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In this paper, we introduce the concept of a contour-shaped
formation of autonomous underwater vehicles for the pur-
pose of adaptation to isoclines of environmental fields cre-
ated as a result of diffusion of chemicals. General
curvature-driven curve evolution theory is used as a con-
tinuum model for such formations. A collection of robots
can act as markers on an imaginary curve moving accord-
ing to the local curvature and the external environmental
force projected unto the normal to the curve. Basic control
rules are given, and various strategies for implementation
of the scheme are explored. Algorithms are discussed for
formation initialization, and simulation runs are present-
ed to demonstrate the behaviour of these types of forma-
tions.

 

1. Introduction

 

Using a group of mobile robots to localize, track, con-
verge to, or enclose the source of a 

 

plume

 

 released
into an environment has gained much attention in
robotics communities. Often, the robots have to form
special shapes dictated by the application. In this pa-
per, we look at curve-like groups which are required
to seek and remain on a particular contour around
the plume source. A 

 

formation

 

  of a set of  mobile
robots , with states , can be defined as a
collection of geometric relationships constraining the
aggregate state . A 

 

formation function

 

 
can be designed to capture these constraints. In a 

 

rig-
id

 

 formation, we only have strict equalities and
:  (a scalar function) can be defined in

such a way that a perfect formation would satisfy
. The only degrees of freedom are those

of translation and rotation. With 

 

deformable

 

 (non-rig-
id) formations, we have much more degrees of free-
dom. In this case, the vector-valued : 

(  is the number of constraints) would constitute a
number of inequalities as well and a vector inequali-
ty such as  may describe an infinite
number of acceptable formations (even when trans-
lation and rotation have been abstracted away). 

 

For-
mation control

 

 should keep the aggregate state on the

 

formation manifold

 

. Formations are also required to
fulfil some sort of 

 

mission

 

. We can represent a mission
by a suitable mission function : ,
where  is a set of parameters. Mission is accom-
plished if .

Rigid formations have been the topic of great many
research papers (see, e.g., [3, 7, 8]), while deformable
ones have not been addressed sufficiently (see [5, 9]
for an example of research on deformable forma-
tions). In our particular application, a contour-
shaped array of robots should adapt itself to a con-
tour , corresponding to a desired isocline (or lev-
el sets)  of a distribution. The contour formation
should satisfy constraints related to 

 

bending

 

 and

 

stretching

 

 of the band, so that  is composed of a
set of inequalities such as ,

, , where it is assumed that the
indexes define a total ordering between robots.  de-
notes curvature. Furthermore,  is defined as

, (1)

where  denotes the closest point on the lev-
el set to point . As , it is desired that

, while  at all times. The approach
we take in this paper is inspired by similar applica-
tions of deformable models in machine vision.

Environmental isoclines can be defined as contours
of equal concentration created as a result of 

 

diffusion

 

of some chemical released from a source. In its sim-
plest form, diffusion follows Fick's law, which states
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that the flux of matter is a function of the gradient of
the concentration of matter, i.e.,

(2)

and the movement of particles of matter follows

(3)

where  denotes the concentration at , 
and  are coefficients of diffusion. A simpler and
more realistic method for modelling plumes is to use
the 

 

similarity hypothesis

 

 ([2]), which states that, as the
patch is spread, the shape of the particle distribution
is preserved. Thus, the mean concentration distribu-
tion would be

(4)

where  is the rate of release of particles, and
 and  are, respectively, the standard devia-

tions in the respective directions, and implicitly de-
scribe environmental conditions. the function  de-
termines the shape of the distribution, and  is a
constant depending on . Usually, a Gaussian distri-
bution for  is assumed. In this paper, we will deal
with slow diffusion processes, i.e., it is assumed that
adaptation occurs much faster than the spread of the
plume. Alternatively, it may be assumed that the rate
of release is bigger than the rate of change of the
standard deviations. If this is not the case, then, after
reaching steady state, the plume will form a uniform
patch. For the particular case of 

 

salinity

 

 or 

 

tempera-
ture

 

, which we are primarily interested in, this condi-
tion is satisfied. Furthermore, we assume that the
flow is almost 

 

laminar

 

, so that we can ignore the effect
of 

 

turbulence

 

. Finally, external forces (wind, ocean
flow) always affect the spatial distribution. They
may counteract or augment diffusion. As will be

shown later, the only information the robots need to
ascent or descend the distribution towards the de-
sired level set, is the local gradients of concentration.
The minimal requirement is that this gradient be rea-
sonably well-defined and smooth. Thus, the geomet-
ric form of the plume is irrelevant, as long as its scale
is commensurate with the size of the formation. See
[2] for more detailed information on plumes and en-
vironmental diffusion.

