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Cooperative tasks such as swarms following gradients, de-
tecting environmental boundaries (defining natural fea-
tures) and exploration by aggregates of mobile autono-
mous robots have gained much attention in the past few
years. Aggregates come in various forms including rigid
formations, involving a few robots, with clearly-defined
simple shapes or swarms, with up to hundreds of robots,
but with no particular shape characteristics. In the afore-
mentioned tasks, a large aggregate is required to form com-
plex shapes. When the number of robots increases, it is
very difficult or even senseless to manually determine the
position of each and every agent within the formation. In
this paper, we concentrate on a special kind of geometric
formation (open and closed contours). We use Fourier de-
scriptors, as one of the most natural ways of representing
curves, and active contour models, to make the aggregate
exhibit desirable physical behaviours. We apply these
kinds of formations to the case of autonomous underwater
vehicles collectively exploring, mapping, and adapting to
environmental features. Many of the features found in un-
derwater landscapes are shaped as open or closed contours
so that the proposed combination makes sense. In our ap-
proach, a group of mobile agents can synthesize a curve
given a small set of canonical invariant descriptors.
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1. Introduction

 

Exploration of underwater environments is currently
one of the most important tasks confronted by re-
searchers around the world. Realization of truly Au-
tonomous Ocean Sampling Networks (AOSN) [1] [5]
is considered the holy grail of this line of research.

Although an underwater landscape could in theory
be navigated and explored by just one underwater
vehicle, it is commonly believed that this task should
in practice be approached from a multi-robot cooper-
ative perspective. This paradigm makes ocean obser-
vation possible through numerous mobile net-
worked sensor platforms. Autonomous submarines
play the role of these sensor platforms. They are
equipped with special application-specific sensors as
well as limited bandwidth communication capabili-
ties. A basic capability of these networks is the ability
to form certain shapes dictated by the task.

In most cases, these robots are homogeneous (i.e.,
have the same structure and functionality), share lo-
cal information with each other via local interactions,
are run by the same control rule which together real-
ize a global complex behaviour (i.e., the control strat-
egy is distributed among the vehicles), and are gov-
erned by a global task. Research on robot aggregates
has been divided into two schools. One is 

 

formation
control

 

 where a relatively small number of robots are
required to form simple geometric shapes. The ap-
proaches proposed for this class of problems usually
don't scale up. The other one is 

 

swarm research

 

 where
the emergence of behaviours and patterns among a
large number of identical agents is of interest. In
swarming research, exact shape of the aggregate is
not of interest.

We are interested in large aggregates of robots and
automatic methods of making them form complex
geometric shapes. Obviously enough, to have a col-
lection of robots form a certain shape we have to
come up with means to describe geometric shapes.
One inefficient way of doing this is to represent the
position of each and every robot within the forma-
tion. This is certainly appropriate for a small number
of robots such as in formation flying. In these kinds
of application, the robots form a virtual structure [2]
which then has to go through rigid-body transforma-
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2 Section: Introduction

tions. Formation graphs [3] have been used to cap-
ture the interrelationships between individual ro-
bots. Formation functions [4] are similarly used to
describe geometric constraints between robots' posi-
tions and orientations. Using these methods, the lo-
cations of robots with respect to other robots (or a
virtual leader) have to be determined beforehand.
The motivation behind all these research efforts is to
somehow decouple the problems of formation keep-
ing and manoeuvring [6]. When the number of ro-
bots increases, resembling more a swarm than a sim-
ple formation, it is very hard to draw a line between
formation control and swarming behaviour. Instead,
the robots are generally required to form a non-rigid
approximate shape rather than a rigid virtual struc-
ture. In [7], an alternative method of representation is
proposed whereby a formation state is described as
an element of an abstract manifold which is the Car-
tesian product of a Lie group  (an element of which
represents the pose of the formation as a whole) and
a shape manifold  which is a low-dimensional
space representing the shape of the formation. They
apply their theory to ellipsoid-shaped formations us-
ing the mean and variance as shape parameters. In
this kind of approach, the positions of individual ro-
bots are not important as long as the whole group
has a certain shape. On the other hand, a multitude
of canonical invariant representations have been
used by machine vision researchers over the past few
decades, such as statistical moments, Fourier de-
scriptors, differential invariants, integral invariants
and wavelets, to name the most important ones.

