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Dynamical systems modelling for physical, real-world
systems is a recurring task in many robotics applications.
It is often preferable or even required that the creation/ad-
aptation of such a model is performed on-line with the ac-
tual stream of sensor samples and also under realistic real-
time constraints. This article suggests a new method for
real-time modelling of complex dynamical systems, over-
coming the ‘curse’ of dimensionality which applies to any
complete modelling system known up to now and which
prevented any real-time implementation in even moder-
ately complex environments.
The key concept of the proposed method (RTDSM) is to de-
fine a trade-off between the dimensionality of the underly-
ing delay-vector space and local delay-vector statistics
(called ‘histories’). Combined with locally limited adapta-
tions in each step and the exclusive employment of each
sensor sample once and in sampling order, the method rec-
ommends itself for on-line and real-time applications,
while keeping the modelling power of off-line analysis
methods. Restrictions apply, and so the understanding of
the trade-off introduced by this method is crucial for its
successful application. Simulations and a comparison to
an established related method are given.

 

1. Motivation

 

Modelling real-world complex dynamical systems is
the theoretical foundation which most physical ro-
botics systems are based upon. This task poses a
challenge in itself already. Performing this modelling
process on-line and under real-time constraints pro-
vides yet another level of demanding requirements –
but it is also requested by all robotics applications,
where continuous and on-line adaptation is essen-
tial. Reviewing the dynamical systems modelling lit-
erature in this field (see e.g. [5][6] for good starting
points) leaves little hope that the complexity of this
task can be tackled under real-time constraints at all.
So the question what exactly gives us enough theo-
retical perspectives in order to address this problem,
needs to be answered first.

Considering standard dynamical systems modelling
methods, two aspects seem to eliminate any chance
to find a real-time version. First the usually very high
dimensions of the delay-vector spaces [6] imply very
high computational costs, usually exploding expo-
nentially with the dimensions. Second and even
more striking: since this high dimensional space can
only be populated very sparsely with real-world
measurements, a large number of measurements
need to be employed in order to achieve a reasonable
statistical basis for generalization and modelling.
Traditionally these measurements are taken off-line
(or generated by a simulator) and are presented to
the modelling system in a recurring and randomly
drawn fashion. Obviously any of those constraints
will prevent an on-line implementation.
If the delay-vector space is on the other hand inten-
tionally restricted to a relatively small dimensionali-
ty – with the idea to enable the chance for a real-time
implementation – risks of losing differentiation capa-
bilities are increased. If the delay-vector space is re-
duced enough the computational complexity might
become reasonable for on-line adaptation and at the
same time the relative density of samples in this
space is significantly increased without employing
more samples.
While the system might now become real-time capa-
ble, it might also no longer capture essential proper-
ties of the original system. The suggestion for a solu-
tion of this dilemma is the central contribution of this
article. Instead of increasing the delay-vector space
until all aspects of the original system are covered,
another way of detecting possible losses of differenti-
ation in a local fashion based on locally stored addi-
tional temporal and sequential attributes is pro-
posed. The classical method would be to extend the
delay-vector space globally and hence increasing the
complexity and sparseness for the whole system,
even if this dimensionality is only required in one
single spot of the whole dynamical system. This arti-
cle proposes to overcome this problem by a slight ex-
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tension of the system locally, only at this spot – while
the rest of the system is untouched.

The key to a useful on-line and real-time capable dy-
namical systems modelling method lies thus in the
right balance between global delay-vector space em-
bedding which covers the majority of ambiguities on
the one hand and spontaneous local extensions to the
system in order to overcome the small number of re-
maining ambiguities on the other hand. Furthermore
a usable model will need to allow for pure or mostly
local adaptations in order to keep computational
costs constant in each up-date step, i.e. (mostly) inde-
pendent of the overall size of the system.

The proposed real-time modelling method RTDSM is
introduced below followed by a brief reasoning why
all equations determining the system can be imple-
mented on-line and under real-time constraints. Fi-
nally the capabilities of the actual implementation
with respect to a well-known dynamical system are
demonstrated and compared to a classical off-line
modelling system (of the same ‘size’, but with a
much higher computational complexity).

 

2. Dynamical systems model: RTDSM

 

The 

 

original dynamical system

 

  is assumed to
produce discrete samples

; (1)

at discrete time steps  and a real-time-stamp
. The following relation between time step in-

dices and time-stamps follows if the continuity as-
sumption for the real-time-stamps holds

; (2)

This system  is assumed not to be accessible in real-
world production modes, but only in simulations.