The control scheme to be presented in this paper is
intended to be implemented on small submarines
called Serafina, Developed at our laboratory. Figure 1
shows this vehicle from different views. We confine
ourselves to motion on the plane. As shown in figure
2, 

 

roll and pitch controllers

 

 try to neutralize the effect of
disturbances on roll and pitch angles. The 

 

heave con-
troller

 

 keeps the robot at a certain desired depth ,
relative to the ocean bottom. Motion of the subma-
rine on the -  plane is thus similar to a 

 

non-holo-
nomic

 

 vehicle because swaying is not directly con-
trollable. The 

 

yaw and surge controller

 

 guides the robot
on the plane to desired locations. See [10] for details
on dynamic modelling and decoupled control of ma-
rine vehicles.
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figure 1: Serafina underwater vehicle
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2. Deformable contour formations

Before discussing actual formations, let us study the
case of an idealized smooth curve which can be re-
garded as a continuum model for contour formations.
For more details and arguments, see [4] and referenc-
es there in. Let :  define a moving
curve on the plane, parametrized by arc-length .
Thus  gives the position in

 of points constituting the curve. The general
curve evolution theory is based on the fact that the
flow

(5)

moves the curve in the direction of the gradient of
, i.e., reduces the length as fast as possi-

ble and is called the Euclidian curve shortening flow,
where

(6)

is the Euclidian curvature and

(7)

is the unit inward normal to the curve at . Adap-
tation of  to a desired level set  of the diffused
plume  can be formulated as the minimization
of the functional

(8)

where :  is a strictly decreasing
function, i.e,  as .  is related to

 through the definition . 
serves to stop the curve from evolving past the de-
sired iso-cline and a good choice for it is

(9)

The gradient descent of  gives the flow

(10)

where

(11)

In the discrete implementation of the contour evolu-
tion, where the curve is composed of a finite number
of nodes (as is the case in a robotic contour forma-
tion), moving towards the normal to the curve will
cause the nodes to come very close to each other. On
the other hand, in an open contour, it would be desir-
able to keep the length of the curve fixed, which is
not enforced by normal motion alone. To remedy
these problems, some sort of attractive-repulsive
forces are required. It can be proved that if these forc-

es act towards the tangent to the curve, the geometry
of the curve will not be affected. It will only change
the parametrization in the continuum model. This
will lead to a more general form of curve evolution

(12)

where

(13)

is the tangent to the curve at . The non-zero
tangential component  can be designed according to
desired behaviour. For a closed curve, we use the
boundary condition . For open
curves, the end points are kept fixed in time

.

Based on the above continuum model for curve mo-
tion under the influence of an external force, we now
proceed to define control laws for the motion of ro-
bots . Let us set

(14)

where

(15)

The normal, and tangent vectors, and the curvature
are defined, respectively, by
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figure 3: Contour formation
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 = 
(16)

To maintain a rigid inter-robot distance ,
where  is a desired contour length, we define

(17)

where

(18)

The end robots, in an open contour formation, have
to be treated differently because the curvature is not
defined at these two positions. Moreover, the normal
direction is ill-defined. In [2], we let the two end ro-
bots move according to the following rules:

(19)

These work fine if the smaller angle between
 and , and similarly, the an-

gle between  and 
, are sufficiently large. If this is not the case,

then the direction of the gradient may be almost co-
linear with the local tangent to the curve, so that the
motion of either or both of the end robots can make
the contour to shrink or stretch. To remedy this prob-
lem, we propose a different strategy, at the expense
of some extra information. We define the normal at
either of the end points as the mean of the normal at
the adjacent robot and the unit vector perpendicular
to the vector joining two adjacent robots:

(20)

(21)

(22)

(23)

Note that this may hinder the formation from adapt-
ing but it will ensure its integrity. See figure 3 for a
visual demonstration of vectors. This particular
choice may be problematic with very large curva-
tures. On the other hand, it may help the end robots
escape stagnation when  becomes al-
most co-linear with  (and similar for ).