We only consider 

 

contour-shaped formations

 

. Among
the shape representation methods proposed in ma-
chine vision, Fourier descriptors are the most appro-
priate for curve-shaped entities. It is invariant to sev-
eral transformations and it is very compact. Even

such a simple setting has numerous applications.
Here, we'll enumerate some of them.

 

a.

 

Many of the natural features underwater (usually
represented by bathometric maps) form open or
closed curves. Figure 1 shows an example. Such
features can be interpreted as level-sets of under-
water landscapes.

 

b.

 

In the case of an oil leakage, the affected area can
be described by shape descriptors calculated by
some aerial vehicles which are communicated to
the underwater vehicles for enclosure of the cov-
ered area. From that point on, suitable potential
functions can be used by the formation to track
the level-set or, alternatively, updated information
can come from aerial vehicles.

 

c.

 

Another interesting application is that of enclos-
ing and tracking underwater plumes. Given a
rough model for the evolution of the plume (for
predicting the boundary of the plume), comple-
mented by sensor measurements obtained from
individual robots, the aggregate can be made to
uniformly occupy the predicted boundary. Invari-
ant descriptors can be used to describe the bound-
ary and elastic forces, along with some potential
calculated using the physical model and estimates
obtained from sensors, can be used to adapt the
contour formation to the plume boundary.

 

d.

 

One way of identifying features is through com-
puting signatures, i.e., 1-D functions for represent-
ing 2-D boundaries (or areas). Many kinds of
signatures have been introduced (most of them in-
variant with respect to certain transformations)
such as  curves, or  curves. Here, we use
Fourier descriptors which are descriptive and
very compact at the same time, while satisfying all
the desirable invariance properties.

 

e.

 

If the features can be uniquely identified, then
they can be compared. Recalculating a certain lev-
el-set of a landscape and comparing it with the
one computed some time ago can indicate the
amount of change it has gone through.

 

f.

 

Similar to 

 

e

 

 – pre-mapped features can be system-
atically searched for using a rough spatial model.

 

g.

 

Objects

 

 and 

 

fields

 

 are two fundamental conceptual-
izations of the entities comprising the natural en-
vironments [8]. Objects refer to things in the
world while a field refers to a single-valued func-
tion of location in 2-D space. A collection (or ag-
gregate) of these entities can be connected
together through a topological map. Each node of
such a map is an invariant description of an object
or a field together with geometric (or other) at-
tributes such as position (absolute or relative), ori-
entation or scaling.

 

h.

 

In many applications, a swarm is required to cov-
er a certain area with a certain shape. This prob-
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figure 1: Adapting to underwater landscape
(closed contours)
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lem can be conveniently decomposed into two
sub-problems: controlling the boundary of the
shape using designated robots and having the ro-
bots inside the boundary make a uniform distri-
bution.

We also use active contour models (elastic bands) to
enforce some degree of 

 

cohesion

 

 and 

 

smoothness

 

. It can
also be used for adaptation, as the following sections
will describe. This model realizes what we intuitive-
ly think a curved formation should behave like, from
a physical point of view.

 

2. Serafina: 

 

Small Autonomous Submersibles

 

