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This article discusses two Lyapunov based robust target
following techniques and introduces a method based on the
superposition of elementary vehicle dynamics. All three
approaches are discussed and physically tested together
with a known Lyapunov method for closed loop control.
Emphasis is given on the discussion of distinguishing fea-
tures and parameters relevant for practical selection of tar-
get following methods, where manoeuvring space,
velocities and accelerations are strictly limited. Uncertain
position information and limitations in accuracy and
available computational power are especially considered.
All discussed results are measured in physical experi-
ments.

 

1. Motivation

 

A common task in mobile robotics is to drive a robot
to a certain position and orientation as fast as possi-
ble and within the limits of the static and dynamic
properties of the robot setup. Autonomous robots
may not only choose targets which are not smoothly
connected, but also the choice itself may not be pre-
dictable any more. Therefore a robust behaviour in
reaching a noisy, drifting, or even stochastically
moving target is a necessary condition for successful
applications with autonomous robots. In physical
setups, where the position of the target can only be
determined approximately and disturbances are un-
avoidable, there is no principal difference between
posing and target following. Continuous corruptions
and corrections in the position measurement appear
on the motion control level in the same way as a pur-
posefully moved target. Robust posing control repre-
sents thus always also a target following system.

For nonholonomic systems (which are the majority
of current mobile robots), a theorem by Brockett [3]
shows that stabilization by time-invariant smooth
state feedback is not possible.

Several approaches, among them time-varying [8]
and discontinuous [1][2] have been proposed to

solve the posing or more general the target following
problem. For a detailed discussion see e.g. [6][7].
In this paper, three approaches are discussed and
tested in experiments:
- a Lyapunov based approach in which the velocity is
proportional to the distance.
- a Lyapunov based approach in which the velocity is
bounded.
- an approach where the dynamics of three distinct
situations (far from, orienting towards and converg-
ing into the goal) are modelled and superimposed,
resulting in one smooth feedback law.
The sensor readings in the experiments have been
additionally (artificially) disturbed in order to prove
the robustness of the discussed methods.

 

2. The kinematic model 

 

and physical constraints

 

The model, describing the motion of the cartesian
unicycle vehicle is given by

(1)

being  the linear velocity in the direction of  and
 the angular velocity (figure 1).

In this article, the point-to-point navigation task is
considered, i.e. the vehicle starts at point 
with heading  and should be driven with appro-
priate  and  to the goal. Without loss of generali-
ty the goal can be chosen to be .
Furthermore,  and  should not explicitly depend
on the time but only on the state variables thereby
leading to autonomous differential equations for the
state variables.
Brockett’s Theorem [3] shows that the stabilization
for the system (1) can not be solved, because the
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number of dimensions spanned by linearly inde-
pendent vectors is not equal to the number of con-
trols.

On the other hand, if the state itself is not defined at
the equilibrium, Brockett’s Theorem does not pre-
vent the stabilization. This can be achieved by a non-
linear coordinate transformation.

A suitable choice for this transformation are the fol-
lowing coordinates which were introduced in [1]

(2)

being  the four quadrant inverse
tangent function describing the angle between a line
from  to  and the positive x-axis.

With the new coordinates  the kinematic mod-
el (1) is transformed to (3), on which our further con-
siderations will be based on:

(3)

Any real vehicle has limitations which depend on the
vehicle itself or on its interaction with the environ-
ment. The following ones are considered here:

 

a.

 

bounded linear velocity

 

 

 

b.

 

bounded angular velocity

 

 

Normally, the low level motor controllers prevent
any dangerous settings of the controls which
would break the gears of the vehicle. A more seri-
ous problem is the use of control setting ranges
which can not be physically realized in the vehicle
and would result in an invalid experimental set-
up.

 

c.

 

bounded lateral acceleration

 

 

Path tracking experiments depend on the preci-
sion of the odometry. If in a curve the lateral accel-
eration of the vehicle is to strong, the wheels loose
close contact to the ground and the odometry data
will no longer be meaningful.

 

d.

