
Proceedings of the TAROS (Towards Autonomous Robotic Systems)
intl. conference, September 12-14, 2005, London

Towards Optimal TDMA Scheduling
for Robotic Swarm Communication

Felix Schill

�

, Uwe R. Zimmer

�

, and Jochen Trumpf

��

�

Research School of Information Sciences and Engineering
Autonomous Underwater Robotics Research Group

The Australian National University, ACT 0200, Australia

�

National ICT Australia Ltd., Locked Bag 8001, Canberra ACT 2601, Australia

1

{felix.schill|jochen.trumpf}@anu.edu.au | uwe.zimmer@ieee.org

Initial results are presented on a new TDMA scheduling
problem, which tries to minimise the duration of total in-
formation exchange throughout a multi-hop wireless net-
work. A new network communication mode

omnicast

 is
introduced, which implements many-to-many communi-
cation, and is similar to a concurrent multiple broadcast
from every node to every other node. It can be shown that
the lower bound for this problem for arbitrary connected
networks with nodes is time steps, a general upper
bound is , and if the graph modelling
the network is Hamiltonian. In fact, more recent results
(see acknowledgements) show that a better upper bound is

. Simulation results suggest that a tight upper
bound is . Furthermore, it turns out that allowing colli-
sions improves the results, meaning that collision-free so-
lutions are in general suboptimal. A TDMA scheme which
optimizes omnicast, will minimise the time span from
where new information is released into the network, until
every node received it. It also automatically solves the
broadcast and convergecast problem for arbitrary senders,
and provides consistent response times and bandwidth for
realtime operation. The main application lies in robotic
swarm communication, where global parameters and en-
vironmental information have to be exchanged and updat-
ed with minimal and bounded latency. It will be shown
how such a TDMA scheme can be applied to a swarm of
autonomous miniature submersibles.

Keywords:

Ad hoc networks, TDMA, omnicast,
swarm communication

1. Introduction

In recent years, swarm robotics and sensor networks
have attracted great new interest in ad hoc network-
ing, and exposed a variety of theoretical problems,
which did not appear in classical networks. These
new problems occur on all levels, from channel ac-
cess, to estimating the network topology, and opti-
mizing information flow. In networks of autono-
mous, identical nodes, such as robotic swarms and
sensor networks, one can observe a paradigm shift:
In classical computer networks, it is often assumed
that point-to-point communication is the dominating
case, and messages are sent from one sender to one
dedicated receiver. Furthermore, it is also often as-
sumed that transmissions are sporadic, which fa-
vours contention-based access schemes like ALOHA
and CSMA.
However, in decentralised swarms or sensor net-
works, this is no longer the case. Especially in robot-
ic swarms, control parameters have to be exchanged
continuously, with short latency and highest possible

1.

National ICT Australia is funded through the Australian
Government's Backing Australia's Ability initiative, in
part through the Australian Research Council

n n
n2 n–() 2n 3–()

2n 2–
n

figure 1: Serafina, an autonomous submersible

2 Section: Network model

update rate. Also, in a network of identical nodes, it
is counterintuitive to specify a dedicated receiver –
messages are rather sent to either the direct neigh-
bourhood (local gossip), or to everyone (broadcast).
Since the underlying communication channel is in
most cases a broadcast-oriented MIMO channel –
this is true for basically all radio networks and bus-
oriented networks – it is reasonable to exploit that
feature.
There has been a lot of work in recent years on broad-
casting in ad hoc radio networks. In [6], the authors
present a deterministic broadcasting algorithm with
running time for a network with
nodes and diameter . Other deterministic algo-
rithms are presented in [3]. A randomised protocol is
presented in [1], which achieves broadcast with
probability in . The au-
thors point out that there exists an exponential gap
between randomised and deterministic protocols. It
is interesting to note that the use of randomised pro-
tocols does not avoid collisions, which might be an
advantage. [4] proves the existence of a schedule for
broadcast with , and specifies a ran-
domised protocol.
In the context of underwater robotics, communica-
tion channels are usually of very short range, and
also quite slow compared to in-air communication.
The autonomous miniature submersible

