
IROS ‘06
(authors’ manuscript – do not distribute)

 

A Formation Control Approach to Adaptation 
of Contour-Shaped Robotic Formations

 

Shahab Kalantar & Uwe R. Zimmer

 

Australian National University
Research School for Information Science and Engineering

and the Faculty for Engineering and Information Technology

 

1

 

Autonomous Underwater Robotics Research Group
Canberra, ACT 0200, Australia

shahab.kalantar@rsise.anu.edu.au | uwe.zimmer@ieee.org

 

Much research has been done in the area of robot forma-
tions. Most of them consider rigid formations where the
robot aggregate forms a rigid virtual body. Relatively little
has been done on deformable formations composed of rigid
links as well as flexible ones. In this paper, we will examine
and design controllers for a special type of robotic forma-
tions, i.e., those resembling contours. These type of forma-
tions have numerous applications in the underwater
world, including adaptation to plume boundaries and iso-
clines of concentration fields, flock shepherding, and shape
formation. We adopt general curve evolution theory as a
suitable abstraction to describe the motion of such forma-
tions. We will first design controllers using simple geo-
metrical reasoning, based on basic requirements on
connectivity and mission accomplishment, and will later
show that they lead to the same controller structure.

 

1. Introduction

 

The emergence of overwhelming interest in 

 

formation
control

 

 within mobile robotics community is the di-
rect result of the need to deploy multiple small rela-
tively low-profile robotic vehicles instead of bigger
more complex units. The use of multiple vehicles in-
creases 

 

robustness

 

 and 

 

fault tolerance

 

, while making
possible the 

 

coverage

 

 of much larger areas, thus in-
creasing sensing capabilities by orders of magnitude.
In the mean time, the ability to cover large areas
makes the exploration of natural phenomena, with
considerable 

 

spatial extent

 

, much simpler and time
(and cost) effective. This, in turn, brings about the
challenge of designing 

 

distributed

 

 control strategies
to achieve 

 

coordination

 

 (including 

 

synchronization

 

).
Much of the research in this area deal with relatively
small number of robots with pre-defined topologies.

Parallel to this, the 

 

swarm robotics

 

 community study
aggregates composed of large numbers of 

 

homogene-
ous

 

 autonomous units. The dichotomy between these
two domains has started to fade away, though. 
Formations can be achieved in various ways. 

 

Leader-
following

 

 [6] (the relationship being defined by a 

 

for-
mation graph

 

), 

 

virtual structures

 

 (treating the forma-
tion as a 

 

rigid body

 

 and using 

 

formation functions

 

 [8],

 

artificial potentials

 

 [4], 

 

structural potentials

 

 [9]), 

 

reactive
(behaviour-based)

 

 methods [7] (in which the formation
emerges), 

 

abstraction-based

 

 approach [12] (using a
small set of shape descriptors), 

 

shape variables

 

 [13]
and 

 

coordination variables

 

 [5] (an attempt at unifying
different schemes), are among the strategies pro-
posed to model formations, as well as numerous pa-
pers dealing with low level control schemes to
realize any one of the above methods. 
A 

 

rigid formation

 

 is one in which the relative states of
individual robots, with respect to every other robot,
are kept fixed (within certain bounds) at equilibrium.
The formation may go through a number of pre-de-
fined configurations according to the characteristics
of the current environment, undergoing deformation
in during transitions.
While the 

 

shape

 

 of a rigid formation is fixed (at equi-
librium), the shape of a deformable formation is al-
ways directly dictated by the shape of the environ-
ment. In [11], control strategies are proposed for

 

covering

 

 a region with mobile sensors. In [10], a chain
of robots enclose a target using simple behaviours. In
[15], a particular type of 

 

deformable model

 

 from ma-
chine vision is used to adapt a chain of robots to the
boundary of an environmental level-set. In [1] and
[3], a more general method based on 

 

curve evolution

 

 is
used. In this paper, we deal with this problem from a
formation point of view.
The physical robots we will ultimately use to imple-
ment the proposed system are small agile submersi-
bles (called 

 

Serafina

 

) developed at our laboratory. In
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2 Section: Modelling formations

this paper, we constrain the motion of the formation
to a plane parallel to the bottom of the ocean (figure
1). With suitable inputs for thrusters , , and ,
we can control the depth (heave motion) as well as
maintaining zero roll angle.  and  can be used
to move the robot on the plane. Thus, considering
that swaying is not directly controllable, we can
model the motion of a Serafina, confined to , as a
simple non-holonomic unicycle. In this paper, for the
sake of simplicity, we will treat robots as particles
moving according to , where  is the
outcome of our design effort. We further ignore iner-
tial effects so that the equation of motion simplifies to

, which designates a path in . Refer to
[16] for more information on Serafinas.

