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Robust tracking of vehicles under uncertain, noisy, and
discontinuous positioning is a significant part of autono-
mous navigation in unknown environments. This article
suggests two methods for track control, where the initial
parameters of the on-line control are physically explaina-
ble, the resulting track as well as the control parameters
are asymptotically converging and glitches in the localiza-
tion are handled robustly. Practical experiments with
landbound vehicles show the reliability and limitations of
the method in various environments in setups for follow-
ing simple attractors. Due to the physical meaning of the
control parameters the adaptation to changed kinematic or
dynamics is significantly simplified.
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1. Motivation

 

A common task in mobile robotics is to drive the ro-
bot to a certain position and orientation as fast as
possible and within the limits of the static and dy-
namic properties of the robot setup. Autonomous ro-
bots may not only choose targets which are not
smoothly connected, but the choice itself may not be
predictable any more. Therefore, a robust beheaviour
in reaching noisy, drifting, or even stochastically
moving targets is a necessary condition for success-
full applications with autonomous robots.

Because autonomous systems have only approxi-
mate information about the environment via their
sensory system, continuous corruptions and correc-
tions of the position measurement appear on the mo-
tion control level in the same way as purposefully
moved targets. In that sense, robust posing control
represents always a target following problem.

One Lyapunov based approach ([2], [7], [8]) and one
superimposed dynamics approach are employed to
study the dynamic behaviour of a physical land ro-
bot in tracking a moving target.

Both approaches use closed loop controllers without
global states (represented by autonomous differen-
tial equations). The controllers have to take into ac-
count the physical constraints of the vehicle, first of
all the limited lateral acceleration and the bounded
curvature. Both constraints are especially important
for the extension of these methods to the underwater
scenario.

The sensor readings in the experiments have been
additionally (artificially) disturbed in order to prove
the robustness of the discussed methods.

 

2. The kinematic model and physical 

 

constraints

 

The model, describing the motion of the cartesian
unicycle vehicle is given by

(1)

being  the linear velocity in the direction of  and
 the angular velocity (figure 1).

In this article, the point-to-point navigation task is
considered, i.e. the vehicle starts at point 
with heading  and should be driven with appro-
priate  and  to the goal. Without loss of generali-
ty the goal can be chosen to be .

Furthermore,  and  should not explicitly depend
on the time but only on the state variables thereby
leading to autonomous differential equations for the
state variables.

Brockett’s Theorem [3] shows that the stabilization
for the system (1) can not be solved, because the
number of dimensions spanned by linearly inde-
pendent vectors is not equal to the number of con-
trols.

On the other hand, if the state itself is not defined at
the equilibrium, Brockett’s Theorem does not pre-
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vent the stabilization. This can be achieved by a non-
linear coordinate transformation.

A suitable choice for this transformation are the fol-
lowing coordinates which were introduced in [1]

(2)

being  the four quadrant inverse
tangent function describing the angle between a line
from  to  and the positive x-axis.

With the new coordinates  the kinematic mod-
el (1) is transformed to (3), on which our further con-
siderations will be based on:

(3)

Any real vehicle has limitations which depend on the
vehicle itself or on its interaction with the environ-
ment. The following ones are considered here:

 

a.

 

bounded linear velocity

 

 

 

b.

 

bounded angular velocity

 

 

Normally, the low level motor controllers prevent
any dangerous settings of the controls which
would break the gears of the vehicle. A more seri-
ous problem is the use of control setting ranges
which can not be physically realized in the vehicle
and would result in an invalid experimental set-
up.

 

c.

 

bounded lateral acceleration

 

 

Path tracking experiments depend on the preci-
sion of the odometry. If in a curve the lateral accel-
eration of the vehicle is too strong, the wheels

loose close contact to the ground and the odome-
try data will no longer be meaningful.

 

d.

 

bounded curvature

 

 

Additionally to the above stated restrictions
which apply to every vehicle, a large class of vehi-
cles can not turn on the spot, i.e. the curvature is
bounded. 

 

e.

 

only forward moving vehicles

 

 

Moving is assumed to be possible in one direction
only in order to avoid additional bifurcations.