Serafina

 (fig-
ure 1) will be equipped with a longwave radio trans-
ceiver, which has a maximum transfer rate of
8192bit/sec, and an optical communication module
with 57kbit/sec transfer rate [8]. The communication
range under water is only a few meters. The goal is to
achieve an algorithm for a robust, decentralised ad
hoc network, which minimises latency, maximises
usable bandwidth, and allows to exchange control
parameters throughout the swarm in minimal time.
Especially in swarms of robots, communication is
not sporadic, but rather a continuous flow of messag-
es and updates, to distribute control parameters, en-
vironmental information, and to fuse sensor data. In
addition, for all realtime applications, it is crucial to
know upper bounds on response time and latency.
Time Division Multiple Access (TDMA) protocols
have several advantages here over contention-based
protocols, which are commonly used in computer
networks. One big advantage is that they do not re-
quire collision detection, which allows the use of
simpler hardware (radio modules or optical trans-
ceivers). Another advantage is that they maximise
the usage of the available bandwidth. The TDMA
scheduling problem has a lot of similarities with the
broadcast problem. The papers [5] and [7] present
distributed TDMA algorithms, and the latter gives
insight into the performance of these algorithms
with regard to broadcast, convergecast and local gos-
sip, under the assumption that nodes are arranged in
a grid. This is an interesting first step towards opti-

mization of information flow, but does not provide a
theoretical foundation for such an analysis. Obvious-
ly any given TDMA schedule has a great impact on
the information flow, and the speed of information
dissemination in the network. Unfortunately the un-
derlying principles are not well understood.

There are basically four modes of communication:
one-to-one, one-to-many, many-to-one, and many-
to-many. While the first three modes are often and
commonly referred to in network theory (unicast,
broadcast/multicast, and convergecast), interest in
the last mode many-to-many seems to be rather new
in the context of communication networks. A very
important problem especially in swarm control and
formation control is the exchange of certain parame-
ters throughout the entire network. This might be
control commands from the operator, which would
correspond to a broadcast, but it is more importantly
the exchange of parameters from every member of
the swarm to all the other members. This includes,
but is not limited to, finding a consensus on the direc-
tion and speed of the swarm, i.e. to find the slowest
member in order not to loose anyone, estimating the
swarm density, the center, size or shape of the
swarm, or to calculate gradients and extrema on ex-
ternal sensory data such as temperature, brightness,
pressure, salinity, just to name a few examples. This
requires efficient communication from everyone to
everyone. As a continuation of the communication
modes ‘one-to-one’ (unicast), ‘one-to-many’ (multi-
cast), ‘one-to-everyone’ (broadcast), and ‘everyone-
to-one’ (convergecast), we would like to propose the
name ‘omnicast’ for ‘everyone-to-everyone’'. A for-
mal definition follows below.

Omnicast

 can be applied to TDMA scheduling algo-
rithms. A schedule which solves

omnicast

, can be
used as a TDMA schedule, that optimizes overall in-
formation flow throughout the network. Further-
more, this approach allows to specify bounds on the
time it takes to distribute information throughout the
network, which is important in real-time and control
applications.

2. Network model

A common way to model communication networks
is using a graph. Let be a graph describ-
ing a network with nodes. Vertices
represent communication nodes, containing a trans-
mitter, a receiver and a processing unit. A directed
edge ; ; expresses
that node can (in principle) send data to node .
For completeness, this includes reflective edges

, , even though a node is not as-
sumed to be able to send and receive at the same
time. A node receives a message if and only if
there exists exactly one node , so that is

O n n Dloglog() n
D

1 ε– O D n ε⁄log+() nlog()

O D log5n+()

G V E,()=
n V= v V∈

e E V V×⊂∈ e u v,()= u v, V∈
u v

u u,() E∈ u∀ V∈

v V∈
u V∈ u

Section: The omnicast problem 3

transmitting and . If there exists more than
one node with these properties, we say a collision oc-
curs at . In case of a collision, node can not de-
code any of the transmitted messages, and can in
general not detect the collision, meaning it can not
distinguish between a collision and noise. Data in-
tegrity can still be guaranteed, since can use high-
er-level protocols, such as cyclic redundancy check,
to verify messages. Noise and distorted transmis-
sions will then be ignored.

