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This article considers some practical and theoretical issues
in the trade-off between globally consistent navigation and
local precision manoeuvring. Precise local metrical maps
are the common base for docking, manipulation, or other
exact trajectory planning and control tasks. Yet these mod-
els are not scaling fine in the total geometrical size, when
handling real world sensory data, and drifts. Nevertheless
there is a need for a globally consistent spatial model for
long term navigation. The presented work proposes a
method of embedding local metric area patches in a topo-
logically consistent global structure suitable for qualita-
tive, and robust navigation. A global positioning
information is not required at any stage, which limits the
global precision of the spatial model, but on the other hand
recommends it for environments where this information is
not available. Results from physical experiments with au-
tonomous robots are presented to demonstrate the robust-
ness and practicality of the approach.
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1. Motivation

 

The motivation for this article might be illuminated
from two different perspectives. One is sketched by
the actual robotics problem, where a concrete locali-
zation and navigation task is to be solved. The other
perspective on the topic could be described as an ab-
stract life-long, on-line learning problem, occurring
in many actual setups. Both aspects will be briefly in-
troduced in the remainder of this introducing chap-
ter.

 

1-1. The robotics problem

 

Explorating and navigating at the same time, is a
common problem for any autonomous vehicle with-
out global correlations or predefined maps. While
not solvable in the general case, its approximated so-

lution is essential for the tasks of artificial creatures
and the plain survival of most animals. Considering
large areas and limited capabilities concerning stor-
age and measurement precision (a realistic guess for
artificial as well as biological creatures), a globally
consistent, precise, and metrical map does not seem
to be reasonable. On the other hand, highly precise
trajectories are required or can be observed in specif-
ic situations (approaching the nest, or docking at a
loading station). Obviously this cannot be supported
by one unique spatial structure. Solutions are offered
for locally precise manoeuvring (see e.g. [2]), or for
globally consistent qualitative maps (see e.g. [8]).
Combinations are suggested on a behavioural level
by Gat [3] or Hertzberg et. al. [4] and on a geometri-
cal level by Thrun [7]. The behavioural level ap-
proach assumes a precise knowledge about the arti-
facts capabilities (i.e. its ‘command set’) and the
interpretation of the sensor data, while the geometri-
cal suggestion introduces a topological map based
on an earlier created metrical map, i.e. it requires an
all covering metrical map. Both directions face severe
limitations, when entering large, and unknown envi-
ronments.

The method proposed in this article, assumes that
the topological representation is the primary repre-
sentation covering the global spatial environment,
while precise geometrical maps are employed in lo-
cal contexts. This implies that there is only a weak or
no connection between the individual geometrical
maps on a global scale. As shown in the results sec-
tion the assumptions of the proposed method re-
garding the artifact itself, as well as about the envi-
ronment are minimal, while the achieved spatial
models are adequate for a global as well as a local
variant of navigation.

Before describing the actual method, the theoretical
constraints of life-long learning and on-line cluster-
ing methods need to be illuminated.
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1-2. The life-long clustering problem

 

Opposed to off-line clustering methods on fixed data
sets, constraints and expectation in life-long on-line
setups are very different. Such a system, which is re-
quested to find categories in a data stream of unde-
termined length where moreover no temporal stor-
age of data is available (beside in the structures of the
clustering system), meets the following problems.
The first severe consequence is that the samples are
available in a certain order only. In contrast to off-line
systems which can replicate and mix the sample sets,
the influence of individual samples on the clustering
process will differ here depending on the sampling
time. Expecting the exact same resulting clustering
representation for any potentially occurring se-
quence of the input data stream can only be justified
in rare cases. On the other hand, it should be expect-
ed to generate similar representations (beside sym-
metry) independent of the sequence of samples. But,
since the original data is available only once and can
therefore not influence later on adaptation steps with
its full precision, even this expectation can only be
approximated. Nevertheless, in some setups the un-
limited data stream with its maximal number of dif-
ferent samples can even offer stochastical advantag-
es over a small fixed data set, if the sampling trace is
chosen adequately.

Although the potential statistical expectations are
limited from the very beginning, the considered set-
up is nevertheless of great significance, because ro-
bust life-long on-line learning is (or should be) a cen-
tral feature of the currently emerging artificial
autonomous systems in physical operational envi-
ronments.

Since the reaction and adaptation time of physical
systems is considered a central quality, it is tried to
approach spontaneous learning here, but keeping
the touchy balance with overall robustness.

A further constraint is the tolerated computational
complexity. Assuming a system which is forced to
come up with critical control answers under all cir-
cumstances (as it is the case with any moving vehicle
for instance), and which cannot limit the spatial op-
ertional environment (and thus the spatial model) a-
priori, the computational complexity could be con-
stant only. In the presented approach, this does not
hold under all conditions, thus it is tolerated to slow
down the control loop in rare cases. This can be ex-
pected when the focus of attention in the internal
spatio-temporal model is lost and a re-orientation re-
quires some time.