The deformable formations we will discuss in this
paper have many potential applications. Contour
formations can be used to place a group of robots at a
certain level set (iso-cline) of an environmental field,
such as, temperature and salinity (figure 2). Such
fields most commonly initiate from one or more
sources and spread out according to a 

 

diffusion proc-
ess

 

, in which particles move proportional to the gra-
dient of the concentration of heat or matter [2]. Once
successfully adapted, the formation can traverse the
iso-cline, producing a contour map. A variant of the
above application is to have the robots enclose (or
adapt) to the boundary of a diffusion process, more
concretely, containment of oil spills or other contam-
inants. Adapting to underwater hills, 

 

shepherding

 

(where a group of robotic shepherds guide a group of
live entities (e.g., flocks) to desired states), and explo-
ration of the surface of a ship or large submarine and
localization of sources of anomalies (such as explo-
sions or cracks) are among other promising applica-
tion areas.

 

2. Modelling formations

 

In this section, we try to provide a general mathemat-
ical framework for describing robotic formations.
Suppose that we are given a collection  of  robots

, , constrained to move on the plane.
Each robot has a unique id  where

: . We can define . Let denote an iner-
tial coordinate system attached to the plane of move-
ment. Also, let  be a local coordinate system at-
tached to each robot. In the simplest case, when
robots are treated as particles, the state of each robot
can be given by its  and  coordinates

, measured with respect to .
Thus, the state is given by the mapping : ,

: . If the orientation of the robots
are important, the state is defined by

: , : ,
where  is measured with respect to , and defines
the rotation matrix of . To couple the robots with
the surrounding environment , and hence make
possible their interaction with environmental fea-
tures, we define an idealized virtual sensor

: , , with which every robot is
equipped and measures some environmental aspect
of interest. To make the presentation simpler, and
more realistic, assume that all the sensors are identi-
cal and the vector does not contain  and . In
the following, we will be interested in the special
case of . We will also drop , as it is implicit,
and define the 

 

sensor map

 

 as a function of the state of
each robot. Thus, the sensor map can be defined by

: , where  is 1 or 2. Also, define
. We can now define the augmented

state of each robot by : ,
: . The 

 

aggregate

 

 state
of the whole collection is denoted by 

. (1)

A 

 

formation

 

  on  is a collection of inequalities

(2)

where :  is a non-linear function,
 is a subset of , and  is a vector of parameters.
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figure 1: Serafina and plane of motion
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figure 2: Adaptation to fields
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 can, in general, be a function of time. A formation
energy function can be defined as

(3)

which is a measure of deviation from a valid forma-
tion. Accordingly, a formation characteristic function
determines if an aggregate of robots is a -forma-
tion and is defined as  if  and 0,
otherwise. A partially rigid formation is one in which
at least one of the inequalities are replaced with a
strict equality, provided the set of constrains are con-
sistent. In a rigid formation, all of the constrains are
equalities and in such a way that the whole aggre-
gate forms a rigid body. In such a formation the dis-
tance between each pair of robots is kept constant.
The formation can thus be defined as the zero level
set of  [8]. On the other hand, in a deformable for-
mation, we have, at least one inequality. Figure 3
shows examples of rigid and deformable (non-rigid)
formations. 

In a rigid formation, it makes sense to define a forma-
tion coordinate system , attached to one of the ro-
bots (the designated leader), or an imaginary point

 (usually, the centre of mass), moving with forma-
tion. The only degrees of freedom of such a formation
is, thus, defined by translation of this point on the
plane and rotation of the whole formation around it.
This is, of course, not a convenient way of defining
deformable formations. 

Similar to formation functions, we can define a mis-
sion function  to formalize the goal of a formation.
This can be done by defining the collection 

(4)

where, as before, :  is a non-linear
function,  is a subset of ,  is a vector of param-
eters, and  are constants defining an environmental
feature. Now, the mission function can be defined as

(5)

which determines how far the formation is from its
goal. This decoupling of formation keeping and mis-
sion accomplishment simplifies things a lot and has
been exploited by some (see [4]). A very important
application of formations is to localize and converge
to a source of release of some environmental chemi-
cal. In the case of rigid formations, the mission can be
considered accomplished if , where  is
the maximum concentration of the plume. An alter-
native is for the formation to adapt itself to a certain
desired iso-cline of the plume. If  denotes the de-
sired concentration, the mission is fulfilled if

. If :  denotes the curve in-
duced by the concentration , then mission accom-
plishment can alternatively be defined as the conver-
gence of the robots in the formation to this curve. In
this case, a deformable formation shaped as a curve
is more suitable. Such a formation, which we call a
contour formation, is a succession of basic structures
shown in figure 3.b. In the next section, we attempt to
design distributed controllers for individual robots
such that, at all times, we have , and the
motion of the formation is towards the minimization
of . 