More specifically, it is furthermore assumed for sim-
plicity, that the network graph is symmetrical and
connected. It is also assumed that transmissions take
place in fixed time slots, and that nodes can synchro-
nise and keep synchronisation with each other – this
can be done by monitoring other node's transmis-
sions, and synchronise an internal timer to their mes-
sages. To simplify the theoretical analysis, we as-
sume that time is discrete, with one time step as the
basic unit, and that the actual transmission of data
happens instantaneously within one time step. Prac-
tically, this means that time slots have to be long
enough to accommodate all occurring message types
at the given bandwidth. To implement omnicast, a
message has to have space for one datum for each
node - this means that the message size depends on
the size of the network, and that a bound for the max-
imum number of nodes has to be known. For some
applications, the message size can be constant. Com-
puting a maximum of a distributed measurement re-
quires only the exchange of a single datum in every
message. After convergence of an implicit omnicast,
every node is guaranteed to have the global maxi-
mum value.

3. The omnicast problem

The definition of omnicast has three parts: the start
state, the communication phase, and the end state.

Definition 1: (Omnicast)

Let be a graph
describing a communication network with
nodes. In the start state, every node has a set

 of information tokens, which contains exactly one
unique token of information. During the communica-
tion phase, a node updates its set

, if and only if it successfully receives a
message from in time step (refer to the network
model for message exchange), and oth-
erwise. The end state is reached, when all nodes have
the full set with all tokens, for all

.

Having defined the task to solve, we can now define
an optimality problem:

Definition 2:

(

The Optimal Omnicast Problem

) Find
a schedule , for ,
with being the set of sending nodes in time step ,

such that solves the omnicast on the network graph ,
and is minimal.

It is important to understand, that even though the
outcome of an omnicast is equivalent to multiple
concurrent broadcasts initiated by each individual
node, or also a convergecast to some node followed
by a broadcast, the process is quite different. The ma-
jor difference is that all nodes need to be able to accu-
mulate information, and bundle it in one message.
Also, an omnicast can be performed in less time steps
than the two alternatives, as will be shown later.

4. Analysis

Let us first find a lower and upper bound for the op-
timal omnicast. A lower bound shall be defined as a
lower bound on the worst-case number of time steps
for the best algorithm, working on arbitrary connect-
ed graphs. It is not the minimal number of time steps
it will at least take for all graphs – but for each algo-
rithm, there is a worst case for which it can not be
solved faster than the lower bound. A lower bound is
usually specified as a function on properties of the
graph, such as the number of nodes , the diameter

, etc. This definition is in accordance with the liter-
ature. Formally, let

 (1)

be the class of all algorithms (or functions) , that
solve the omnicast problem and that map from a sub-
class of all connected graphs to the class of all
schedules . Let denote the number of time
steps of that schedule. Then, a function :
is called

lower bound

, if it fulfils the following condi-
tion:

(2)

The

absolute lower bound

 : is the minimum
number of time steps any algorithm needs for any
given graph:

(3)

An

upper bound

 : is an upper bound for the
worst case number of time steps for the best algo-
rithm, and is defined likewise with this condition

(4)

Obviously, since omnicast solves broadcast, it can
not be faster than an optimal broadcast. That means
that a lower bound for broadcast is also always a
lower bound for omnicast. [2]

Theorem 1:

Let be a connected graph with
nodes. is a lower bound for omnicast on the
network modelled by .