Serafina

 

 is the name given to small light-weight sub-
mersibles currently being developed in our laborato-
ry. Their primary purpose is to investigate the possi-
bility of creating schools of autonomous underwater
vehicles capable of exploring the underwater land-
scape. They are equipped with five thrusters at-
tached to a main hull containing the controller, the
sensors and the batteries. The main circuit board con-
sists of a serial line connector for debugging and
down loading programs and data, the CPU module
(Motorola MPC 555 PowerPC µcontroller unit), so-
nar sensor module (Airmar 25-162-01 200kHz), the
compass module (2 axis strapped down magnetome-
ter from Tri-M Systems), linear accelerometers (2
ADXL311 dual axis from Analog Devices), pressure
sensor (26PCB Honeywell), optical short range sen-
sors (short-range communica-
tion), long-range receiver and
transmitter, and motor drivers.
Figure 2 shows a picture of this
vehicle while figure 3 shows the
hardware block diagram.
Serafinas are neutrally buoyant
and pressure sensors can be used
to keep them at a certain depth.
Also, the roll and pitch angles can
be stabilized around zero. This
way, their dynamics can be mod-
elled as simple unicycles. The
motion of the point at the middle
of the axis connecting the two
rear thrusters is equal to the sum
of the forces acting on the robot
and governed by the differential
equation

, (1)

where  is a mass-dependent co-
efficient and  is the damping
factor. When the motion is slow,
the effect of the acceleration term

is only transient. In this case,  and the
equation reduces to . Interpreting the
force  as a vector from  to the desired target ,
we can employ feedback linearization or a simple re-
active controller which directly provides control val-
ues for the rear thrusters.

 

3. Invariant Representations 

 

and Fourier Descriptors

 

When an invariant representation is used, the prob-
lem of forming a shape can be effectively decoupled
from that of translation, rotation and scaling (i.e., aff-
ine transformations). Suppose that  is the -di-
mensional space of shape descriptors. An element

 can be used to 

 

uniquely

 

 de-
scribe a certain class of shapes up to translation, rota-
tion, and scaling. It should be noted that uniqueness

m∂2qi
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--------- λ∂qi

∂t
-------+ fi=

m
λ
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fi qi qdi

figure 2: Serafina underwater vehicle
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figure 3: Serafina hardware block diagram
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is a relative concept in this context and is defined up
to a tolerance level. For example, in the case of Fouri-
er descriptors, an infinite number of variables are re-
quired to uniquely define a closed contour. The same
is also true about any other canonical representation,
such as higher-order moments. Two shapes  and

 are then considered as the same if  for
a given tolerance level  and for each  and

 where . Care has to be taken
to select  as large as is necessary. Now let 
denote the configuration space of the formation as a
virtual body. Each element in the Lie group  is de-
noted as  where  is the centre of mass
(or gravity),  is the orientation of the body, and  is
the scaling which can be used to shrink or expand the
virtual body.  uniquely defines the
formation state. Let  denote the state (position
and orientation) of robot  where .
In this paper,  is the position of the robot
with respect to the body-fixed coordinate frame cen-
tred at  (or ). The collective state of the system is
then . Elements of  and 
are a function of ‘s:

(2)

If  is the differential of the map , then we will
have . The minimum-norm solution of
the above equation in the sense of least-squares is
given by

 (3)

where
. (4)

Now, for every  we will have ,
where 

, (5)

and . (6)

For a desired , we can set

, (7)

implementing a simple linear feedback loop. This is
basically a first order approximation so that for de-
scriptors more complicated than first and second or-
der moments, it will get stuck in undesirable local
minima. Fortunately, at least for the case of Fourier
descriptors, we don't need to resort to such calcula-
tions because the desired contour can be easily syn-
thesized using the descriptors and the group actions
can be realized as affine transformations on the ro-
bots' positions.

Complex Fourier descriptors are among the most
popular methods in image processing for describing
shapes represented as closed contours [9]. Any
closed curve, parametrized by  (the arc length) and

with perimeter  can be described by its Fourier ex-
pansion

(8)

where the Fourier coefficients are given by 

(9)

Here, we assume that the perimeter is normalized by
, i.e. . For a shape described by a set of

vertices , , the Fourier descriptors
,  are the coefficients of the

Fourier transform of :

, (10)

According to Shannon's theorem, the highest fre-
quency is obtained for . ‘s with 
give no information when the shape is discretized by

 points. ‘s actually represent the frequency con-
tents of the curve. As  increases, more detailed in-
formation about higher frequencies will be gained.