 

bounded curvature

 

 

Additionally to the above stated restrictions
which apply to every vehicle, a large class of vehi-
cles can not turn on the spot, i.e. the curvature is
bounded. 

 

e.

 

only forward moving vehicles

 

 

Moving is assumed to be possible in one direction
only in order to avoid additional bifurcations.

 

3. Linear velocity Lyapunov 

 

approach (LV)

 

In [1]and [4] it was shown that with the assumption

(4)

for the linear velocity and

(5)

for the Lyapunov function and its derivative a non-
linear, time-invariant, globally and asymptotically
converging control law for  of the form

(6)

can be found.
Note, that a Lyapunov function in the strict sense
would mean, that also the state at  is defined
and reachable. But the nonlinear transformation (2)
was introduced exactly to avoid a defined state at

 in order to circumvent Brocketts Theorem [3].
Therefore, the existence of a Lyapunov function is as-
sumed in every vicinity of  only.
With (4) and (6) the curvature  will be indi-
rect proportional to . And because  does not de-
pend on the distance  solutions for the same start-
ing angles  but different  will be similar to each
other. This scaling property is the reason why this ap-
proach needs a large space around the goal in both
dimensions as can be seen from figure 2.
Assumption (4) can not be realized on a vehicle be-
cause one would get to big velocities or one would
have to set  to a very small value resulting in a very
slow motion. Therefore,  will be bounded to .
It can be shown, that convergence can be guaranteed

figure 1 : Unicycle kinematic model
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if in addition to the conditions (6) the parameter  is
to be chosen

(7)

where  is the initial distance from the goal.

 

4. Bounded velocity Lyapunov 

 

approach (BV)

 

While (4) introduced the velocity to depend linearly
on the distance, the following assumption for the ve-
locity

(8)

establishes the existence of an upper bound for the
velocity in the Lyapunov approach. Here,  is a
measure for the deceleration of the vehicle when it
approaches the goal.
With the same Lyapunov function (5) the angular ve-
locity becomes

(9)

Compared to LV this approach does no longer lead to
an  which is independent of the distance from the
goal . Instead, for large distances,  is proportional
to the angle  thus resulting in a faster turn to the
goal if the vehicle is currently heading away from the
goal. The resulting curve is closer to the x-axis than
the curve in LV.
For the approach to the goal, the behaviour of the so-
lutions for  must be analysed. The
approximation of the state equations (3) with  and

 from (8) and (9) provide the linearized state equa-
tions

(10)

and

(11)

The eigenvalues of the matrix in (11) can then be
found as

(12)

In order to reach the target on a straight line no oscil-
lations are allowed ( ). Also, the angles

 must approach zero faster then . This can be
guaranteed if the dominant eigenvalue of (12) is
strictly greater than the factor governing the de-
crease of  in (10).

(13)

This provides us the conditions for the convergence

(14)

of the bounded velocity approach.
Although the velocity is bounded, this approach
does not provide adequate bounds for the angular
velocity , the lateral acceleration and the curva-
ture. Therefore, in practical experiments the bounds
will be enforced by reducing  and  accordingly.
This allows for driving the vehicle with maximum
velocities while keeping within the robot’s physical
limitations. In principle, the same procedure could
be employed for LV also.
Further work should include the bounds on the later-
al acceleration and the curvature into the Lyapunov
approach. This would mean to introduce a depend-
ence of the velocity  from  in (8) because it is ob-
vious that the linear velocity of the vehicle should be
at its maximum when the vehicle is moving on a
straight line, while it should be reduced for curves in
order to keep the lateral acceleration bounded.