3. Implementation 
and hybrid modelling

When implementing the control scheme described in
the previous section, several possibilities can be con-
sidered. We have assumed that each robot can meas-
ure the gradient at its position so that the only exter-
nal information needed by each robot are the
positions of its two neighboring robots with respect
to its body-fixed local coordinate system. This infor-
mation can be gained through active sensing, explicit
communication, or, more realistically, a combination
of both. There is an inevitable delay associated with
this process. Figure 4.a shows a simple model for
communication channels between adjacent robots. In
a fully synchronized scheme, the robot formation im-
plements a discrete version of equation (14): at each
discrete instant , all the robots start synchronizing
on shared information, while keeping station, before
moving to the next location given by

(24)

using the linear control rule

(25)

where  ensures that  is reached in . In prac-
tice, synchronization takes some time, so that there
will be intervals of inaction in between successive
movements.  is selected based on the characteris-
tics of the differential equation ([9]) and should, in
general, be small enough. Figure 4.b shows the timed
automaton for the synchronization phase. In a fully
asynchronous scheme, we have

(26)

where  denotes the curve evolution equation, and
 and  denote, respectively, the times (meas-

ured from ) when the positions  and  were
updated. If , , and  are
within reasonable bounds, equation (26) would be
nearly as good as equation (24). The bounds should
be determined through analysis and, in general, de-
pend on the speed of individual robots. If the bounds
can become relatively large, we can extrapolate the
motions of  and  using the laws
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(27)

where  and  denote the estimated velocities
at the time when  and  were last updated. It
is desirable to bound

(28)

where ,  is the position of  at
time  using the rule

(29)

Moreover,

(30)

(31)

Qualitatively speaking,  and  try to keep ,
 and  within certain bounds. Intuitively

enough, a reasonable way of bounding 
is to bound ,  and

 thus preventing a suitably defined
energy function to fall below a certain threshold.
This denotes an event-triggered synchronisation, as
an alternative to traditional time-triggered synchro-
nisation. As long as certain bounds are satisfied, the
linear interpolation scheme is a good approximation.
In practice, even if the above bounds are satisfied, de-
viation of  and  from their estimated
values at times  and  necessitate synchro-
nization after some time. To decide when this should
happen, we can test for the violation of the bounds

(32)

where  is a small positive constant. Figure 4.b
shows the hybrid automaton modelling this 

 

semi-
asynchronous

 

 scheme.

 

4. Formation initialization

 

The robots are initially scattered throughout a region
with no definite structure (randomly distributed).
Assume that a circular neighborhood ,
with radius , is defined around each robot . This
neighborhood can designate the limited communica-
tion range of the robots.  if and only if

. A connection graph  can be con-

structed in which nodes correspond to robots and an
edge  is present between two nodes  and  if

 and . We will assume
that the initial graph is connected. Before adaptation
is attempted, the robots have to self-organize into a
formation suitable the problem at hand, i.e., a rough-
ly straight line in the case of open contours and a cir-
cle in the case of closed ones. In [6], algorithms are
proposed for these two cases. Here, we will adapt
their method to the case of real robots with dimen-
sions (instead of points). We also slightly modify and
reformulate the original versions. First, note that it is
assumed that each robot is equipped with a compass
so that it can measure its orientation. Suppose a local
coordinate system  is attached to the robots whose

 axis is aligned with direction of the north. All the
positions are measured in this local coordinates, with
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figure 4: a) Communication channels. b) Automaton
for semi-synchronous motion.
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 located at the origin. Moreover, assume that each
robot has the means to measure the distances and
bearings to the robots in its neighborhood. No two
robots are allowed to come closer that a distance 
to each other. Also, let  denote the desired inter-ro-
bot distance between a pair of robots on the final line
formation. Implementing the proposed algorithm,
the final line would spread along the  axis of a glo-
bal coordinate system  whose  axis is aligned
with the north. The position of the  axis along 
direction would be the mean of the  coordinates of
all the robots, if measured with respect to this global
system.

We define three virtual sensors , ,  and  as
follows.  indicates if the path of the robot is ob-
structed in the easterly direction. The other sensors
serve the same purpose for west, north, and south di-
rections, respectively. More formally:

Definition 1:  for  if there exists a
, , such that

, (33)

(34)

and

(35)

where .  otherwise.  is an angle de-
termining the degree of open-ness in a direction. To
avoid collisions,  should be bigger that . The
other sensors are similarly defined. For , we define

. Also, , and
. We denote  by , where

.

Now, let each robot move according to the following
control rule:

(36)

(37)

(38)
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figure 5: Notations for formation initialization
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figure 6: Automaton for formation initialization.  is
composed of two automatons, run in parallel, for
motions in  and  directions. States are named ac-
cording to the states of sensors. Also,
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where

(39)

is the  coordinate of the centre of gravity of robots
in ,

(40)

 denotes the boolean negation of the boolean varia-
ble ,  is a binary random variable, 

, ,  and 
being the positions of the robots on the left and right
of .  is 1 if  and 0 otherwise.  and

 are nominal constant speeds in the respective
(east-west, south-north) directions.  monotoni-
cally goes to zero as .  is a monotonic
function which increases as . Likewise, 
is a monotonically decreasing function as . The
intuition behind the use of  and  is that as the ro-
bot approaches the line, its horizontal velocity
should increase while its vertical speed should de-
crease. This cooperative behaviour will help the fast-
er convergence of the robots to the line.