 is the areal centre of gravity of the shape.  de-
scribes the size of the shape. Using only  and ,
the synthesized shape will be an ellipse. Higher fre-
quency components distort the ellipse defined by .
The set of Fourier descriptors invariant with respect
to translation, rotation, scaling and choice of starting
point are given by

(11)

where

(12)

(13)

(14)

(15)

(16)

(17)

In the above formulas, the curve is described by the
vertices  and the periodic boundary con-
dition is defined by  and ,
where . For open contours, the boundary
conditions are  and . A few
of the descriptors are sufficient to describe very com-
plex shapes.
We use  as the centre of gravity of the contour,
viewed as a virtual body.  gives the 

 

areal centre of
gravity

 

 of the polygon defining the curve.
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The parameter  gives the angle of the
main principal axis and the descriptors  and 
can be used to reconstruct the loci of the best least
squares fit of the object with an ellipse, this coordi-
nate system being uniquely defined. The ellipse is
given by the following formula

(18)

In practice,  is dependent on the starting point and
can't be used directly. In fact, the reconstructed curve
is rotated with respect to the original object. This ro-
tation actually gives the orientation of the normal-
ized object. The difference between the orientation of
the normalized object and the original one is given
by . Using , we can
compensate for the difference in rotation and recover
the orientation of the original object.

4. Forming Shapes with 
Fourier Descriptors

As was seen in previous sections, ‘s give rise to
two sets of parameters. One is the set of invariant fea-
tures  which comprises the canonical
representation and the other is the set

 describing the geometrical
properties of the shape.  represent de-
sired areal centre of gravity, orientation (with respect
to the original shape), scaling (expansion/shrink-
ing), and starting point, respectively. Also

 and . 
The performance of the formation can be assessed
using some suitable measure. For the case of Fourier
descriptors, a commonly used measure is the nor-
malized difference between the desired and actual
descriptors. Combined with other shape parameters,
the relation 

(19)

provides a reasonable similarity measure. The de-
sired final location for a robot  is computed as

(20)

where  denotes the rotation matrix around the
 axis by  degrees, , and

(21)

The error between the current position and the de-
sired one is therefore  and we can use a
control rule such as the following to drive the robot
to the desired location: 

(22)

where  is the strength of attraction (actually, a
spring constant). This force corresponds to a quad-
ratic potential . Thus

(23)

In practice, the distance between two neighbouring
robots should satisfy a bound such as

. This implies that we should
always have . Using
Fourier descriptors, these bounds may sometimes be
at odds. If one of them, e.g. the upper bound, is as-
sumed to be satisfied, we can scale the target curve to
satisfy the lower bound. To do this, we simply multi-
ply  by  where

 is approximately 1 when the argument is below
1 and linearly ascends, with appropriate slope, for
values greater than 1.

5. Calculating 
Environmental Signatures

As demonstrated in [10], a robot formation shaped as
a closed contour and under the pressure of snake and
external potential forces can be made to adapt itself
to environmental level sets. After the formation has
been stabilized, a descriptor-computing mechanism
can be switched on to register the current shape of
the contour. This will give the canonical representa-
tion of the level set. This can be done in a distributed
sequential manner by the robots. Neighbouring
should synchronize on transmission and reception of
signals. The process starts with .  transmits its
estimated location  to . computes the values

 and . It then
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transmits  and , together with  to .  will
then calculate

 and (24)

(25)

This process goes on until  is reached by which
time  can compute

 and (26)

(27)

Now the second round can begin.  transmits its
position  and  to .  calculates

 and (28)

 (29)

and transmits these along with  and  to . 
can now compute partial  by the formulas

(30)

As previously, by the time ‘s turn is reached, all
the ‘s will have their correct values by the formulas

(31)

Now the values of  can be easily com-
puted and transmitted to the formation controller.
The partial values  are among the items
that have to be passed along to consecutive robots.
Figure 5 shows the flow of information. The flow in
the interior of the contour corresponds to the first
round and the one on the outside corresponds to the
final round.