The sequence of 

 

observations

 

  with their
real-time-stamps  is the only accessible informa-
tion about the dynamical system to be modelled. Al-
though the actual relation between  and  cannot
be known, it might be useful in some cases (see re-
mark 2) to assume this relation as a linear projection
from the original space  onto the subspace 
which is spanned by the first  components  of an
arbitrary system of linearly independent vectors in

. 

(3)

The time-stamp  for the observation  is the
same  as the time-stamp  for the sample .

 

Remark 1: 

 

Note, that this projection is considered given
and fixed by an external real-world system. This differs
from the many applications of (3) in pattern recognition
which assume access to the original system , and try to
find an optimal subspace according to some minimisation

criteria (like minimum approximation error, least repre-
sentation entropy, uncorrelated coefficients, maximum
variances of the coefficients, maximum separation of two
classes in terms of distance in a single subspace, or maxi-
mum separation of two classes in terms of approximation
errors in two subspaces, statistical independence of the co-
efficients) [1][4].

 

Remark 2: 

 

For all practical purposes the observations 
are considered the only information accessible to a real-
world dynamical systems modelling system. Still the fact
that in case the projections are all linear and the original
system is non-linear, the information from the original
system is preserved in its projections [6]. Even if this
might not hold completely true in real systems, there is
still hope that a number of characteristics of  will still be
recognizable in .

 

In order to reconstruct the original state space, a
number  of past observations taken at fixed lag
times  are stacked together to create a 

 

delay-
vector

 

 . Obviously, the dimension of the de-
lay-vector is then a multiple of the dimension of the
observation vector . The lag times  are
constants (see [5] w.r.t. choice of these constants). In
order to avoid capturing the same information from
the time-series multiple times, the lag times are all
chosen different from each other ,

 and . 

Without restriction to the generality, we further as-
sume: ;  

The delay-vector  is now defined as

 (4)

where each component  is identical to one of the
observation vectors , such that

(5)

which addresses the observation vector with its time-
stamp closest to .

With  follows that the time-stamp of 
is , which is also assumed to be the time-stamp for
the whole delay-vector .

The series of delay-vectors  are used to
adapt a 

 

network

 

 structure  consisting of a set of
cells , a set of directed edges 
where , and a set of parameters 

 (6)

 denotes the 

 

representative

 

 for the specific
cell , and  is a measure of the 

 

local adapta-
tion rate

 

 attached to cell . Properties of those two
cell attributes and the specification of the edge-set
will be introduced below, after the notion of the cur-
rently ‘active’ cell and multiple notions of neigh-
bourhood are available.

The initial network is set to .
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For the 

 

metrical distances in the delay-vector

 

 space,
the euclidian norm in  will be used

(7)

where  is the -th component of the vector .
Any other norm might be considered here as well.

Given the metric distance measure and an arbitrary
time step , the set of metrically closest cells can
be defined as the cells with a representative  in-
side a sphere of radius  around sample 

(8)

For each sample , the set of metrically closest cells
 contains all candidate cells which may approxi-

mate the current sample given the granularity  of
the network.

A path  between two cells , and  is speci-
fied if  such that

 (9)

where

, (10)

The edges along a path  are denoted as 

with (11)

If such an  cannot be found, a path  is
specified non-existent, otherwise

 (12)

denotes the number of (topological) path-steps, and

(13)

denotes the (metrical) path-length, while

(14)

is the shortest topological path,

(15)

is the shortest metrical path,

(16)

is the smallest number of (topological) path-steps, and

(17)

is the shortest metrical path-length.

The topological neighbourhood  is given as

(18)

While the metrically ordered topological neigh-
bourhood is given as an ordered set 

(19)

which is a metrically ordered version of .

The (best) matching cell  denotes the currently ‘ac-
tive’ cell in the network.

: (20)

The selection of this cell  is based on a number of
dynamical properties, which are defined in the fol-
lowing. The actual specification of  will need to be
given below for that reason.

The ordered multi-set of matching cells is
, 

The ordered multi-set of changing matching cells
 is a subset of , where

; and (21)

All successive elements in  are different

 (22)

The following relation between the elements of the
matching cell multi-set  and  exist: All elements
of  are also elements of , appear in the same or-
der, and denote the first element out of  after a
change of matching cells over :

• , , the corresponding element in 
is  so that . The time-stamps are identi-
cal such that .

