laws are visible in
figure (2). The starting configurations for these
two examples are (x0, y0, φ0) = (0,−10,−π/2) for
the kinematic case and (x0, y0, φ0) = (0, 10, π/2)
for the dynamic one. The parameters are fixed to
(a, b, c, k, γβ) = (1/2, 1, 1, 1, 0.6), the surge veloc-
ity is uc = 1 and the initial sway is v0 = +3 in both
cases. In the dynamic case the initial yaw speed
and the gain γτ are r0 = 0 and γτ = 1/2. The
simulated experiment relative to the kinematic
steering law (10) refers to the ideal case in which
the state is perfectly known. On the contrary in
simulating the steering law (26) it has been as-
sumed that the available measured values of the
state (v, y, φ, r)T were affected by zero mean nor-
mally distributed noise, i.e. in evaluating equation
(26) the state (v, y, φ, r)T has been replaced by
(v̂, ŷ, φ̂, r̂)T such that (v̂, ŷ, φ̂, r̂)T = (v, y, φ, r)T +
(εv, εy, εφ, εr)T being ε∗ ∼ N (0, σ∗). The standard
deviations have been fixed to σv = 1/2 (remember
that uc = 1), σy = 1/2, σφ = 5 [deg] and σr =
5 [deg/time]. The time history of the variables β,
v, φ and r for the kinematic case are reported in
figure (3) while the control τN and the variables
v, φ and r relative to the dynamic case are plotted
versus time in figure (4).

A nonlinear, closed-loop, time-invariant, smooth
steering law that guarantees global asymptotic
convergence and stability of an underactuated ma-
rine vehicle on a linear course has been presented.
The marine vehicle is assumed to have unactuated
sway and to travel at constant surge speed. For
such kind of model a steering law for both the kine-
matic case (i.e. the yaw speed is the control input)
and the dynamic one (i.e. the yaw torque is the
control input) have been discussed. Simulations
are reported to show the qualitative behaviour of
the solution and its effectiveness in the presence
of considerable state measurement noise. While
traditional marine system autopilots stabilize the
heading angle only, the proposed solution takes ex-
plicitly into account the lateral distance from the
desired linear path and in spite of having unactu-
ated sway it guarantees that this distance together
with the heading direction and sway velocity are
globally asymptotically stabilized. Moreover tradi-
tional autopilots are designed on the basis of the
linearized model, thus yielding only local results.
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