6. Active Contours

Elastically deformable contour models (or snakes)
were originally proposed by machine vision re-
searchers [11] and used principally for boundary
finding (segmentation) and motion tracking. The ba-
sic idea is to use the analogy of a rubber band fitting
itself to arbitrary shapes. The elastic band evolves ac-
cording to laws of linear elasticity and as a response
to two kinds of forces. The elastic (internal) forces op-
pose stretching (expansion) and bending, and the en-
vironment (external) forces are normally gradients of
a certain potential field guiding the snake to bounda-
ries of features. In this paper, we use the model for
two purposes. One is to maintain the smoothness of
the closed curve at all times and the other one is to
keep the robots together (so that we don't need sepa-
rate attractive forces between the robots). In [10], an
application of snakes to collective adaptation to envi-
ronmental boundaries (or level sets) is described but
we are using snakes primarily for formation control
rather than tracking boundaries, although the latter
can also be easily incorporated into our framework
as well. In this section, we give a brief overview of
these models, together with some of their properties. 

A curve can be defined by the parametric equation
 where  is the arc-

length parameter,  denotes time,  and  are the
coordinates of each point on the curve. One way of
deriving snake models is to use the energy formula-
tion. The contour is influenced by a potential energy

 and a deformable energy .
The potential energy pulls the points of the curve to-
wards desired locations. In vision applications, this
field is defined as a function of image coordinates,
whereas in our case,  attracts the curve towards a
desired curve described by a set of Fourier descrip-
tors. Thus, we can define

(32)

The deformation energy  is defined as

(33)

where  and  are tension (resistance to
stretching) and rigidity (resistance to bending) pa-
rameters, respectively, associated with the elastic
band. The kinetic energy is defined as 

(34)

and damping energy by 

(35)
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where  and  are the mass and damping co-
efficient, respectively. The whole energy is equal to

(36)

and the snake deforms in such a way as to minimize
it. The complete Euler-Lagrange differential equa-
tion of the system is then

(37)

where .

The curve is actually represented by the set of dis-
crete points , where

,  being the number of samples around
the contour. It is temporally evolved using finite dif-
ferences to approximate  and ,
and forward differences to approximate .

7. Curve Evolution

Suppose that  is the curve defined
by the initial positions of robots and

 denotes a final desired curve for
 to evolve into. In section 4, every robot  with

position  followed a straight line to .
Suppose, for the moment, that the centres of gravity
of  and  are co-located. Depending on the ge-
ometry of the curves, their relative orientation, and
the positions of the starting points  and , this
simple scheme can potentially lead to collisions be-
tween robots. This means that  may cross itself at
one or more points while evolving. It can be likened
to twisting a generalized cylinder (with cross section
equal to the current formation shape on one side and
the target shape on the other) along its main axis. To
let the formation proceed to the target formation
from the current state will clearly make the contour
fold unto itself and the sum of snake and repulsion
forces will certainly prevent the formation from con-
vergence. It is observed that this torsion effect can be
alleviated (or altogether eliminated, depending on
case) if the starting position of one of the contours is
shifted to either direction for a sufficient amount.
Fortunately, torsion can be quantified and a method
for decreasing it can be devised. Suppose, at the mo-
ment, that the robot collection is homogeneous (the
relative positions of robots in the formation do not
matter).

To quantify, we consider the intersection of the paths
of two robots  (going from  to

) and  (going from 
to ). The point of intersection of the
lines defined by the vectors  and

 (denoted by ) is given by

(38)

(39)

where

(40)

Now, define 

; (41)

; (42)

; (43)

Necessary conditions for no intersection are
 and  or

 and (44)

(45)

Therefore, the quantity

(46)

is a measure of torsion. The greater the , the
less the torsion would be.
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To maximize , we have to reorder the robots'
id's. This is made possible through re-parametriza-
tion of  (or, alternatively, ), or homogeneous ro-
bots. This amounts to shifting the id's, in either direc-
tion, until  is maximum. If  denotes
the amount of shift, then  will go to .
The optimal  is, therefore, the solution to the
optimization problem