• ,  the indices for the corresponding
 are also ordered:  and

• ,  the corresponding 
are different 

The set of edges  with 
can now be specified as

(23)

i.e. the set of edges represents the observed transi-
tions between cells.

The trace  is a subset of  with the
following properties

, e.g. (24)

: (25)

i.e. the trace consists of the last, maximal  elements
of , excluding the very last (current) element .
Therefore the trace  represents the immediate
short-term history in the sequence of matching cell
changes .
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Accumulative information, observed in conjunction
with a specific cell or edge is represented as histories

, (26)

where

 and (27)

(28)

While the above sets represent the actual cells ob-
served as matching units in the immediate night-
bourhood (‘past’) of a specific cell , the function 
counts the number of occurrences of a cell  in the
histories of  attached to a specific topological dis-
tance 

 (29)

and 

 (30)

denotes the number of occurrences of a specific cell 
in  (analog definitions for  with respect to ).
Due to the fact that there is no direct access to the ac-
tual dynamical system  in any real-world scenario
and the system as described here is thus constructed
based on the observable space  and its delay-vector
space  there is no principal way to avoid projec-
tions of uncorrelated parts of  onto the same spaces
in  or even in  (the delay-vector has a finite
length). But there is a way to further reduce ambigu-
ities in the system presented here – without expand-
ing the underlying dimensionality or the delay-vec-
tor length. In case that the same cell  is employed
in two uncorrelated parts of  then all observed
paths through  (as recorded in the associated

‘s) can be divided into a number of disjunct sets of
paths. 
Two edges , and  originat-
ing from the same cell  are defined compatible to
each other  if

(31)

which means, the histories of the two edges share at
least one ‘predecessor’ cell. In a stricter form one can
also request that these histories need to share one im-
mediate predecessor

(32)

The set of compatible edges  for an edge
 is then defined as

(33)

where  is the transitive closure of the relation  or
.

The constraint which forces the system to separate
uncorrelated regions in  (the splitting constraint)
can now be formulated as

: (34)

i.e. all edges emerging from  need to be compati-
ble with each other. Alternatively the same constraint
can also be formulated as

, , :

(35)

Enforcing (34) or (35) might require to ‘split’ an exist-
ing cell (hence the name splitting constraint) into mul-
tiple cells, by dividing an incompatible edge-set into
compatible sub-sets and attach those to the new cells
such that (34) and (35) will hold for each individual
cell.

The topological distance  is defined
for each cell  and the trace  in the following way
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where  is the normalisation

. (37)

At this point the matching cell  can be defined by
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Note that the second case implies that the network is
extended by one addition cell
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The topological neighbourhood  around the
matching cell  is given analog to its general form
(18) as
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The metrically ordered topological neighbourhood
 around the matching cell  is defined according-

ly
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which is again a metrically ordered version of .
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distance vector between the cell representative 
and the current delay-vector 

:

(42)

In case that , i.e. the existing network could be
employed and adapted in order to cover the current
delay-vector , the adaptation rates  are de-
creased, or otherwise (i.e. the network needed to be
expanded) increased according to

(43)

For the sake of prediction the following edge at-
tributes are introduced. First the 

 

number of occur-
rences of a specific transition

 

 between two cells,
connected by  are counted

(44)

(45)

where

, and . (46)

Then the sums of real-time spans taken to traverse
this edge is accumulated

(47)

The mean time spent while traversing edge  can
now be expressed as

(48)

The 

 

mean time spent along a path

 

 is thus defined as

(49)

 

3. Prediction

 
Given the observation  (in on-line real-time sys-
tems, this is the  current   observation), with its time-
stamp , prediction gives an observation 
with , employing the Network  at time .
Since all network structures are based on the delay-
vectors  rather than the actual observations, the
prediction process produces a future delay-vector

 as an approximation of the exact, unknown
 first, from which the first component is ex-

tracted as an approximation  for .
Prediction as introduced here is restricted to the
granularity of the underlying clustering, i.e. a single

discrete  is produced as the predicted de-
lay-vector and no interpolation between cells is em-
ployed, i.e. the prediction optimum is restricted to

 (50)