 

3. Linear velocity Lyapunov 

 

approach (LV)

 

In [1]and [5] it was shown that with the assumption

(4)

for the linear velocity and

(5)

for the Lyapunov function and its derivative a non-
linear, time-invariant, globally and asymptotically
converging control law for  of the form

(6)

can be found.

Assumption (4) can not be realized on a vehicle be-
cause one would get too big velocities or one would
have to set  to a very small value resulting in a very
slow motion. Therefore, in experimental setups 
will be bounded to . It can be shown that even
under this condition, the convergence of the system
can be preserved.

For practical use the approach has two drawbacks:

• The resulting path scales proportionally in both
directions making a very wide side space neces-
sary. (For instance, with a distance of 10 m and the
vehicle pointing away from the goal, more than
6 m space to the side are necessary.)

• In order to keep the lateral acceleration in curves
bounded to the maximum acceleration, the veloci-
ty has to be set to a much smaller value then the
vehicle would allow on less curved path seg-
ments. The overall speed of this approach is there-
fore very low.

For this reasons, improvements to the Lyapunov ap-
proach and an alternative approach using superim-
posed dynamics have been looked for.

figure 1 : Unicycle kinematic model
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4. Bounded velocity Lyapunov 

 

approach (BV)

 

While (4) introduced the velocity to depend linearly
on the distance, the following assumption for the ve-
locity

(7)

establishes the existence of an upper bound for the
velocity in the Lyapunov approach. Here,  is a
measure for the deceleration of the vehicle when it
approaches the goal.

With the same Lyapunov function (5) the angular ve-
locity becomes

(8)

The convergence to the goal is defined by the behav-
iour of the solutions for . The ap-
proximation of the state equations (3) with  and 
from (7) and (8) provide the linearized state equa-
tions

(9)

and

(10)

The eigenvalues of the matrix in (10) are

(11)

In order to reach the target on a straight line no oscil-
lations are allowed (i.e. ). Also, the an-
gles  must approach zero faster then . Both is
given if the dominant eigenvalue of (11) is strictly
larger than the factor governing the decrease of  in
(9).

(12)

Therefore the conditions for the asymptotic conver-
gence of the bounded velocity approach are

(13)

In order to keep the lateral acceleration bounded to
, both  and  are multiplied by a reduction fac-

tor  if . The curvature and
thereby the resulting path is left unchanged.

For large distances, the angular velocity  in (8) is
dominated by the factor . In the case of large

, which means the vehicle is pointing away from
the goal,  can not be bounded to an arbitrarily
small with a given  because  has a lower

bound given by (13). This contradicting constraints
reflect the fact, that one global Lyapunov function
and chosen Lyapunov derivative govern very differ-
ent dynamic situations like turning to the goal, mov-
ing toward the goal and converging into the goal.

In order to keep  bounded, and to preserve the cur-
vature, proportional reduction of both  and  as in
the adjustment of the lateral acceleration is used.

The following parameters have been used in all ex-
periments with the BV approach:

(14)

Further work should include the bounds on the later-
al acceleration and the curvature directly into the
Lyapunov approach. One possibility is to introduce
an explicit dependency of the velocity  from  in
(7) because it is obvious that the linear velocity of the
vehicle should be at its maximum when the vehicle is
moving on a straight line, while it should be reduced
for curves in order to keep the lateral acceleration
bounded.

 

5. Superimposed Dynamics (SD)

 

The following approach could be sketched as a su-
perposition of dynamics, where the following as-
pects are considered and can be formulated individ-
ually (  as introduced above) in the first place:

•

 

Approaching the goal directly

 

:
Far from the goal, only the difference in the head-
ing towards the goal  is considered to control the
vehicle with:

(15)

(16)

•

 

Approaching the goal with specific orientation:

 

Closer to the goal, the trajectory needs to consider
the difference to the requested final orientation 
as well as the distance to the goal  with:

(17)

approximating the direction to a point on the nega-
tive -axis in distance  from the goal, which
would be precisely for :

(18)
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The derived control equations are:

(19)

(20)

• At the goal:
When so close to the goal that the uncertainties in
the positioning are of the same dimension than the
actual remaining distance, the direction to the goal
is no longer influencing the dynamics. This is es-
pecially important, if large changes in  (which
are unavoidably increasing as the goal gets closer)
should not lead to arbitrary large changes and
thus instabilities in . Thus the control laws at the
goal consider  and  only:

(21)

(22)

Note that these final approach strategy is not
reaching the goal exactly, but offers a stable way to
get close to the goal only. 