(47)

where  =

(48)

(49)

(50)

(51)

It turns out that we don't have to examine every
point on the curve with every other point. The contri-
bution of every pair of two neighbouring robots 
and  to the cost function is sufficient. This, com-
bined with the fact that a discrete version of

 will be used in practice, leads to the follow-
ing maximization problem:

 = 

(52)

(53)

(54)

(55)

If the lines are parallel, the  would be zero and
 is not defined any more. To get around this

problem and make the computations more efficient,
at the same time, rather than the above maximization
problem, we consider the minimization problem

, where

(56)

Denote the optimal  by . At the beginning of
motion, all the robots simultaneously calculate the
same optimal  and then proceed. For inhomogene-
ous robots (where the positions of individual robots
in the formation matters), the re-parametrization
process is implemented by actually moving the ro-
bots around the perimeter of the curve, i.e., they have
to follow the tangent vectors to the points on the con-
tour. The applied force is 

(57)

which can be approximated by 

(58)

Using this method, the formation will eventually
drift away, especially when there are high curvature
points on the curve. A better and simpler way is to
shift the desired locations  around the contour,
i.e., to lead  to  or , depending on direc-
tion.
It should be noted that the forgoing scheme works
only when the direction of increase of the parameter

 is the same for both  and . If this is not the
case, then no amount of shifting can prevent the
evolving curve from intersecting itself. Throughout
this section, we implicitly assumed that the robots
know the Fourier descriptors for the initial configu-
ration, i.e.,  are known to each robot .
Furthermore, we also made the assumption that ro-
bot  is located at . Based on these assump-
tions,  needs only to calculate the optimal  and
proceed to

. (59)

In practice, when a motion command is issued, infor-
mation about the initial positions of robots is not
available. This means that the robots have to go
through a configuration identification phase first to
compute . We assume that the ordering
and positions of robots are such that  is a simple
curve.
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Even when  has been computed, a re-parametriza-
tion is required to place  at . The formula

 gives an approximation to
the amount of shift but this is not a reliable measure.
The correct amount of shift  is that which places 
at .
The id shifting process is initiated by . When 
reaches the closest point to , the process
stops and the robots start moving. After reaching
their goals, the position of , i.e. , would be .
For this process to succeed, we should make an as-
sumption. Define the neighbourhood of a point 
as 

(60)

where  means the distance between
 and  travelled over the curve , which is

equal to . We assume that for a given neigh-
bourhood size , for every ,

 implies that  and
. This means that no two points of the

curve come closer than  to each other. Here, we set
. In the discrete case,  is equal to the

maximum allowable distance between two robots. If
, where  is the actual posi-

tion of  on the curve, then  will directly move to
 which is not desirable in some anomalous situ-

ations. We should also assume that the uncertainty in
the position of a robot does not exceed :

.

8. Step-Wise Deformation

Even though the procedure outlined above deter-
mines the best possible configuration for evolving

 into , it does not guarantee that there would be
no intersections at all. The reason lies in the fact that
the energy difference between  into  may be
very substantial. Very much like the discussion in
section 6, we can define the internal energy of a curve

 by

(61)

and the energy difference between  and  by

(62)

We argue that the greater the value of , the
less the value of  (i.e., greater the
amount of torsion) would be. Thus, a safer method
for deformation would be to successively evolve 
into curves with lesser energy (to go downhill) until
the energy reaches a minimum and then climb up the
energy hill corresponding to .

Fortunately, Fourier descriptors directly provide us
with an automatic method for doing this. Suppose 
is described by  and let  denote the
curve reconstructed using the first  descriptors, i.e.