The introduced prediction method is based on the
determination of the optimal path  between the
current  and 
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with the following constraints. First the set of paths
ending at the correct temporal distance  is defined
as
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  and (53)
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i.e. neither the immediately connected predecessor
 nor any successor  of the end-cell of those

paths has a predicted real-time stamp closer to 
than the end-point  itself. Furthermore it is re-
quired that the number of self-references from the
histories along the path  to this path itself (and in-
cluding the current trace ) is maximized. The
number of self-references  along any path at
time  is given as

(55)

The only missing constraint for the optimal predic-
tion path is thus

 (56)

Now the prediction  is given simply by extract-
ing the appropriate values at the end-point of the op-
timal prediction path

 and (57)

 

4. Complexities for real-time operation

 

The set of predicates and equations in section 2 does
not indicate whether there is a possible on-line and
real-time implementation. This aspect of the RTDSM
will be discussed here.
The method has been designed to rely on local adap-
tations only, i.e. with every new sample there is sup-
posed to be only a limited number of cells involved.
Once a reasonable upper limit for those cells which
need to be touched with every new sample can be es-
tablished, the calculations for the computational
complexities for the individual equations will final-
ize the real-time considerations. Simulation (next
section) will reassure the principal findings.
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As seen in section 2 all adaptation steps adapting ,
and  in order to integrate the new sample into the
existing model are related to the metrical neighbour-
hood  or more specifically to the topological
neighbourhood only. Each adaptation step (42)(43) is
bound by a constant computational complexity per
cell . Two points need to be discussed here:

a. Are the number of elements in each neighbour-
hood bound by a constant number?

b. Can the neighbourhoods be identified in constant
complexity?

Point a has been extensively investigated in the con-
text of self-organizing maps and there it can be guar-
anteed that a set of cells will uniformly distribute in a
given sampling space – assuming an infinite amount
of time. A proof for systems which adapt only one
part of the system at a time and process the data in
sampling order (as the method under consideration
here) is not (yet) available. Simulations indicate that
sequence-bound, local methods perform very similar
to out-of-sequence, and globally adapting methods –
as the following section will demonstrate again (see
also [7] for another real-world example). Still a for-
mal proof is open.
Point b is a harder one and in the general case this
one needs to be answered with ‘no’ currently. But not
all is lost: As for any mass-affected, physical dynam-
ical system the vast majority of samples will follow
some continuity assumption. So the chance that a
new sample will relate to the same or a close metrical
and topological neighbourhood is very high. This
leads to simple forms of caching mechanisms for the
cells. As for the cells in the local neighbourhood an
ordered set needs to be specified so that the adapta-
tions can be done according to the ranks in those in-
dex sets, this ordered set can be preserved and re-
used in the search process for the next sample. In fact
all cells in  are in global order, with the cells in the
local neighbourhood always dragged to the top of
this ordered set. Now as we assume that a uniform
distribution of cells establishes itself, the search proc-
ess for local cells can be stopped after a certain
number of close cells has been found. Assuming
some form of locality in the sampling sequence (con-
tinuity assumption, or frequent trajectories for in-
stance) this caching mechanism is effective. Still for
point b there will always be practical cases where the
whole model needs to be searched in order to identi-
fy the local neighbourhoods. 
Besides those two critical issues (which can be rea-
sonably addressed in practical systems) the set of
predicates and equations are all bound by constant
complexities or depend on the number of cells in the
local neighbourhood . If point a can be answered
with ‘yes’ (as indicated by simulations) then also
those equations ((34), (35), (42), and (43)) translate
into constant complexities.

The actual translation into algorithmic form can not
be given here due to space constraints, but an effi-
cient implementation (as also used in the next sec-
tion) is freely available on request.

5. Simulations

In the following simulations, both the method de-
scribed above (RTDSM) and a neural gas model [3]
are applied to the prediction of time series produced
by a numerical solution of the Mackey-Glass equa-
tion [2]

(58)

with parameters ,
and  for . With these parameters, the di-
mensionality of the attractor is . The time res-
olution for the discretization is .
As the characteristic time constant for the Mackey-
Glass system is , the goal for the prediction
is set to forecast . All prediction errors are deter-
mined by the rms value of the absolute prediction er-
ror at  divided by the standard deviation of .
It can be shown, that for the Mackey-Glass system
(58) an embedding with a 4-dimensional delay-vec-
tor is sufficient to allow a smooth prediction of future
values. In practice, any numerical solution of (58) has
only a limited resolution in the delay-vector space.
Therefore, a simulation will sometimes map different
parts of the trajectory into the same discrete volume
of the delay-vector space. The simulated system will
therefore differ from (58). In a simulation, this effect
can not be avoided.
If the dimensionality of the delay-vector space is re-
duced, the trajectory of the system - now projected
onto a subspace - will cross itself at additional loca-
tions. In a simulation, the regions around these
points see multiple trajectories leaving and thereby
rendering the system non-deterministic.
The approach described in this paper focuses exactly
on this latter case. For the simulation, an embedding
dimension of three leading to a state of

