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Localisation and mapping relies on the representation and
recognition of features or patterns detected in sensor data.
An important aspect is the temporal relationship of observa-
tions in sensor data streams. This article proposes a new ap-
proach for simultaneous localisation and mapping based on
temporal relations in the flow of characteristic events in the
sensor data channels.

A dynamical system is employed to acquire these correla-
tions between simultaneous and sequential events from dif-
ferent sources, to map causal sequences, while considering
time spans, and to recognise previously observed patterns
(localisation). While this system is applicable to sensor mo-
dalities with different characteristics and timing behav-
iours, it is especially suitable for distributed computing.
Mapping and localisation take place simultaneously in an
life-long unsupervised distributed on-line learning process.

The dynamical system has been implemented as a distribut-
ed realtime system with symmetric processes. A realtime
clustering network reduces the dimension of raw sensor da-
ta; cluster transitions are used as input for the dynamical
mapping system. Results from physical experiments with
one sensor modality are presented.

 

1. Motivation

 

Recognizing a previously seen location is extremely
important for biological creatures as well as for mo-
bile robots. The own position can be determined to
some degree by dead-reckoning or odometry, but
drifts are not avoidable. Re-calibration to an absolute
position of the internal world model is a vital part of
localisation and navigation.
Unambiguous absolute localisation from sensor in-
put is not always possible. For only one sensor, many
different locations may look the same. Results can be
improved by considering other sensors, but this is
not always helpful for sensors with similar character-
istics. For example, if two locations look the same for
a laser range finder, a sonar array may have difficul-

ties to distinguish between them. Much more infor-
mation about the absolute position can be obtained
by moving around and considering the context of the
current position. Assuming a place is already known,
a static sensor analysis may produce multiple hy-
potheses about the current position. If the context or
surrounding of the location is known, their number
can be reduced by moving to another location. Hy-
potheses which are describing a different context col-
lapse, until only the correct one is still active.
Using only local sensors (no GPS or similar tech-
niques), it is impossible to be absolutely sure about
the current position. To optimize reliability, all avail-
able sensors should be considered, as well as the con-
text and temporal behaviour of the obtained data.
This requires a method for topological mapping of
events from different sensors and their temporal cor-
relation.
A number of time series analysis methods and repro-
duction methods are known and well investigated.
Hidden Markov models, and their more recent coun-
terpart, the observable operator models [4] give a
standard frame for temporal event mapping. Never-
theless, assuming a real-time and on-line learning
context, or even worse a dynamic number of distin-
guishable events, neither of these methods cannot be
applied directly. The computational complexity of
both methods are growing (super-linearly) with the
assumed number of events, and changes in the
number of events result in a complete reorganization
of the internal model. This makes them unsuitable
for many real-time contexts. More dynamical abili-
ties might be gained from connectionistic dynamical
self-organizing approaches, for instance in the recent
work from Barreto et. al. [1]. The presented temporal
self-organizing network in Barreto’s paper assumes a
fixed number of nodes also – while the potential for a
dynamical version is obvious, but which was not re-
quired in the presented example. In [3] the dynamics
of a physical system have been correlated with a se-
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quence of events in a planning system, but the sys-
tem needs to be hand-coded.
Another common feature of all above methods is the
assumed underlying rigid timing. All input data
(even from different sensor modalities) are sampled
and presented with a global and fixed frequency.
Since each sensor data stream might and usually will
have its own and flexible timing scheme in a system
dealing with multi-modal real-world observations, it
is reasonable to take this basic underlying asynchro-
nism into consideration and embed it into the sys-
tem. The method proposed in this article, will ap-
proach these dynamics and asynchronisms, while
keeping in the frame of strict real-time constraints.
While the proposed method shares many features
with the common simultaneous localisation and
mapping (SLAM) approaches (see for example [2]),
the fundamental difference is that there is no explicit
common feature extraction (e.g. position), and any
kind of involved and correlated sensor modality can
be employed.

 

2. Network Design

 

The proposed asynchronous temporal event map-
ping system consists of two stages. The first stage of
sensor clustering identifies distinguishable events in
the continuous sensor data streams and delivers
them to the temporal mapping network. Both stages
start with an empty network, and are mainly driven
by the regularities and variance in the sensor data
streams.