Proof:

Consider the class of all fully connected
graphs. To solve omnicast in this class, each node has
to send a message with its token of information at
least once. If more than one node sends per time step,

u v,() E∈

v v

v

G V E,()=
n V=

u V∈
Iu t0()

Bu

v Iv t 1+() =
Iv t() Iw t()∪()

w V∈ t
Iv t 1+() Iv t()=

t f

Iu t f() Bv v V∈{ }=
u V∈

SG T1 … Tt, ,()= Ti V⊂ i 1 … t, ,=
Ti i

SG G
t

n
D

A A: G S→ A solves omnicast{ }=

A

G
S A G()

t L G �→

A∀ A: G∃ G: A G() L G()≥∈∈
La G �→

A∀ A: G∀ G: A G() La G()≥∈∈

U G �→

A∃ A: G∀ G: A G() U G()≤∈∈

G n 1>
L G() n=

G

4 Section: Solutions for special classes of graphs

no node can receive any information, therefore only
exactly one node can send per time step. In this case,
after time steps every node transmitted exactly
once, the omnicast is solved, and every node has eve-
ry token of information. It follows that a lower
bound for omnicast in general is . ❑

Theorem 2: Let be a connected graph with diameter
. Then is an absolute lower bound for

omnicast on the network modelled by .

Proof: Consider the shortest path in with maxi-
mum length . Obviously, information has to be
exchanged from the start to the end of this path. A
particular token of information can only proceed by
one node per time step on that path. The token from
the start node of the path hence needs at least
time step to reach the end node. Omnicast can not be
solved faster than this on any graph. ❑

Theorem 3: Let be a connected graph with nodes.
Then is an upper bound for omnicast
on the network modelled by .

Proof: It is sufficient to show existence of an algo-
rithm that solves omnicast in all cases in not more
than time steps. Consider an optimal sched-
ule, which can be found by exhaustive search. As-
sume each node’s information state is described by
an -dimensional bit vector, which describes which
tokens of information it owns. In the beginning, each
node's vector has exactly one bit set, its own bit. In
the end state, every node's vector has every bit set.
This means that altogether bits have to be set
by communicating tokens. In every time step, at least
one bit will be set in the whole network, otherwise
this time step would be redundant, and the schedule
would not be optimal. It follows that an optimal
schedule has a maximum of time steps,
which is therefore an upper bound for omnicast. ❑

A better upper bound can be given for arbitrary con-
nected graphs, as John Hallam pointed out (see ac-
knowledgements):

Theorem 4: Every undirected finite connected graph can
be disassembled, one node at a time, without disconnec-
tion.

Proof: A graph either contains cycles, or it does not.
In the former case, remove an edge from a cycle. This
does not disconnect the graph. Repeat until the
graph does not contain any cycles. A graph without
cycles is a tree. Removing a leaf from a tree does not
disconnect it. Repeat removing leafs from the tree,
until it is empty. The order of nodes being removed
from the tree can also be applied to the original
graph, disassembling it without disconnection. ❑

Theorem 5: Let be a connected graph with nodes.
Then is an upper bound for omnicast
on the network modelled by .

Proof: For induction, assume there is a solution for
omnicast with steps, for any connected
graph with nodes. Take a graph of size ,
and remove a node without disconnection. The re-
sulting graph has an omnicast solution with at
most . Add two steps to this to obtain a solu-
tion for :

step 1: the removed node sends.
step : apply the solution for .
step : any node connected to the

removed node sends.
This is an omnicast solution of length .
Base: The trivial graph of size 1 requires 0 steps. ❑

5. Solutions for special
classes of graphs

It has already been shown in theorem 1, that an opti-
mal solution for fully connected graphs requires ex-
actly time steps. It is obvious that any complete
enumeration of all nodes in corresponds to an op-
timal solution.
It is possible to extend this to all graphs of radius one.
In this case, there exists a node (the center), which is
connected to all other nodes. It is always possible to
construct a schedule with time steps, by simply
letting all nodes except the center node send one af-
ter another, and let the center send as the last node.
The center will have accumulated all information by
then, and a single transmission from the center
reaches all other nodes, completing the task. These
solutions are optimal among the solutions without
collisions, but are not necessarily optimal among all
solutions. This can be illustrated by a counter exam-
ple.
Imagine a graph with radius 1, for
which it is possible to partition its nodes into three
disjunct, non-empty subsets , such that

 and the subgraphs and
 are fully connected, and ,

n

L G() V n= =

G
DG La G() DG=

G

G
DG

DG

G n
U G() n2 n–()=

G

n2 n–()

