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In this paper, we explore the possibility of applying con-
cepts from general curve evolution theory to the decentral-
ized control of contour-shaped formations of autonomous
mobile underwater vehicles commissioned with the task of
adapting to certain level sets of environmental fields creat-
ed by diffusion or similar processes. The robots are as-
sumed to be capable of measuring local gradients on their
own. Controllers for individual robots are derived based on
the general continuous evolution equation. Basic results
on formation stability and convergence are also provided.
Simulation results support the effectiveness of this ap-
proach.

 

1. Introduction

 

The spreading out of environmental chemical or bio-
logical elements, such as nutrients, smell, spores, sa-
linity,etc., released from a source (origin), within a
given space ( ) in a medium (such as ocean or at-
mosphere) can often be successfully modelled by the

 

diffusion equation

 

 [7]

(1)

where ,  is the concentration,
 and  are diffusion rates. Solution of this equa-

tion gives the distribution at each point in time. Ex-
ternal forces such as wind or ocean waves distort the
distribution away from the ideal case. Rather than
using the direct approach, simplified models are of-
ten used. One way of modelling diffusion in a natu-
ral environment is to first consider the shape of the
chemical 

 

patch

 

 instantaneously released from a
source point , and then assuming that,
as the patch undergoes diffusion, distribution shape
around the centre of gravity would remain un-
changed (similarity hypothesis). It is common prac-
tice to assume a Gaussian distribution for the shape.

Thus, the average concentration distribution can be
expressed as

(2)

where  is the mass (total number of chemical parti-
cles), and  and  denote standard deviations in
respective directions and can, in general, be time-de-
pendent.
In case the chemicals are released from several sourc-
es, the concentrations would add up, i.e.

(3)

 defines a 

 

scalar field

 

. A 

 

level set

 

 (or 

 

isocline

 

) of a
single-source field is given by the implicit equation

, which defines the loci of points satisfy-
ing the equation 

(4)

(an ellipse with major axis given by 

(5)

and similarly for the minor axis). Now, lets assume
that the plume has reached its 

 

steady state

 

, i.e.,
 for . It is often desirable to

have a collection of autonomous vehicles adapt
themselves to a certain level set. For instance, using
such an approach, an oil leakage can be contained or
a contaminated area can be decontaminated. Adap-
tation means that, as , we should have

(6)

where

 and (7)
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2 Section: Active contour models

(8)

express separation constraints between  robots ,
, whose states are denoted by .

If all the parameters of the model were known and
the model described the phenomenon reasonably ac-
curately, then the problem would be trivial. In most
cases, the only information available is the local gra-
dient of the field, , acquired through on-
board sensors. Thus, no a priori assumptions con-
cerning the mathematical model of diffusion are
needed (except for illustration or proving results)
and the method de-
scribed in this paper can
cope with considerably
more complex situations.
Figure 1 shows a typical
scenario where a group of
robots have adapted to a
boundary. 
When a collection of ro-
bots are to carry out a co-
operative task, coordina-
tion issues are among the most important questions
which have to be addressed. One of these is, natural-
ly enough, 

 

formation control

 

 because the robots have
to satisfy some geometric relationships in the form
constraints. Most of the literature on robot forma-
tions (e.g., see [8], [9], [10]) deal with rigid ones
where the robots have to maintain a rigid structure at
all times. In some cases, rigidity is compromised to
fulfill a particular task [15]. Recently, large forma-
tions have begun to be addressed in the literature
[13]. Although not addressed extensively, deforma-
ble formations are very useful in many applications
where the shape of the formation is dictated by the
environment. Nevertheless, the formation, as a
whole, has to balance (or, regularize, technically
speaking) the external forces with some internal forc-
es which strive to maintain the integrity of the forma-
tion.
A great deal of research has been done on climbing
gradient fields using a formation. [14] discusses the
behaviour of a swarm of robots interacting with mul-
ti-modal environments. [12] address converging to
the source of an estimated plume. [4] use a small for-
mation to localize the source of a diffusion process.
The work reported in [11] is very similar to the ap-
proach we use, where it is suggested that the prob-
lem of enclosing or adapting to level sets of environ-
mental plumes can be approached using established
ideas in machine vision (edge detection). Our work is
different from theirs in that we use general curve ev-
olution rather than the classic energy-based method.
Furthermore, we study formations of real robots
rather than markers on an imaginary contour. 
The small autonomous underwater research vehicles
of the type Serafina (also developed at The Australian

National University) are employed as the physical
realization for all considerations below. Although of
compact size (overall length: 40cm) the submersibles
come with the full range of inertia sensors and short
range communication channels. The basic compo-
nents are depicted in figure 2, which is a photograph-
ic overlay of the outer hull and the major internal
components. The propulsion system allows for a five
degrees of freedom control and all axes are (almost)
equally fast, while the top-speed is about 1m/s. To
learn more about the technical specfications of Serafi-
na please refer to [16]. 