At each instant of time, the error of the formation is
defined in [6] as

(41)

Note that the line formation strategy can also be used
to form lines rotated with respect to . For initializa-
tion of closed contour formations, the robots should
form a circle with an appropriate radius (say )
around the centroid of the initial assembly. In this pa-
per, as we are focusing on open contours, we will not
elaborate on realistic control laws for this case. As-
suming that robots are point particles and collisions
are not an issue, the following control rule will
achieve the circular formation:

(42)

where  and  denote, respectively, nominal radial
and tangential speeds,

(43)

(  being the initial time), 

, 

. (44)

 and  denote the indexes of counter-clock-
wise and clock-wise immediate neighbors of , re-
spectively. The formation error can now be defined
by

(45)

(46)

Finally, an efficiency measure is introduced in [6] as

(47)

where

(48)

is the total distance travelled by . After the forma-
tion of the line, robots have to re-label themselves to
define a proper parametrization for the contour. Fig-
ure 6 shows the hybrid automaton for the line forma-
tion process and subsequent re-labelling.

5. Simulation results

First, we present a simulation run for formation ini-
tialization. It should be noted that the success of this
process depends on the parameters involved: the ra-
dius of the neighborhood , the desired final dis-
tance between robots in the final formation , the
minimum allowable distance between two robots ,

yNr qi( ) t( ) 1
n Nr qi( )( )
-------------------------- yi t( )

j 1=

n Nr qi( )( )

∑=

Y
Nr qi( )

sV sV+φ yNr qi( ) t( ) yi t( ),( )
sV -φ yNr qi( ) t( ) yi t( ),( )+

=

u
u ω t( ) dr =

qi t( ) qi
R t( )– dl qi t( ) qi

L t( )–= qi
L t( ) qi

R t( )

Ri φ u1 u2,( ) u1 u2< vx

vy

η u( )
u 0→ γ x u( )

u 0→ γ y u( )
u 0→

γ x γ y

qe
L t( ) qei

L t( )
i 0=

N 1–

∑=

 =
xei

t( )

yei
t( )⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

q t( )
N 2i 1–+

2
-------------------------L

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

qi t( )–+=

ϒ

rC

q̇i t( ) ẋi t( )
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the nominal speeds  and , the rates of change of
 and , and the random variable .  should be

large enough to ensure connectivity and conver-
gence. In our experiments, it was found that 
should be sufficiently larger that . Setting 
gives good results.  continuously goes from 
to 1, as  goes from  to 0. Likewise, 
continuously goes from 1 to , as 
goes from  to 0. To prevent the robot motion from
jittering when close to the line, the rate of change of

 should be small. To make this happen, it is
enough to retain the last value of the random varia-
ble for some time, i.e., the robot will move according
to the value of , determined at time instant , for
the duration of . Figure 7 shows the se-
quence of motions of an initial random aggregate.

Figure 8 shows the sequence of snapshots of the ad-
aptation of a group of robots to a level set of an imag-
inary field. The red circles show the sites from which
the plume has been released.

Figure 9.a shows the adaptation of a group of robots
which had previously initialized into a line oriented
with respect to the major axis of the field. Figure 9.b
shows the adaptation when the initial line overlaps
with the field. This latter case is the most problemat-
ic. The final shape depends on the shape of the plume
and is very difficult to determine beforehand.

6. Conclusions and future research

We showed that a formation shaped as a contour can
adapt itself to areas of equal concentration produced
when some chemical is diffused into an environ-
ment. The proposed scheme is scalable and there is no
need for a global reference frame. The measurements
and decision making are with respect to local coordi-
nate systems fixed on each robot. These coordinates
are aligned with the tangent to the curve and the nor-
mal to it. We also discussed synchronous and semi-
synchronous implementation methods, as well as al-
gorithms for the initialization of a random aggregate
into suitable shapes. There are still some issues
which have to be addressed. We assumed that each
robot can measure the local gradient at its position. A
more realistic approach would be to design contour
formations of rigid formations, instead of single ve-
hicles, which can collectively estimate the gradient. It
was assumed that the environment is obstacle-free
which is rarely the case. Finally, the motion of the for-
mation is confined to a plane parallel to the ocean
bottom. Studying motion constrained to surfaces as
well as in three dimensions are among possible ex-
tensions to the work presented here.
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figure 9: Iso-cline adaptation. (a) Adapting from a line
oriented with respect to the major axis of the field.
Note that it takes much longer for the right most part
to adapt. (b) Adapting from a line initially overlap-
ping the field. As can be seen from the traces, inter-
robot distances are preserved at all times.

a) b)