Beside the mentioned principal and practical limita-
tions (as shown in the results), the proposed methods
enables robust life-long on-line clustering with no
temporal storage in high dimensional and fast sensor
data streams (720 dimensions and 4.7 Hz are chosen

as the basic bandwidth/throughput for the data be-
ing analysed in the result section).

 

2. Clustering technique

 

Let 

(1)

be a network consisting of  cells , edges , repre-
sentatives  (the ‘centres’ of the data space repre-
sented by each cell), snapshots  (an actual sensor
sample close to the representative of a cell), and indi-
vidual adaptation parameters . Let , , , , ,

,  be the parameters controlling the network ad-
aptation process as introduced in the following.

Assuming an empty network in the beginning, the
first sensor sample  is employed to generate the
first cell , with

(2)

In each subsequent step , the new sensor sample 
is compared to all existing cells , employing an
metrics , resulting in a distance vector :

(3)

Ordering the cells in the network according to ,
leads to a set of cells  where

(4)

Since the process is bound to realtime constraints, the
already ordered set of cells is only compared and re-
ordered up to a certain depth, controlled by the pre-
cision parameter , assuring for every sensor sample

 to be at least one cell  with

(5)

Accordingly the set of neurons is checked and reor-
dered only up to a depth, in which a certain number

 of cells can be found with

; (6)

If none close enough cell can be found in the net-
work, i.e.

(7)

then a new cell is inserted:

(8)
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and placed in the very beginning of the ordered set of
cells. In the course of this insertion, the adaptation
parameter  is increased for all neighbouring cells
also

; (9)

where (4) still holds. In the other case ((5) is fulfilled),
the representatives are adapted according to

(10)

and all  are decreased according to their ranking

(11)

with  determining the number of steps to halve .
After having the individual cells adapted to the most
recent element of the continuous input stream, the
snapshot of the closest cell needs to be checked and
occasionally updated, the edge-weights of the net-
work are updated and as the result of this, cells could
vanish. First, it is checked, whether the current sen-
sor sample could serve as a better snapshot

(12)

If this is the case, the current sensor sample is consid-
ered the new snapshot model for the cell : 

(13)

Next, the edge-weights of the 

 

previously

 

 closest cell
 are adapted, if the previously closest cell differs

from the current one :

(14)

with  determining the number of steps to halve the
edge weights and  the number of edges emerging
from the cell  (note that the edges are directed). All
edges with a weight dropping below a threshold val-
ue are considered none existent. Finally and based
on the potential recent edge elimination, cells 
without a directed path to  (criteria (15)) or with-
out any incoming edges (criteria (16)) are deleted.

where  and (15)

(16)

 

3. Method discussion

 

As long as the number of neurons remains constant,
the algorithm is a neural gas [5] derivate, where the
neighbourhood parameter  is kept constant and the
adaptation parameter  is handled individually for

each node. It can nevertheless be expected that the al-
gorithm performs with the same constraints and
benefits as the neural gas algorithm in this case. In
the case of dynamic number of neurons, the situation
is quite different. The overall behaviour of the algo-
rithm optimizes for an equal distribution of repre-
sentatives in the assumed data space. With the inser-
tion of a new neuron the representative density in
this area is abruptly increased together with an as-
cend of flexibility in the local . A local reorganiza-
tion of the further on locally equally distributed rep-
resentatives is the immediate response. Since the
flexibility of the network is different in different are-
as after growing or shrinking the network, an overall
equal distribution is not guaranteed. Nevertheless, a
local reorganization will result in a slight change in
neighbouring regions, what could in return result in
further reorganizations. The probability of drastic re-
organisations (the cells are moved symmetrically by
the half mean distance between the cells), is reduced
with the distance to the insertion (or deletion) point,
although situations in which a total reorganization is
triggered can be constructed. A total reorganization
(a cascade like shift over the network) is the best ap-
proximation to a global equal distribution, whereas a
plainly local adaptation improves the robustness of
the method against slight changes. The parameters 
and  control the trade-off between these two be-
haviours.

 

4. Experimental setup

 

The chosen experimental setup employs the follow-
ing components:

• an on-line implementation of the life-long cluster-
ing method described above.

• a mobile robot, equipped with a laser range finder
a three axis gyroscope, encoders, linear accelerom-
eters, and ultrasonic sensors. The individual char-
acteristics are given or set to:

•

 

Laser range finder

 

: measuring on a horizontal
plane approximately 20 cm above ground in
front of the vehicle; opening cone: 180°; angular
resolution: 0.5°; maximal range: 8.12 m; range
resolution: 1 cm, sampling frequency: 4.7 Hz
(180° scan).

• 17 ultrasonic sensors: opening cone: 

 

≈

 

 20°; maxi-
mal range: 2 m; minimal range: 0.1 m; sampling
frequency: 

 

≈

 

 10 Hz (all sensors).

•

 

3-axis gyroscope

 

: stability: 

 

≈

 

 1 °/s; sampling fre-
quency: 178 Hz.