One control architecture for Serafinas is composed of
two concurrent decoupled control modules. The
depth control module keeps the robot at a certain
specified distance from the bottom of the ocean by is-
suing appropriate torques for the three vertical
thrusters. This way, the robots can be modelled as
unicycles moving on a plane surface. In this paper,
we are primarily concerned with the motion of ro-
bots, , where  denotes the position in a glo-
bal reference frame. We use a simple reactive control-
ler which provides appropriate torques   and

 for the two horizontal side thrusters, given a
desired velocity:

, (9)

In this paper, we will not discuss the form of .

2. Active contour models

Since the level sets of environmental fields are closed
curves, it makes sense to apply ideas from machine
vision and image processing where a deformable
model (an active contour in the planar case) is adapt-
ed to a boundary by deforming an initial curve. The
deformation process tries to minimize a functional
which attains its minimum at the boundary. There
are two different approaches to deforming a plane
contour 
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: , (10)

immersed in a field : . In the classical en-
ergy-based method (the so-called snake model), the en-
ergy functional is given by

(11)

where , , , , and  are positive functions (usu-
ally taken to be constants) and  is a desired target
concentration. The first term (tension) controls tan-
gential stretching, the second term (rigidity) opposes
bending, while the third one attracts the curve to the
desired level set. In machine vision applications,

 is used for the third term because bound-
aries are defined as points where the field changes
drastically but, in this paper, the boundary of interest
can be any desired concentration. The first two terms
comprise the internal energy of the elastic band and
their role is to make the curve as smooth as possible.
The fourth term is the kinetic energy and the last one
represents damping (energy dissipation). Using vari-
ational calculus, it is found that the curve should
evolve according to the Euler-Lagrange partial differ-
ential equation

(12)

In the case of adaptation to sharp boundaries, the
right hand side would be . It is ar-
gued in [2] that setting  achieves smoothness
as well, because the first regularization term alone pe-
nalizes curve length. Also, the kinetic and damping
energy terms are not inherent to the snake model but
are rather add-on's to any physical realization of ac-
tive contours, so that we will drop them in the fol-
lowing. Moreover, 

can be generalized by using 
( ), where : 
( : ) is a strictly decreasing function, i.e,

 as  (
as ). Thus, the energy would
simply be

(13)

It is further proven in [2] that minimizing  is
the same as minimizing

(14)

which happens to be the problem of computing a ge-
odesic in a Riemannian space. Now,

(15)

is the Euclidian arc-length, so that 

, where  (16)

is the length of . It can be proven [5] that the flow 

(17)

moves the curve in the direction of the gradient of
, i.e., reduces the length as fast as possible and is

called the Euclidian curve shortening flow, where 
is the Euclidian curvature and  is the unit in-
ward normal to the curve at . Computing the
Euler-Lagrange of  gives the gradient descent
direction of deforming an initial curve  to-
wards a local minimum of . It is proven in [2]
that the evolution equation is given by

(18)

(19)

(20)

where . Usually, a constant force is also
added to this equation to enable the curve to adapt to
non-convex boundaries or just push it forward in the
absence of gradient information. Thus,

(21)

The evolution of the curve can also be formulated us-
ing a level-set approach (corresponding to an Euleri-
an flow in contrast with the previously discussed La-
grangian flow). Let  be implicitly represented by the
equation , where : . This representa-
tion is intrinsic (parameter-free). It is shown in [3]
that  evolves according to

(22)

where

(23)
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Equation (18) (and its equivalent equation (22)) con-
stitute the geodesic active contour model.  is called
the stopping function because it stops the curve from
evolving past the boundary. For example, in machine
vision, a popular choice is

(24)

It is proven in [6] that any closed plane Jordan curve
undergoing deformation by  will be-
come convex and will eventually shrink to a point,
both in finite time. Similar results can be generalized
to the general flow  (  an odd func-
tion). Moreover, the length  of  evolves ac-
cording to 

(25)

In the case of an open-ended contour, the end result
is a straight line, if both the end-points are kept fixed.
In [2], existence, stability and uniqueness results for
solutions of the geodesic active contour model are
given. Finally, if  is a simple
Jordan curve of class  and  on , then
for a sufficiently large , 

 as (26)

in the Hausdorf distance. (see [2] for proof). One last
point has to be mentioned. The most general form of
the evolution equation for a curve is

(27)

where 

(28)

is the tangent to the curve at . It can be proven
in [6] that the tangential component (velocity) 
only changes the parametrization of the curve and
has no effect on the geometric shape. Nevertheless,
in our case (as in direct Lagrangian numerical imple-
mentation of curve evolution), a non-zero  is used
to maintain desired separation between the robots.