(63)

It is our conjecture that . We propose that,
instead of directly deforming  into , we follow
the path

(64)

Now, rename this path as

(65)

If the above conjecture is true, then for every
, with ,

we will have that 

, and that (66)

(67)

or, alternatively, 

(68)

This is intuitively appealing and simulations support
it. It should be noted that it is not at all required to go
through all the nodes in the path; many of the inter-
mediate deformations are actually redundant. Sup-
pose that  ( ) has evolved into . If

 (69)

(the amount of torsion does not increase), then there
is no point in evolving  into ; in such a
case,  can directly proceed to . In general,
the next curve to deform into is  such that

(70)

It should be noted that due to discretization, it may
even be the case that 

(71)

 incorporates any desired rotation or scaling but
no translation. Translation is decoupled from curve
evolution and can be done at any time before, dur-
ing, or after the curve has been evolved.

9. Behaviour-based Motion Algorithm

In this section, we propose a simple behaviour-based
algorithm for guiding robots to their destinations.

 and  are assumed
to be described by  and , respectively. Al-
though the robots can follow a straight line towards
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, a better way is to adopt ideas from curve evolu-
tion literature where evolution is conducted in a dif-
ferent coordinate system. When a curve is evolving,
the motion of points attached to the boundary of the
curve can be characterized by motion along the tan-
gent and normal vectors to the curve at that point:

(72)

where  and  denote speeds along  (normal)
and  (tangent), respectively. Motion along  does
not change the geometry of the curve; it only affects a
re-parametrization of the curve. By defining time-
changing rules for  and , the curve can be
evolved. In most of the curve evolution literature,
motion along  is ignored. A proper  is sought to
suit the particular problem. Intuitively, the best case
is when the desired goal  is situated on the nor-
mal  to the curve at . In this case,  can direct-
ly proceed to . If this is not the case, a proper
strategy would be to let  drive along  at 
until  falls on . In this mode (mode 1), the
equations of motion are

; ; (73)

where the tangent is defined by

(74)

and

= (75)

The robots remain in this mode until  where
is the angle between  and  and is

computed as

(76)

When  is approximately zero, the robot can pro-
ceed along  using the following equation (making
up mode 2):

; ; (77)

where the normal is defined by

(78)

and

= (79)

The robot remains in this mode until
, at which time the robot stops.

In the two previous cases, we assumed that the robot
can continue along  without interruption. In some
cases, though, the robot's path along  may be ob-
structed by  or , depending on direction of
motion. Referring to figure 7, when  closer than

 to the adjacent robot, it should conduct a roll-
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figure 7: Behaviour-based motion strategy
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ing motion past it. In this mode (mode 3), the equa-
tions of motion would be:

(80)

where

; (81)

(82)

(83)

Figure 8 shows the hybrid automaton governing mode
changes.
We can use sigmoidal functions to combine the indi-
vidual behaviours in each mode [12]. This will lead
to a single differential equation, producing continu-
ous dynamics and smooth trajectories. It also helps
us ignore the problem of when a behaviour should
be deactivated and another one started. At each par-
ticular instant, two adjacent behaviours can be active
at the same time but to different degrees. It should be
noted that this will not affect the global behaviour of
the robots at all because the switching operation acts
locally, in a small neighbourhood of equilibrium
points. Thus, the equations for the motion described
in this section will be:

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

where

(93)

(94)

(95)

(96)

and

(97)

In the sigmoidal function,  is the switching point
and  determines the slope of switching (how fast

the switching should occur).  stands for station
keeping behaviour and the snake force is defined as:

(98)

 indicates how close the robot should be to the
goal before it should attempt to stop. As mentioned
in section 6, when snake forces are present, the re-
sulting curve is a smooth approximation to the de-
sired curve, so that some of the robots may never
reach their exact desired locations due to elastic con-
straints (this actually corresponds to a local mini-
mum). To know when this situation has occurred,
each robot uses a fixed window of size . If the ro-
bot’s position has not changed considerably (quanti-
fied by ) during this time frame, then for all prac-
tical purposes, the robot can assume that it is stuck in
a local minimum and there is no sense in continuing.
The parameters , , ,  and  can be se-
lected empirically.