 

2-1. Sensor Clustering

 

Let 

(1)

be a network consisting of  cells , edges , repre-
sentatives  (the ‘centres’ of the data space repre-
sented by each cell), and individual adaptation pa-
rameters . Let , , , , , ,  be the
parameters controlling the network adaptation proc-
ess as introduced in the following.
Assuming an empty network in the beginning, the
first sensor sample  is employed to generate the
first cell , with

(2)

In each subsequent step , the new sensor sample 
is compared to all existing cells , employing a
metrics , resulting in a distance vector :

(3)

Ordering the cells in the network according to ,
leads to a set of cells  where

(4)

Since the process is bound to realtime constraints, the
already ordered set of cells is only compared and re-
ordered up to a certain depth, controlled by the pre-
cision parameter , assuring for every sensor sample

 to be at least one cell  with

(5)

Accordingly the set of neurons is checked and reor-
dered only up to a depth, in which a certain number

 of cells can be found with

; (6)

If none close enough cell can be found in the net-
work, i.e.

(7)

then a new cell is inserted:

(8)

and placed in the very beginning of the ordered set of
cells. In the course of this insertion, the adaptation
parameter  is increased for all neighbouring cells
also

; (9)

where (4) still holds. In the other case ((5) is fulfilled),
the representatives are adapted according to

(10)

and all  are decreased according to their ranking

(11)

with  determining the number of steps to halve .
After having the individual cells adapted to the most
recent element of the continuous input stream, the
edge-weights of the network are updated and as the
result of this, cells could vanish. The edge-weights of
the 

 

previously

 

 closest cell  are adapted, if the previ-
ously closest cell differs from the current one :

(12)

with  determining the number of steps to halve the
edge weights and  the number of edges emerging
from the cell  (note that the edges are directed). All
edges with a weight dropping below a threshold val-
ue are considered none existent. Finally and based
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on the potential recent edge elimination, cells 
without a directed path to  (criteria (13)) or with-
out any incoming edges (criteria (14)) are deleted.

where  and (13)

(14)

This clustering system is related to the ‘neural gas’
network proposed in [5], but eliminates all its static
restrictions. Another variation of this clustering net-
work applied to the field of global and local spatial
mapping can be found in [6].

2-2. Temporal Mapping
Given a set  of arbitrary sensors, which produce
sequences of discrete events – i.e. the output of the
sensor clustering stage. An event can be the occur-
rence of any distinguishable feature in sensor data,
while a unique identifier of the currently active clus-
ter is employed here. For mapping of causal or tem-
poral correlations of events, a dynamical system rep-
resented by an attributed graph  is constructed
for each sensor.

The nodes of  represent receptors  sensi-
ble for individual events. An occurrence of an event,
which is matching the receptor results in a higher
stimulation level , while other events re-
sult in a lower stimulation level, depending on the
distance of the measured input to the input expected
by the receptor. Every receptor contains information
about its activity level  and a time-stamp  of the
last activation.

Directed internal edges  express a
causal temporal relation of two events. A similar
type of edges connects receptors belonging to differ-
ent sensor modalities, referred to as ‘cross-edges’.
Their purpose is explained later in section 3.

Edges serve as ‘delay lines’ between receptors, with
variable delay behaviour. The function  ex-
presses the timing behaviour of events:

Definition 2.1 Temporal function 

(15)

 is symmetrically centred around ;  describes
the tolerance or the width of the function. These two
parameters are set and modified by the learning al-
gorithm, as described in section 4-2.

Apart from the parameters  and  edges contain
a variable learning rate parameter  to control the
adaptability of each edge, and a weight information

 describing the reproducibility of this
transition.

The activity level  of a receptor  results from
the stimulation level  and activity in its input edg-
es :

Definition 2.2 Receptor activity: Let  be the set of all
input edges of receptor , and  the set of in-
volved sensor modalities (all the sensor graphs, from
which a cross edge leads to ). The receptor activity

 is calculated according to

(16)

with the edge activity

(17)

 is a saturating function, e.g. 
The time-warping factor  is dynamically adapted
during the recognition process. On activation of re-
ceptor , the best matching input edge  with
maximum activity is selected, and  is adapted to
maximize . The new time-warping fac-
tor  is propagated to all output
edges  of  (  controls the speed of the time
warp adaptation). This enables the network to recog-
nize a sequence even if it is slower or faster than dur-
ing the learning process.
The activation behaviour is controlled by the self-ac-
tivation parameter  and the amplification factor

. The value for  should be chosen close to ze-
ro. These two parameters control the generation and
boost of an activity wave as a result of accurate sen-
sor stimulation.
To classify activity, two thresholds are required. A
threshold  describes the activity level which de-
fines recognition of a sequence. A low threshold 
distinguishes between inactivity and low activity. It
has to be chosen higher than the activity level 
resulting from self activation at stimulation.