•

 

3 linear accelerometers

 

: resolution: 5 mG; sam-
pling frequency: 178 Hz.

•

 

2 Encoders

 

: resolution: 

 

≈

 

 86000 ticks per wheel
revolution.
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Note that no global position information is supplied
and all measurements are subject to drift effects and
other systematic disturbances. The laser range image
taken during movement for instance is bend and
shifted according to the sequential scanning process.
The ultrasound sensors are detecting signals not nec-
essarily stemming from physical obstacles in their
opening cone, the gyroscopes are naturally drifting,
and the odometry is subject to wheel slip.

The resolution and precision of all these sensor sys-
tems is much higher than what would be required by
the suggested method. A couple of experiments are
currently being done, in order to identify some lower
borders for the required sensor systems. What can be
observed up to now, is that the robustness of the sys-
tem is not touched by significant sensor disturbanc-
es. 

By reducing the sensor dimensionality, the process
will also become suitable for µcontroller systems,
whereas the current implementation utilizes up to
40% of a 300 MHz Linux computer (which can be car-
ried on-board on even small vehicles, but consumes
a relatively large amount of energy, which makes
these systems critical for long term tasks).

In order to gain a stabilized local range image of the
environment, the gyroscope, the linear accelerome-
ters, the sonar system and the laser range system are
combined to produce a 360° polar map of the envi-
ronment. For safety and speed reasons all new detec-
tions are immediately included in this model, thus
the it reflects the subjective condition of the local en-
vironment with at least 4.7 Hz (the speed of the slow-
est component). A sample snapshot of this local
model is shown in figure 1.

For the experiment, the robot is furthermore
equipped with a ‘curiosity algorithm’, sending the
vehicle around exploring, ‘inspecting’ outstanding
objects in the local environment and trying to cover

as much open space as can be done on a reflexive ba-
sis. The algorithm itself is of no interest for the exper-
iment, it only suits the need for the vehicle to explore
the space, which should be reflected in the internal
models. An exploration algorithm, which is mutual-
ly connected to the spatio-temporal modelling itself,
is currently under investigation.

The vehicle is operated in this experiment with up to
0.8 m/s in a continuous closed-loop tracking style,
i.e. the control process is not suggesting implicitly
any way of dividing the environment, by stopping
regularly at certain points in space or similar singu-
lar behaviours. The exploration was continued, until
no further structural change in the clustering net-
work structure could be observed.

5. Results

After exploring a closed environment for approxi-
mately 13 minutes (3767 local polar maps generated),
the clustering network was considered stable, i.e. all
occurring data in the range of the representatives
and the  values near to zero. A plot of the resulting
network is shown in figure 3, where the full circles
showing the representatives (red/dark means more
frequently accessed), and the empty circles repre-
senting the attached snapshots. The diagram need to
be interpreted with care, since out of 720 dimensions
only three are arbitrary chosen and plotted. The actu-
al representatives are equally distributed in the full
720 dimensional data space.

In figure 4, six snapshots of the representatives are
plotted at their approximate cartesian recording po-
sitions. By finding the maximal correlation of these
snapshots in x, y and orientation, the approximate
relative recording positions (in green) can be calcu-
lated. The reliable (i.e. frequently used) oriented con-

  1000

  2000

  3000

  4000

30

210

60

240

90

270

120

300

150

330

180 0

figure 1 : A sensor sample
(720 samples per 360° at 4.7 Hz; distances in mm)

figure 2 : Clustering network
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nections extracted from the generated network are

drawn between the estimated positions, leading to

another more illustrative plot of the actual internally

build spatial structure (figure 5). The observed trajec-

tories (the physical realisations of the logical edges in

the topological graph) can be further classified and

distinguished, in order to exploit all local sensations

in their full content. Note that the actual representa-

tives are not bound to a closed area in the real envi-

ronment. They can be addressed by spatially separat-

ed areas characterized by the same or similar

sensations. The context given by the sensation se-

quences is required to distinguish all individual

spots or different trajectories [1].

The resulting topological graph is applicable to a

standard global graph search navigation system,

whereas the local area maps are representing the full

available precision suitable for local manoeuvring

planning. The structure does not represent any kind

of position explicitly, but the relative positions can be
extracted robustly by correlating nightboured cells in
the graph [6].

6. Conclusions

The results shown in this article are gained without
any specific consideration of the actual environment.
The mounting position for the laser range finder or
the sonar systems for instance are chosen by chance.
These sensor systems can be turned upside down or
mounted in any other configuration as long as singu-
larities are avoided. The exploration algorithm was
developed before the actual modelling process was
designed. 

It is very aware to the author, that the morphology
and the dynamics of any creature are essential for its
success. The work presented here seem nevertheless
widely independent from the local geometrical con-
figuration (and of course from a global positioning).
A conclusion from this observation could be to fur-
ther investigate the actual relation between assumed
basic underlying principles and instantiations suita-
ble for specific environmental niches. Future work
will try to consider this aspect.
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