I
n

n2 n–()

n2 n–()

G n
U G() 2n 2–()=

G

2 k 1–() 2–
k 1– G k

G'
2k 4–

G

2…2k 3– G'
2k 2–

2k 2–

n
G

n

6

4

3

1

52 7

1

2

3 4

1

2

5

figure 2: A butterfly graph with 7 nodes
(numbers next to nodes are transmission time steps)

G V E,()=

Vl Vr C, , V⊂
C 1= Vl C∪ E,()
Vr C∪ E,() u∃¬ Vl∈

Section: Simulation results 5

. This class of graphs shall be called
butterfly graphs (Figure 2 shows an example with 7
nodes). It is now possible to independently and con-
currently solve omnicast on the subgraphs
and . Since and are fully connected,
this takes time steps. The center
node in will have experienced a collision in every
time step, and will therefore not have received any
information. If we make sure that the last node send-
ing in and respectively may send exclusively,
only one extra time step is required. In this scenario,
the center node will have received all information
from and from , which it now can transmit to
all other nodes in . The overall number of time
steps required for networks modelled by butterfly
graphs is therefore . This
shows that omnicast can be solved in less than
time steps for butterfly graphs, if and

. On the other hand, if collisions are not per-
mitted, no two nodes can send at the same time, or
else the center node would experience a collision.
Since every node has to send at least once, a collision
free solution for omnicast requires at least time
steps in butterfly graphs. It follows that avoiding col-
lisions yields suboptimal solutions.

Another class of graphs is symmetric graphs of di-
ameter , that is, graphs which are a single line
(figure 3). We can construct a solution with exactly
time steps for all graphs of this class. Assume an un-
directed graph with

, and

. (5)

A solution for a schedule is of the following form:
, with

(6)

This applies to graphs with an either odd or even
number of nodes. Nevertheless, only for graphs with
an even number of nodes, this solution is collision
free. For graphs with an odd number of nodes, the
center node will experience a collision in time step

, and it should be noted that in this case
there is no collision-free solution with only time
steps. It can be shown that this solution is optimal for
line graphs. The proof exploits the fact that any
schedule with time steps (which would be the
absolute lower bound) can not solve the problem for
line graphs.

6. Simulation results

For analysing optimal schedules on small graphs, an
exhaustive search on all schedules was implement-
ed. The runtime of the search algorithm is exponen-
tial, so it is only possible to analyse small graphs up
to 7 nodes. The search algorithm itself is a hybrid be-
tween breadth-first and depth-first. It starts as
breadth-first, until the available memory is exhaust-
ed, and continues depth-first with limited search
depth.

The search algorithm iterates on the time steps of the
schedule. For every time step, all possible sets of
senders are evaluated. For each possible set of send-
ers, the new information state vector for the network
is calculated, and added to the input search space for
the next time step. This continues until the end state
vector with all bits set is found. In case of the depth
first search, the maximum search depth is limited. In
the first stage, an optimal collision-free solution is
calculated. This converges much faster than a full
search, since the number of possible sets of senders is
heavily restricted. The length of this solution minus
one forms the depth limit for the second stage. In the
second stage, a full search is performed. The algo-
rithm starts with a breadth-first search, which runs
slightly faster. When it hits the memory limit, it then
switches to depth-first search, based on the last out-
put set of the breadth first search. Once a solution is
found, it finishes calculation for the current time
step, to collect all optimal solutions. During the
depth first search, the search depth is being reduced
to the number of time steps of the best solution found
so far.