3. Active contour formations

A collection of robots linked together in a chain can
be made to behave like an active contour. Suppose 
robots , , with positions denoted
by , are located on a virtual contour
at time .  can communicate with (sense) its left
and right neighbors,  and , respectively. The
control rule for each robot is an approximation of
equation (27) and is

(29)

where

(30)

(31)

(32)

The curvature is approximated as

(33)

where

(34)

To derive these formulas, we have used the follow-
ing approximations in equations (19) and (20):

(35)

where  is the length of the approximated contour
given by 

. (36)

In the case of a closed contour, the boundary condi-
tions are  and . For an open contour,
the control rules for the two end-point robots are

(37)
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Thus the two end robots move freely on the gradient
field. Two good candidates for  are

(38)

for a desired level set . We have

(39)

and

(40)

As can be seen in the formulas for  and ,
 has dropped out altogether. To maintain an

equal distance  between the robots, we pro-
posed a non-zero tangential velocity in [1]:

(41)

where .

This, of course, does not constrain the total length of
the contour, so that robots can get arbitrarily close to
each other. In some applications, it might be desira-
ble to constrain the length to some bounded interval

, which is equivalent to requiring that
robots should not get closer together than

 and similarly for .
In the case of closed contours, this can be achieved by
weighting the original normal velocity, i.e., replacing

 with

, 

(42)

In the case of open contours, a fixed distance  be-
tween robots can be maintained using the formula

(43)

and using the following control laws for the end ro-
bots:

(44)

(45)

It should be noted that in real applications, global co-
ordinates are usually hard to determine, if at all pos-
sible. This, specifically, applies to underwater appli-
cations. Suppose all the calculations are done with
respect to the local body-fixed coordinates  on .
Suppose that  can determine the relative position
of its neighbors, denoted by  and .
Then, the motion of  with respect to  can be ex-
pressed as

(46)

where the symbols with tildes are the same as given
previously but with replacements ,

 and  in the formulas for , 
and . Since orientation does not matter, these are
the only modifications necessary to make the calcula-
tions local.

 

4. Formation stability 

 

and convergence

 

In this section, we address some theoretical issues
concerning the stability of the contour formation.
One way of approaching this is to choose, as a meas-
ure of stability, the distance between the formation
and the ideal imaginary continuous curve. We base
the analysis on ideas from [4], where a set of 

 

virtual
robots

 

 guide a certain formation towards a local min-
imum of a certain field. In our case, an appropriate
choice for the 

 

web

 

 of 

 

virtual leaders

 

 is the idealised
curve : , parametrized by . Imagine
that the robots in the formation are initially distribut-
ed along this curve with equal distance from each
other measured on the curve (with respect to the
metric defined by ). Let  denote the length of 
which should remain fixed during evolution. Thus,
the virtual leader for  would be  where 

(47)

Since the formation is an approximation of the ideal
continuous curve, and supposing that  is large
enough, the distance between two robots can be ap-
proximated by .  evolves accord-
ing to the rule

(48)
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where  parametrizes the path,  denotes
the speed of traversal and  gives the path
traversed by  and is given by

(49)

for , and

(50)

for , where  is zero for , is 1 for
, and is -1 for . The tangential components

stretch the curve to maintain a fixed length for the
curve. The robots have to remain on the curve, while
maintaining the desired separation distance. The
larger the number of robots, the better the formation
approximates the continuous curve, meaning the ap-
proach is scalable. For simplicity, let's suppose that
the robots are fully actuated and ignore the inertial
effects so that the dynamics of  is given by

. To derive the control input for , we de-
fine the potentials , , and

.  is an attractive potential trying to
keep  on  and is a function of the distance of 
to the closest point on , denoted . 
and  are attractive-repulsive potentials which
try to maintain a distance  between each pair of
robots. Now, the control rule is given by

(51)

Define , and let

, 

, and

(52)

Note that

(53)

A Lyapunov function candidate for the system is

(54)

Lemma 1: Let  be a Lyapunov function for every
 and . Let  and  de-

note bounds on  (and ) and . Also, let  be the
bound on the kinetic energy of the robots (the maximum
velocity they can move with). Thus the set

 is bounded. Let  be
a nominal desired speed of traversal. Let  be given by

,

(55)

and  at , where :  has compact
support in  and

. Moreover,

(56)

and

(57)