10.Virtual System Architecture

Now that we have considered individual aspects, we
can discuss the architecture of the whole system. In
[2], the concept of a virtual structure is proposed for
robot formations. This framework can also be ex-
tended to our situation. The structure we use is basi-
cally very similar to the ones discussed by [2][7]. In
fact, it is a combination of the two with the addition
of local interactions between individuals which is
missing in the said references. Figure 9 shows our
system architecture.  represents the ´th Serafina
equipped with the local control system .  is the
actuator signal and  is the sensor readings (or out-
puts) of .  represents the formation controller
which can be a larger AUV/ROV or a designated
Serafina. The formation controller implements a dis-
crete event system (an automaton)  which deter-
mines the mode of operation of the whole formation.
The formation controller broadcasts the formation
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variable  to designated robots along with mode of
operation. The formation variable consists of shape
parameters (Fourier descriptors ), geo-
metric parameters ( , , , , and ), and
physical parameters (elasticity, damping, attraction
and repulsion strengths). Three basic modes of oper-
ation are particularly important: (1) Enclose of or ad-
aptation to an environmental level set through snake
operation and some environmental potential, (2) Cal-
culating the signature for an environmental feature
(i.e., calculate the shape variables), and (3) Forming a
particular shape using shape and geometrical varia-
bles. Depending on the mode of operation, all or a set
of designated robots send relevant information (per-
formance variable ) to the controlling robot. It con-
sists of the calculated current descriptors

, the centre of mass , the scale , the
orientation , and the current positions . Using
this feedback, formation performance can be meas-
ured by the master controller. Local interactions be-
tween the robots consist of those required for imple-
menting repulsion and cohesion (snake) forces. The
virtual structure's motion is characterized by the area
centre of gravity  and the rotation  around
this point. Figure 10 shows a detailed view of the lo-
cal controller implemented in each robot (the one for

 is slightly different).  maintains communica-

tion channels with , , , , and the
formation controller. The three operation modes are
triggered by ADAPT, REGISTER, and RE-PARAMETRIZE/
EVOLVE commands. The diagram uses notation in-
spired by state-charts, Petri nets, and communicating
systems.

11.Simulation Results

To demonstrate the described strategy, we present a
simple example. The arrangement in figure 11 (1),
composed of  robots, is required to evolve
into the final curve  shown in figure 11 (20) de-
scribed by .  was descretized using

 points. Here, ,  is equal to the
centre of gravity of the initial formation  (no
translation),  (rotation with respect to ),

 (scaling). The evolved curve is depicted su-
perimposed on the non-rotated, non-scaled final
curve. Figure 11 (1) depicts the initial re-parametri-
zation phase, after which the robot’s positions are
those determined by the calculated descriptors

. The amount of initial re-parametriza-
tion is . Figure 11 (2) through 11 (20) show
the sequence of deformations of . Solid circles in-
dicate the current positions of the robots and hollow
circles those of desired points (the next curve in se-
quence). The amount of  is shown in brackets. At
step three, we have
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This means that  can directly deform into 
(but not ). Similarly, we have 

(100)

so that  should evolve into . It should be noted
that  is not the best method of deciding when
to jump; as is evident from the simulation, many oth-
er jumps can also be taken without causing any trou-
bles. Maybe, a measure of closeness of the two curves
can play a role here.

12.Conclusion and Future Research

In this paper, we showed that a formation control
problem can be solved using a coupled geometrical-
physical approach: canonical invariant representa-
tions for describing shapes and elastic models for en-
forcing natural physical behaviours. In the particular
case considered in this paper (i.e., contour forma-
tions), Fourier descriptors together with snake mod-
els are natural choices. Desired points on the target
curve can be synthesized using a bunch of Fourier
descriptors which can describe reasonably complex
shapes in a robust way. There are a number of issues
which have to be addressed in future research, in-
cluding extension to the case of open contours, start-
ing from an arbitrary formation, extension to 3-D, ex-
tension to flat surfaces with defined boundaries, split
and join operation, interaction of multiple forma-
tions using a spatial map, and finally, implemention
on Serafinas.
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