3. Sensor Fusion

Let  be a set of sensors  which share some physi-
cal phenomena in their scan range, i.e. sensor corre-
lation might improve the prediction qualities of indi-
vidual sensor modalities, as introduced above. The
idea to implement this behaviour is to extend the
concept of delay edges to cross edges linking corre-
lated modalities and representing causal and tempo-
ral relations. 
Obviously the creation of these cross edges follows
different rules than the creation of internal edges.
First the last most active receptor  since creation
of the last cross edges is determined for each sensor
modality. If its activity is higher than , a cross
edge from  to the local most active receptor  is
created. These edges are then initialized and adapted
according to the rules for local edges (section 4).
Due to the additional information, which comes with
the activation and later on with the construction of
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prediction hypotheses, definition 2.2, needs to be ex-
tended accordingly:

Definition 3.1 Receptor activity for multiple sensor set-
ups: Let  be the set of all input cross
edges of receptor  from sensor modality , and let

;  be the set of
all involved sensor modalities. The local receptor activity

 is calculated according to

(18)

(19)

where  and  control the general influence of cross edg-
es in the system. 

 limits the potential influence, while  gives the
number of modalities with maximal input for which
the cross edge influence saturates.

According to (19) the additional support based on in-
ter-modal correlations will show impact only if cross
edges are actually in existence. The start-up phase in
multi-model setups is therefore identical to single
model systems, since activity levels need to reach a
certain threshold before cross edges are created for
the first time.

Multiple sensor modalities are usually handled on
different processors. Thus the actual implementation
of the cross edges as used for the experiments de-
scribed later on, enables additional possibilities of
employing different real-time network communica-
tions. While the Ada-rpc and TCP/IP showed some
predictable difficulties in real-time error recovery,
the finally used UDP implementation offered the
highest flexibility under real-time constraints. It is
therefore possible to introduce new sensor modali-
ties at a later point in time, or to disable sensors tem-
porary, without interrupting or even delaying the
running system.

4. The Learning Process

Learning in this case has two aspects:

a. Learning new sequences by creating new recep-
tors and edges (acquisition)

b. Modifying existing edges while recognizing
known sequences (adaptation)

The adaptation process runs continuously, the acqui-
sition process is only activated if the current input
stream is not recognized (the maximum activity level
in the network is below ). There is no dedicated
‘learning phase’. Learning and adaptation are con-
tinuous life-long processes, controlled by the input
only.

4-1. Acquisition
Whenever an event occurs in the input stream, all
corresponding receptors are stimulated and evaluat-
ed. If none of them results in a activity level greater
than , a new receptor sensible for the occurred
event is created. It is connected to all receptors that
were highly active when the previous event oc-
curred. The parameters  and  of the newly cre-
ated edges are initialized according to the observed
delay of events. The edge weight  is initialised
with 1, the learning rate  is set to a plausible start
value, e.g. . The activity level of the newly creat-
ed receptor is evaluated afterwards according to def-
inition 2.2
During this process, other hypotheses may emerge in
the network. Edges are inserted from the last newly
created receptor to all currently active receptors

. When a hypothesis reaches the activity
level , the acquisition process stops.

4-2. Adaptation
Considering the realtime aspect, it is useful to adapt
only those parts of the graph that are currently ac-
tive. This implies that the current location of the ro-
bot is recognized. Parameters to adapt are  and 
of the temporal function , the learning rate ,
and the edge weight , which are all stored in the
edges. Whenever a receptor  is stimulated by sen-
sor data and reaches a high activity level

, those input edges of  are selected
which have the highest edge activity level among the
edges coming from the same sensor modality. The se-
lected edges are adapted using the following rules

:

(20)

(21)

(22)

(23)

On good matches, the temporal tolerance  is re-
duced, and the edge weight  increases. The con-
stant  limits the temporal precision, i.e.  will
not drop below this value. The reduction of the learn-
ing rate  stabilises the process. The weights of the
output edges of  are decayed by the constant :

(24)

This effect is inverted in the next step for the edge
which successfully activates a receptor. The weights
of all other edges remain slightly reduced. Frequent-
ly occurring and successfully recognized sequences
strengthen corresponding edge weights, while un-
used or inaccurate edges decay. This results in a
probability representation coded into the edge
weights, which enables the system to consider statis-
tical information.
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5. Experiments

Before testing the system in physical non-reproduci-
ble real-time experiments, two tests for basic func-
tionality and understanding of the systems behav-
iours are performed. In order to evaluate the
prediction qualities of the system, a function  is
introduced, giving the ratio of successfull exact pre-
dictions of the next receptor, which will be triggered
by the connected sensor in the close future. This
measurement depends on the number of generated
receptors in the system. As usually several hundred
receptors  are generated a random pick will there-
fore produce a measurement  approximating

.