In the above,  for , and  for
. Then the system is stable and asymptotically con-

verges to  and

 (58)
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Proof: Straightforward application of theorem 4.1 in
[4]. Define

(59)

where  is 1 for  and zero otherwise.
We have

(60)

where  is a function of , approaching zero as
. If the conditions in lemma 1 are satisfied, the

integral will be minimized.
We also have the following which is similar to lemma
6.3 in [4].
Proposition 1: Suppose that each vehicle can measure the
true local gradient . Assume that the con-
trol rule, , and  are given by equations (51), (54), and
(55), respectively. Suppose  is sufficiently large (  is
smaller than some specified bound). Let the dynamics of
the virtual contour be given by 

 where (61)

(62)

(63)

(64)

Here, , , and
. Then the formation will asymp-

totically converge to the desired level set defined by
 and described by the curve .

Proof: Equation (62) is the steepest descent direction
of evolution for the energy functional

(65)

where  denotes the nearest  for which  and
. But this means that

(66)

will also be minimized. But the distance between 
and  will be less than some desired value which
means that  would also be minimized. Conver-

gence to  is guaranteed because  will stop
the curve from evolving beyond it. ❑
Remark 1: Equation (29) for  is equivalent to
(51) if we set .
Remark 2: Lemma 1 also gives conditions on the maxi-
mum velocity of a desired moving (non-static) level set.
We just need to replace  with .
Remark 3: It is very important to realize that lemma 1 is
meaningful only if the kinetic energy (or the feasible paths)
of a vehicle are somehow constrained.

5. Simulation results

We present some simulation runs exhibiting the fun-
damental behaviour of the contour formations. The
field is composed of five Gaussian overlapping
plumes whose centres are shown with red circles.
The gradient at each point is thus given by

(67)

The sequence of snapshots in figure 4 shows the suc-
cessful adaptation of a closed formation initially en-
closing the desired target level set  (the
maximum of  is approximately 20). The se-
quence in figure 5 shows a similar scenario but with
an open contour, where the length is kept fixed

. Adaptation will similarly be successful if
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the formations are initialized within the area en-
closed by the target level-set.

The next two simulations where the formations start
from not so nice initial configurations. Figure 6a
shows the trace of a closed formation starting from
an initial configuration which overlaps with the level
set. Figure 6b shows the evolution of an open forma-
tion in a similar situation. Note the compaction of the
curve before deciding to enclose one of the peaks in
the field.

The rest of the simulations serve to demonstrate
some of the problematic cases. In figure 7a, the closed
formation is initially placed to one side of the level
set. In this case, the contour crumbles unto itself. In
figure 7b, the gradient is almost co-linear with the
tangent to the curve causing the contour to shrink
considerably before attempting to adapt. In figure 7c,
if the coefficient of tangential velocity is not chosen
properly, one end of the curve (closer to the level set)
may cross itself. Finally, figure 7d shows a situation
where robot  is faulty and cannot move. In this
case, parts of the curve may come unacceptably close
and eventually cross each other if the  is not big
enough or if the initial curvature at the faulty robot
site is high. These and other anomalous cases arise
due partly to the fact that the robot formation can not
imitate the continuous virtual contour quite faithful-
ly, unless  is very large and the formation moves
too slowly, (for instance, the computation of the cur-
vature at each point does not go beyond the immedi-
ate neighbours) and partly due to the complex inter-

actions with the environment. A major research issue
would be to identify all of these problem situations
and postulate conditions on initial conditions,
number of robots, curve length, field size, field
shape,etc. In the simulations, we have put ,

, , and . Naturally,
proper values for these coefficients can play a major
role in well-behavedness of the formation. A careful
analysis, if possible, can be beneficial. In our simula-
tions, we didn't have to fine-tune them.

6. Conclusion and further research

We showed that decentralized control laws can be
derived, based on the general theory of curve evolu-
tion in an external field, for autonomous vehicles
forming open contours. Some theoretical issues were
also discussed. Simulation results were given for the
ideal case as well as for anomalous ones. Among the
issues which are going to be addressed in forthcom-
ing papers are hybrid automata modelling for syn-
chronous and asynchronous motion, formation ini-
tialization, obstacle avoidance and topological
designs for gradient estimation by groups of robots,
as well as implementation on real hardware. Also of
interest is the conditions on the shape and size of a
field which will guarantee adaptation without jeop-
ardizing the integrity of the formation. Finally, in-
cluding noise in measurements and managing faulty
vehicles are interesting directions for future research.

(a)

(b)

figure 6: Arbitrary initializations with overlap
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figure 7: Problematic cases
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