By superimposing these aspects of the control task, a
closed representation can be formulated, where the
robustness of the simple individual parts are pre-
served. One related method, superimposing dynam-
ics separated in activation and target dynamics can
be found in [6]. Another superpositioning method
based on connectionist techniques is introduced in
[4].

First the currently required deviation  from the di-
rect heading to the goal is expressed with:

(23)

where  gives the strength which attracts the vehi-
cle to a straight line into the goal (i.e. the smoothness
or precision of the trajectory can be controlled here),

 sets the distance at which the intended goal orien-
tation is started to be considered, and  gives the
speed of the transition from ‘straight towards the
goal’ to the ‘final approach’ behaviour.

Second the linear velocity reduction and the transi-
tion to the relaxed ‘being there’ dynamic of the con-
trol can be formulated as:

(24)

(25)

where

(26)

Finally the closed control laws for  and  can be
defined as:

(27)

(28)

where

(29)

The parameter  determines the tolerated lateral ac-
celeration. Equation (24) and (25) reflect the fact that
deceleration and relaxation is only reasonable, when
the goal is in front of the vehicle, where  and 
control the angular relaxation and the linear deceler-
ation respectively. The parameter ,  and

 are the overall velocity amplifications and lim-
its.

This approach has no singularities (beside the obvi-
ous bifurcation, when the goal is exactly behind the
vehicle) and can be adjusted according to the physi-
cal constraints of the setup directly. The vehicle will
be lead only close to the goal considering the uncer-
tainties of the available position information. There-
fore instabilities due to overestimations of the posi-
tion reliability or precision are avoided. Parameters
chosen for the physical experiment are:

6. Experimental setup

The physical system employed for all experiments
offers the following sensor systems and actuators:

• 3-axis gyroscope: stability: ≈ 1 ; sampling fre-
quency: 176 .

• 3 linear accelerometers: resolution: 5 ; sam-
pling frequency: 176 .

• 2 encoders: resolution: ≈ 86000 ticks per wheel
revolution; sampling frequency: 58

• 4 wheel drive with differential steering, a maximal
linear speed of ≈ 1.6  and a maximal angular
speed of ≈ 150 ; control frequency: 193 .

Gyroscopes, accelerometers and encoders are com-
bined to stabilize for glitches in the encoders (wheel
slip) and drifts in the gyroscopes. Since the robust-
ness of the approaches against uncertainties is to be
proven the resulting position measurement is deteri-
orated by adding  uniform noise on
the linear forward movement and  uni-
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form noise on the orientation information, as meas-
urement by the encoders.

The setup of the experiments has been guided by the
long term research goal of using the closed loop con-
trollers in autonomous systems. In such systems dis-
continuities can be expected due to localization
glitches or inconsistencies during local spatio-tem-
poral model updates. The tracking mechanism
should react as smooth as possible to this discontinu-
ous changes in the goals of the overall system.

The only assumption in the approaches described
above is, that a certain corridor from the start to the
goal and a turning space around the goal is not occu-
pied by obstacles. Experiments which are easily re-
producible and comparable to other systems and
methods can be realized by a cyclic change of goals
where the timing of these goal changes has a great
impact on the dynamic properties of the robot.

One single goal is defined by the position in space
and the orientation of the robot when driving into
this position. For each experiment an ordered set of
four goals is defined which are approached in a cy-
clic manner.

The relative change of position and orientation be-
tween all adjacent goals are chosen the same in order
to avoid limit circles in the dynamic behaviour which
are artificially introduced by periodically varying
goals. The decision when to change to a new goal is
triggered either after a fixed time interval or by the
distance to the present goal as measured by the iner-
tial system and the dead-reckoning of the robot.