5-1. Simulated Setup

The first simulated experiment demonstrates the re-
sponse to perfectly predictable and ‘perfectly ran-
dom’ sensor sequences (figure 1). As to be expected
the prediction quality is around 10% in the random
case (with 10 different simulated events) and ap-
proaching 100% quickly, when a perfectly predicta-
ble sequence is presented. The activity in the random
case is increasing slowly, after all possible transitions
(90) were represented in the system.

The second simulated experiment demonstrates sen-
sor correlation with a sequence of 10 events and one
random bifurcation. The same sequence is presented
to both modalities with different delays. The suc-
ceeding modality implements the correlation per-

fectly and predicts the sequence with 100% accuracy,
while the preceding modality can only achieve 95%
correct predictions, since it needs to guess at the bi-
furcation point.

The following physical experiment investigates the
stability of the identification of temporal events,
which are given by multiple real-world sensors and
descretized through multiple dynamical clustering
systems as introduced. In contrast to the simulated
experiments, hundreds of events and receptors are
generated here, so  for a random pick will be
very close to zero.

5-2. Physical Setup

A simple land-bound robot was equipped with an
exploration algorithm, which enables him to ‘stroll’
in a closed and static environment. Due to the struc-
ture of the exploration system and the usual drifts
and time jitter effects, the chosen paths will never be
identical, but the robot will behave similar in similar
situations, which is assumed to be sufficient to pro-
duce recognizable sequences of events. Along these
random paths, the raw data from laser range finders
(one on-board and one mounted static in the envi-
ronment), and sonar sensors is sampled and fed into
the networks. Also it would of course lead to more
stability to adapt the two stages of the system (clus-
tering and temporal event mapping) in sequence,
they are adapted in parallel in the following experi-
ment, in order to test its robustness and real-world
abilities. 

figure 1 : The upper figure shows the response of the system to a
random input sequence, while the lower figure contains the re-
sponse to a perfectly predictable sequence (mind the different time
scales).
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6. Results

The measurements shown in figure 3 indicate a
number of features of the system. The prediction rate
in the first three passes through the environment (up
to 250 ) is close to zero, since the clustering systems
are still unstable and the receptors in the temporal
mapping network are generated (no meaningful pre-
diction is possible while generating the underlying
structure). The static external sensor (darker graph)
is delivering predictions only when the mobile robot
is passing through its scan range (there is nothing to
predict during the static phases). While both sensors
perform on average with 50-60% correct predictions
(out of a set of several hundreds of potential follow
up receptors), the static sensor is doing slightly better
and is enhancing the results of the internal sensor
during its active phases (the prediction success
boosts up significantly whenever the external sensor
is giving additional information via the establishes
cross edges).

7. Discussion

Several hypotheses, represented by waves of activity
develop and evolve in the network simultaneously.
Wrong hypotheses automatically disappear, if the ex-
pected receptors are not stimulated by events any
more, or if the timing is not correct. Correct ones are
reinforced.

The method can recognize sequences which are dis-
turbed by superimposed events. A wave-front is not
influenced by an unexpected event, which is not rep-
resented by a receptor. As long as the next expected
events from the original sequence occur in time, the
activity wave continues. Sequences are also recog-
nized, if some events are missing or falsified.

An advantage is that learning and recognition take
place simultaneously. Moreover, since there is no in-
terpretation of sensor data beyond the level of plain

dynamical clustering, the introduced method does
not depend on the choice of involved sensor modali-
ties, as long as there is any correlation between them.
This is usually given already by operating the sen-
sors in the same environment. This feature separates
this method from known simultaneous localisation
and mapping (SLAM) methods.
The discussed real-world experiment indicates the
adaptation-speed and robustness of the proposed
continuously localizing and temporal event-map-
ping system under real-time constraints.
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figure 3 : Physical experiment with a mobile (internal) and a fixed (external) sensor data modality.
The external modality is only active when the mobile robot is in range, and is supporting the predic-
tion quality of the internal sensor during these phases.
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