 

5. Superimposed Dynamics (SD)

 

The following approach could be sketched as a su-
perposition of dynamics, where the following as-
pects are considered and can be formulated individ-
ually (  as introduced above) in the first place:

•

 

Approaching the goal directly

 

:
Far from the goal, only the difference in the head-
ing towards the goal  is considered to control the
vehicle with:

(15)

(16)

•

 

Approaching the goal with specific orientation:

 

Closer to the goal, the trajectory needs to consider
the difference to the requested final orientation 
as well as the distance to the goal  with:

(17)

approximating the direction to a point on the nega-
tive -axis in distance  from the goal, which
would be precisely for :

(18)

The derived control equations are:

(19)

(20)

•

 

At the goal:

 

When so close to the goal that the uncertainties in
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the positioning are of the same dimension than the
actual remaining distance, the direction to the goal
is no longer influencing the dynamics. This is es-
pecially important, if large changes in  (which
are unavoidably increasing as the goal gets closer)
should not lead to arbitrary large changes and
thus instabilities in . Thus the control laws at the
goal consider  and  only:

(21)

(22)

Note that these final approach strategy is not
reaching the goal exactly, but offers a stable way to
get close to the goal only. 

By superimposing these aspects of the control task, a
closed representation can be formulated, where the
robustness of the simple individual parts are pre-
served. A related method, superimposing dynamics
separated in activation and target dynamics can be
found in [5].
First the currently required deviation  from the di-
rect heading to the goal is expressed with:

(23)

where  gives the strength which attracts the vehi-
cle to a straight line into the goal (i.e. the smoothness
or precision of the trajectory can be controlled here),

 sets the distance at which the intended goal orien-
tation is started to be considered, and  gives the
speed of the transition from ‘straight towards the
goal’ to the ‘final approach’ behaviour.
Second the linear velocity reduction and the transi-
tion to the relaxed ‘being there’ dynamic of the con-
trol can be formulated as:

(24)

(25)

where

(26)

Finally the closed control laws for  and  can be
defined as:

(27)

(28)

where

(29)

The parameter  determines the tolerated lateral ac-
celeration. Equation (24) and (25) reflect the fact that
deceleration and relaxation is only reasonable, when
the goal is in front of the vehicle, where  and 
control the angular relaxation and the linear deceler-

ation respectively. The parameter ,  and
 are the overall velocity amplifications and lim-

its.

This approach has no singularities (beside the obvi-
ous bifurcation, when the goal is exactly behind the
vehicle) and can be adjusted according to the physi-
cal constraints of the setup directly. The vehicle will
be lead only close to the goal considering the uncer-
tainties of the available position information. There-
fore instabilities due to overestimations of the posi-
tion reliability or precision are avoided. Parameters
chosen for the physical experiment are:

(30)

6. Results

The physical system employed for all experiments
offers the following sensor systems and actuators:

• 3-axis gyroscope: stability: ≈ 1 ; sampling fre-
quency: 176 .

• 3 linear accelerometers: resolution: 5 ; sam-
pling frequency: 176 .

• 2 encoders: resolution: ≈ 86000 ticks per wheel
revolution; sampling frequency: 58

• 4 wheel drive with differential steering, a maximal
linear speed of ≈ 1.6  and a maximal angular
speed of ≈ 150 ; control frequency: 193 .

Gyroscopes, accelerometers and encoders are com-
bined to stabilize for glitches in the encoders (wheel
slip) and drifts in the gyroscopes. Since the robust-
ness of the approaches against uncertainties is to be
proven the resulting position measurement is deteri-
orated by adding  uniform noise on
the linear forward movement and  uni-
form noise on the orientation information, as meas-
urement by the encoders.

In order to evaluate the different approaches, the ve-
hicle is requested to approach a goal 5.4  behind the
starting position in the same orientation as it started.
In figure 2, the driven paths as recorded by odometry
(and projected as a bird’s eye view) are plotted,
where the starting point is on the right side with the
vehicle facing to the right. The constraints are to
reach the goal as fast as possible but keep the acceler-
ations and velocities in reasonable limits (tolerated