The goals can be chained forward or backward as
shown in figure 2a. In the following experiments
backward chained goals are analysed only. These ex-
periments disclose a richer dynamics compared to
the forward shifted goal. If the system shows stable
behaviour for the case of the backward chained goal,
it will be also stable for the case of the forward
chained goal but not vice verca.

For all following experiments the next goal relative
to the current goal as viewed from the center of the
robot is defined as in figure 2b. 

6-1. SD - Timed moving goal

Considering robustness as the main aspect of this ar-
ticle, the results in this section are interpreted due to
predictability under real world influences. Specifi-
cally, it is evaluated whether the tracking system be-
haves similar in similar situations. 

Figure 3a shows the simple case in which the goal is
switched slowly (every 6 s). Therefore the tracking
system follows synchronously. As soon as the switch
time is less than a critical limit at which all four goals
may not be approached individually any longer, the
tracking system turns to several cyclic behaviours. A
significant variance in the peak speeds and the actual
tracks can be observed in the x-y tracks (figure 3b-c)
or the ,  plots (figure 4b-c). Nevertheless cyclic at-
tractors are established, demonstrating that small
changes in physical situations are not influencing the
global tracking behaviour even if the goals may no
longer be actually approached. The wide variety of
the individual (but similar) tracks due to unpredicta-
ble disturbances and the robust overall motion pat-
tern becomes especially obvious in figure 3b.

Reducing the switch time even further, the state of
cyclic attractors is left finally, leading to the state of
stochastical reorientation towards quickly changing
goals (figure 3d, figure 4d). The covered space as well
as the occurring speeds and acceleration are never-
theless strictly bounded, ensuring that even in this
case the tracking system keeps well behaved.
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6-2. BV - Timed moving goal

The BV method manages a faster turn to the goal
compared to the SD approach which results in a larg-
er curvature around the goal points as shown in fig-
ure 5a.

With a smaller switch time (figure 5b) two different
phases emerge depending on the current attitude of
the robot. In case the robot is already close to the goal
when the next goal is presented, the phase is the
same as in figure 5a. But if the robot is not yet close
enough to the current goal the new presented goal is
approached with a turn to the right. This takes a cer-
tain time and before the robot can really move close
to that goal the next goal is presented which the robot
is now able to closely approach in time. Which of the
two phases are realized depends on the exact condi-
tions where the bifurcation appears and is stochasti-
cal in nature.

With yet smaller switch time only the second of the
just described phases can be observed (figure 5c).
Further reduction of the switch time leads yet to an-
other phase (figure 5d).

Very similar to the results from the SD method, in all
cases explored the covered space as well as the veloc-
ities and accelerations are strictly bounded and the
tracking system is well behaved.

In highly dynamic situations, the BV method con-
straints ( , , ) result in regulating most-
ly the velocity  and keeping  at its maximum as
shown in figure 6a-b. The SD methods employs both

 and  (see figure 4a-d).
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6-3. Effect of noise

All experiments presented up to here are subject to

strong disturbances partly from physics, partly from

added noise on several channels. In this section the

effect of the additional noise is discussed briefly. En-

larging the middle section of the stable tracking in

figure 3a, it can be seen in figure 7a that there is a no-

ticeable variance in the actual tracks, but each indi-

vidual track is smooth and (as discussed before) the

overall behaviour is still identical. By removing the

artificial noise and performing the experiments due

to physical constraints only, figure 7b demonstrate

that the variance in the tracks is reduced and the

tracks themselves are even smoother. Nevertheless,

an effect on the overall behaviour (bifurcations or

differences amplified over time) could never be ob-

served.

7. Conclusion

The dynamic behaviour and the robustness of two
closed loop control methods for track control under
real world constraints have been tested. Both meth-
ods are stable in a broad range of dynamic situations.
The computational complexity of the methods is
O(1) which makes them very suitable for fast closed
loop control.

The resulting paths and dynamics are very different
for both methods, when pushing the test constraints
to the limit, while keeping a well-behaved, robust be-
haviour. By which means these differences have an
impact on the overall navigation abilities of autono-
mous robots, is part of the investigation towards bet-
ter general navigation evaluation criteria.
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