(59)

was chosen. The parameters of the network were

, (60)

the length of the trace , and the neighbour-
hood distance was uniformly chosen as .
Figure 1 shows the evolving topological structure af-
ter 100,000 training steps. Darker edges denote more
frequently used trajectories throughout the system.
In a magnified part of the system taken after 30,000
steps (figure 3), one can clearly see single trajectories
crossing each other without interference. See for ex-
ample the area which is marked with a circle, where
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multiple metrically close cells have been separated as
belonging to different trajectories. 

For the neural gas method, a network with 1,000 cells
was trained with 100,000 samples and the same pa-
rameter settings as in [3]. Here, a 4-dimensional de-
lay-vector space

(61)

had to be employed because the approach described
in [3] is a function approximation and will fail if the
trajectory in the delay-vector space does not describe
a deterministic system. A 2-dimensional projection
of the 4-dimensional cell distribution after the adap-
tation of the neural gas network in figure 2 shows the
adaptation to the attractor manifold of the Mackey-
Glass system.

The formal definition for the prediction (52) uses the
set of all trajectories covering the forecast interval. As
the size of this set grows exponentially, it is not feasi-
ble to apply it directly in simulations. An approxima-
tion iteratively searches for the best next cell as long
as the remaining time interval is bounded by (54).
The center of the final cell found is then used as pre-
diction in the delay-vector space. No further extrapo-
lation is applied. If the network still learns new re-
gions of the data manifold, the matching cell is not
connected to any other cell via an outgoing edge. In
those cases, no prediction is provided. 

The speed with which the state of a system moves
through the phase space and accordingly through
the delay-vector space varies for all but very simple
systems. Therefore, the length of the mean transition
times on the edges of the proposed system will vary,
too (between 0.2s and 2.7s in the system at hand).
When the best matching cell is in a region with high
time resolution and the predicted cell in an area with

low time resolution, extra time jitter is introduced
into the prediction. The jitter of the prediction error
coming from time pace differences can be estimated
as the ration of the longest and shortest transition
time multiplied by the spatial resolution .
The neural gas iterates over a number of time steps
(e.g.  steps in the approach shown) to interpolate
the next function approximation with the help of a
learned local linear extrapolation. For each time step,
all cells of the network must be searched in order to
locate the closest cell for the given delay-vector.
After about 3,400 samples, RTDSM has explored a
large part of the data manifold and the prediction er-
ror settles in the range shown in figure 4.
For the neural gas approach, the prediction error
starts very high, because the system needs to be ini-
tialized randomly and with high mobility parame-
ters (as described in [3]). When the neural gas adapts,
the prediction error decreases. It reaches a level simi-
lar to RTDSM only after more than approximately

figure 1:  3-dim. system with RTDSM (100,000 steps)

Zt Yt Yt 6– Yt 12– Yt 18–, , ,( )=

figure 2:  4-dim. system with neural gas (100, 000 steps)

ρ

8

figure 3: Magnified 3-dimensional system (30,000 steps)
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80,000 samples have been processed (figure 5) – com-
pared to 3,000 to 4,000 samples in RTDSM, even
though the computational costs for each sample is
significantly higher in neural gas. The convergence
of the neural gas method depends critically on the
data samples to be drawn randomly from the un-
known distribution over the manifold. This required
randomness of the data samples is usually not given
when on-line data which contains many short term
correlations is employed.

6. Conclusions

As this publication is the introduction of the pro-
posed real-time modelling method RTDSM for com-
plex dynamical systems, it is focused on its precise
specification and gives only brief examples of its ac-
tual performance. The principal findings are encour-
aging and more tests involving the physical systems
in the authors’ group (autonomous underwater vehi-
cles) will be documented shortly. Those underwater
systems are perfectly suited to supply highly com-
plex non-stationary dynamical systems with even
simple experimental setups and are actually the driv-
ing force for the work presented here.
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figure 4: Normalized prediction error (RTDSM)
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figure 5: Normalized prediction error (neural gas)