The simulation program allows to choose between a
search on collision-free solutions only, and on all so-
lutions. The set of sets of senders is precalculated,
based on a collision analysis on the input graph. Fur-
thermore, a greedy version of the algorithm has been
implemented. Here, in every time step, only states
with the smallest Hamming norm (the number of
bits set) of their information state vector are kept for
the next time step.

v Vr∈ u v,() E∈

Vl E,()
Vr E,() Vl Vr

max Vl Vr,{ }
C

Vl Vr

Vl Vr

V

max Vl Vr,{ } 2+ n≤

1 32 4 5 6

1 12, 6 3, 5 2, 64

1 32 4 5 76

1 2, 72, 7 13, 6 4, 65

figure 3: Optimal schedules for line graphs.
(numbers next to nodes are transmission time steps)

n
Vl 1>

Vr 1>

n

n 1–
n

G V E,()=

V v1 … vn, ,{ }=

E v1 v2,() … vn 1– vn,(), ,{ }=

SG

S T1 … Tn, ,()=

Ti

Vi Vn i– 1+,{ } i 1… n 2⁄ 1–=;

V n 2⁄{ } i n 2⁄=;

V n 2⁄ 1+{ } i n 2⁄ 1+=;

V n 2⁄{ } i n 2⁄ 2+=;

Vi 1– Vn i– 2+,{ } i n 2⁄ 3…n+=;⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

n 2⁄ 3+
n

n 1–

6 Section: Conclusions

The described search algorithm is exponential in the
number of nodes, and in the number of time steps,
which is an unknown function of the number of
nodes. Runtimes are therefore extremely long. A full
search takes approximately 5 seconds for 5 nodes,
3 minutes for 6 nodes, and 3 days for 7 nodes. The ex-
act times are not relevant for the sake of this article
and so the numbers here are only to indicate the or-
der of magnitude for the run-times to be expected on
a single-CPU instalment at clock rates of about
2GHz. Collision-free solutions can be found much
faster – approximately 10-15 seconds for 7 and 8
nodes, and 1-2 hours for 9 nodes. Obviously the run
time heavily depends on the number of time steps,
and therefore also on the complexity of the network.
However, the greedy algorithm allows analyses of
networks with up to 25 nodes in reasonable time.
The greedy algorithm delivers only sub-optimal so-
lutions. Interestingly, it usually performs better, if the
search space is restricted to collision-free schedules.
The most surprising result is, that in most cases, the
optimal solution does contain collisions. For a butter-
fly network with 7 nodes, shown in figure 2, a colli-
sion-free solution requires 7 time steps, the optimal
solution with 2 collisions only requires 5 time steps.
This can be easily explained by the fact, that even
though one node suffered a collision, several other
nodes did not, and could still successfully decode the
message. The information gain outweighs the disad-
vantage of a collision.
Furthermore, we could not find any graph up to now,
for which the optimal omnicast would require more
than time steps.
The 20-node graph with diameter 4 shown in figure 4
has a solution of omnicast with only 15 time steps.

This solution has been found with the greedy algo-
rithm, searching only collision-free schedules. There
is most likely a better solution, which is also expected
to contain collisions. Unfortunately, there is no feasi-
ble way to find optimal solutions for a graph of this
size. Even though this solution is suboptimal, it fur-
ther strengthens the hypothesis, that is a tight up-
per bound for omnicast. The solution also gives valu-
able hints how to construct a local heuristic
algorithm – it can be observed, that very often neigh-
boured nodes send consecutively. This has the ad-
vantage, that a sending node can further distribute
information, which it just received. Or, to put it an-
other way, every token of information moves further
every time step without delay. A similar argument
applies to Hamiltonian graphs, where it has been
shown that omnicast can be solved in linear time.
This seems to be a useful starting point for a distrib-
uted local TDMA scheduling algorithm. If existing
TDMA scheduling algorithms can be modified in a
way, so that they try to assign successive time slots to
neighboured nodes, they should show improved
performance with regard to the omnicast problem,
and also the speed of information dissemination.