α

ω
φ e

ω ωmax
c– ωφ

ωmax
----------- 

 tanh=

u umax ecb( )tanh=

δ

δ cm
π
4
--- α φ+

1 cm–
-------------- 

 tanh 1 cs e cd–( )( )tanh–( )⋅=

cm

cd

cs

u fo 1 αd 1 ecb( )tanh–( )( )–=

a fo 1 αd 1 eca( )tanh( )6–( )( )–=

αd 0 2α 3⁄( )4( )cos,{ }max=

ω u

ω ωmax
ωampδo

ωmax
---------------- 

 tanh=

u umaxu fo
al

ω umax
----------------- 

 tanh=

δo a fo δ α φ+ +( ) φ–=

al

ca cb

ωamp umax

ωmax

umax 1.6= m s⁄[ ] maximal u
ωmax 60= ° s⁄[ ] maximal ω
ωamp 3= 1 s⁄[ ] amplification in ω
ca 10= 1 m⁄[ ] angular relaxation

cb 1= 1 m⁄[ ] deceleration

cm 0.6= 0 1,[ ] smoothness of final turn

cd 2= m[ ] starting final approach

cs 0.5= 1 m⁄[ ] smoothness of bending away

al 0.4= m s2⁄[ ] max lateral acceleration

° s⁄
Hz

mG
Hz

Hz

m s⁄
° s⁄ Hz

10mm sample⁄±
3° sample⁄±

m



Chapter: Conclusion  5

lateral acceleration: 0.4 ; top speed: 1.6  and
angular velocity at 110  at most).

The durations, lateral accelerations, as well as the
employed space in y, and the maximal curvature
needed for reaching the goal within a range of 3
and the orientations close to the goal position are: 

The maximal curvature along the paths occurs with
the LV and BV method at the goal position, where the
strongest angular corrections are forced. The curva-
ture of the LV method is not bounded by any means
thus the vehicle tries to turn almost on the spot close
enough to the goal. Since the curvature of the BV
method is bounded explicitly it is still very low, al-

lowing for corrections in the borders of the vehicles
capabilities only. The maximal curvature in the SD
method occurs in the last phase of the path also, but
significantly before the goal position, because angu-
lar corrections are suppressed closer to the goal. It is
not explicitly bounded here, nevertheless the meth-
od allows naturally for limited curvature paths only.
A closer look at the final approach phase can be
found in figure 3, where strong corrections can be de-
tected in the LV and BV methods trying to reach the
goal exactly and turning (in case of LV) the vehicle by
65° off the intended orientation in 29  off the goal.
In the superimposed dynamics method the vehi-
cles’s orientation is controlled to zero before reaching
the goal and variations in  are less considered clos-
er to the goal. Therefore the orientation and the over-
all behaviour can be kept stable until the very end,
but convergence to the goal position is not forced.
Due to the high lateral starting acceleration of the LV
method the maximal speed needed to be set to 0.5

 here (figure 7), which is then constant for most
of the path and linearly reduced near the goal. Nev-
ertheless a top lateral acceleration of 0.9  needed
to be tolerated (figure 4) in order not to disqualify
this method with regard to the overall travel dura-
tion.
Both other methods keep in the given limit of
0.4  (figure 5, 6) and using the tolerated top
speed of 1.6  (figure 8, 9). Differences throughout
the path are larger variations in omega and lateral ac-
celeration for the BV method, but therefore reaching
the goal approximately 2 seconds earlier than the su-
perimposed dynamics method.
All shown methods were executed under realtime
constraints with a permanent control frequency of
193 . All control laws are one step direct evalua-
tions without any recursions or loops (the computa-
tional complexity of all approaches is O(1)) and the
actual computation time constant depend on the
evaluation of the individually required trigonomet-
ric functions only. The O(1) complexity enables this
control methods for all hard realtime control tasks.

7. Conclusion

Advantages and drawbacks of principally different
control methods have been illustrated. Of course, a
single universally applicable control method could
not be identified, but the individual features, bene-
fits, and limitations are better understood concern-
ing practical applications, where strict physical, kin-
ematic, and dynamical limitations are a given reality.
Future work concentrates on a variety of physical
setups, and the development of methods combining
especially physically motivated adjustability, con-
vergence under disturbed measurements, and stabil-
ity in fast moving target environments.
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figure 4 : Lateral acceleration with the LV method
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figure 5 : Lateral acceleration with the BV method

figure 6 : Lateral acceleration with the SD method
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figure 7 : Linear velocity profile with the LV method
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figure 8 : Linear velocity profile with the BV method
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