7. Conclusions

A new communication mode omnicast has been intro-
duced, as a logical continuation of the unicast, broad-
cast, multicast and convergecast terminology. A theo-
retical absolute lower bound for omnicast on a
network with nodes and diameter is time
steps. A lower bound is time steps, and an upper
bound is steps for arbitrary connected net-
works. Recent results could improve the upper
bound to steps. For networks which have a
Hamiltonian connectivity graph, an upper bound is
given by . Constructive optimal solutions for
various classes of graphs are presented. Further-
more, it is demonstrated for the class of butterfly
graphs, that allowing collisions can significantly re-
duce the number of required time steps. Simulation
results suggest that for most graphs, all optimal solu-
tions contain collisions. It was not possible yet to find
a graph for which an optimal solution for omnicast
would require more than time steps – this suggests
that might be a tight upper bound for omnicast.
The results for the omnicast problem can be applied
to TDMA scheduling, in order to achieve informa-
tion dissemination in minimal time. Since in general
there will be a whole set of equally optimal omnicast
solutions, further second level optimization can be
done to maximise the number of concurrent senders,
improve local throughput, or minimise energy. Even
though it is not feasible to try to calculate an optimal
solution for omnicast, the upper and lower bounds
provide a frame against which suboptimal solutions
can be evaluated.

1,9,13

1,4

1,4

1

2,8,12

2

2,15

2,6,11,15

3,14

3

3,8,10

4

5

6,14

7

7,12

8

9,13

10

11

figure 4: A solution with only 15 time steps can be
found for this 20-node network.

n

n

n D D 1–
n

n2 n–

2n 2–

2n 3–

n
n

Section: Future work 7

8. Future work

The most important next step is to apply the results
of the global analysis of optimal omnicast to distrib-
uted, local TDMA scheduling algorithms. The analy-
sis of Hamiltonian graphs, and the presented opti-
mal solutions for special classes of graphs have in
common, that a sender in time step has a neigh-
bour which has been sending in time step . This
seems to be a reasonable heuristic, that can be incor-
porated in existing TDMA protocols. The perform-
ance analysis of TDMA schedules with regard to om-
nicast will be subject to following publications.
Further analysis and extensive simulation has to be
done to obtain criteria by which it can be locally de-
cided if accepting a collision is beneficial. The final
goal is a distributed local algorithm for TDMA
scheduling, which comes as close as possible to the
performance of globally optimal omnicast. Since this
algorithm will then be implemented on miniaturised
longwave radio transceivers and optical communi-
cation modules for miniature submersibles, compu-
tational complexity and memory requirements must
be within tight limits. Finally, the dynamical stability
of the protocol has to be ensured, to enable swarm
communication among mobile robots moving in
three-dimensional space. An open theoretical prob-
lem is the missing proof for the hypothesis, that a
tight upper bound is steps.

Acknowledgements
We would like to thank John Hallam, University of
Southern Denmark, for providing the proof of the
linear upper bound with steps (theorem 5).

References
[1] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai.

On the time-complexity of broadcast in multi-hop radio
networks: an exponential gap between determinism and
randomization. J. Computer and System Sciences,
45(1):104–126, 1992.

[2] Danilo Bruschi and Massimiliano Del Pinto. Lower
Bounds for the Broadcast Problem in Mobile Radio Net-
works. Distributed Computing, 10(3):129–135, 1997.

[3] Bogdan S. Chlebus, Leszek Gasieniec, Anna Östlin,
and John Michael Robson. Deterministic Radio Broad-
casting. In ICALP, pages 717–728, 2000.

[4] Iris Gaber and Yishay Mansour. Centralized Broadcast
in Multihop Radio Networks. Journal of Algorithms,
46(1):1–20, 2003.

[5] Ted Herman and Sébastien Tixeuil. A Distributed
TDMA Slot Assignment Algorithm for Wireless Sensor
Networks. In ALGOSENSORS, pages 45–58, 2004.

[6] Dariusz R. Kowalski and Andrzej Pelc. Faster Deter-
ministic Broadcasting in Ad Hoc Radio Networks. SIAM
Journal Discrete Mathematics, 18:332–346, 2004.

[7] Sandeep S. Kulkarni and Umamaheswaran Arumu-
gam. TDMA Service for Sensor Networks. In ICDCS
Workshops, pages 604–609, 2004.

[8] Felix Schill, Uwe R. Zimmer, and Jochen Trumpf. Vis-
ible spectrum optical communication and distance sensing
for underwater applications. In Proc. ACRA 2004.

n
n 1–

n

2n 2–