Remark 1: The concepts of rigid and deformable forma-
tions are intimately related. If the set of configurations a
rigid formation goes through is indexed by a discrete set,
whereas that for a deformable formation is a continuous
set.

Remark 2: We do not consider tolerance bounds as defor-
mations. 

Remark 3: Our definition implies the existence of a fixed
connectivity graph. As such, swarms are not included. 

3. The approach

Adaptation to an iso-cline of a field  is made possi-
ble through climbing the concentration gradient
while maintaining formation integrity. We will stick
to the following assumptions: 

Assumption 1: The concentration field  is assumed
to be defined in a domain  in . We also assume that it
is continuous everywhere in this domain. This also implies
that we only consider the case of turbulent-free flow. 

Assumption 2: The concentration gradient  is as-
sumed to be defined everywhere and smooth in . Again,
this is too much of an assumption in practice. We assume
that a suitable filtering procedure provides a sufficiently
smooth gradient field. 

Assumption 3: The formation is initialized inside the do-
main where the field is defined. If this is not the case, then
the formation will have to march, almost randomly, to get
in contact with the domain. 
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figure 3: Rigid and deformable formations. (a) In a rigid for-
mation, the states of pairs of robots are constrained in such
a way that the only degrees of freedom of the formation are
those of translation and rotation of . In this example, the
defining equations are ,  and

. The energy function is defined as
. (b) This deformable forma-

tion is defined by the rigid constraints  and
, and the non-rigid constraint .
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Assumption 4:  has non-zero projection 
on the plane of motion  of the formation. In the follow-
ing, by , we actually mean .
Assumption 5:  can measure  and . For
some special kinds of fields and using special sensors, this
may be possible. This problem will be dealt with in a sequel
paper. 
Assumption 6:  is able to measure the relative positions

 and  (through communication or active sensing,
or a combination of them). 
Assumption 7: In the simulations, we will only consider
the case of an open contour with fixed (manually control-
led) end points which has the same behaviour as a closed
chain with  and . This will be relaxed
in future papers. 
Assumption 8: the curve : , representing
the target iso-cline, corresponding to the desired concen-
tration  of the field , is a simple smooth closed curve. 
We can now state the requirements imposed on the
controller: 
Requirement 1: (Stabilization) The formation has to
stop eventually. This means that the group should asymp-
totically converge to an equilibrium point of the energy
function defined below (which may not be the iso-cline). In
other words, we should have , where  is some
finite time instant. 
Requirement 2: (Adaptation) The formation should
converge to and stop at the desired iso-cline. This means
that, after stabilization, we should have 

.
Requirement 3: (Separation) At all times, the constraint

 should be satisfied,
which basically means that the robots should be uniformly
distributed on the imaginary curve representing the for-
mation. In the case of an open contour, the motion of end
robots has to make sure that  lies within some
specified bounds. 
Requirement 4: (Smoothness) At all times, the contour
formation has to satisfy some form of smoothness (which
will be explained in more detail when we discuss relation-
ship with active contours). The pertinent constraint can be
stated as  where  is the maxi-
mum deviation from a straight line, and

(6)

For a closed contour formation, the energy function,
representing all of the requirements can be stated as

(7)

With fixed end-points,  runs from  to . Note
that, when in an equilibrium, the separation con-

straints are automatically attained through the last
term. It is straightforward to have the robots move
according to the gradient of the energy function, fi-
nally ending up in a local equilibrium state. More
formally, 

 (8)

will give the steepest descent direction. As will be
seen later, the formation may converge to undesira-
ble local minima. The mechanism used to escape
these local minima has to be incorporated in a mean-
ingful and intuitive way into the above control sys-
tem. Moreover, similar to what was said about de-
coupling formation control and mission
accomplishment, it would be desirable to decouple
the motion of the formation into simpler behaviours.
Finally, by decoupling, we will arrive at a framework
very similar to that used in curve evolution, as will
be seen later. 
As far as contour formations are concerned, the con-
troller given in equation (8) has a number of draw-
backs. First, the control law is expressed in the global
inertial coordinate system . This implicitly implies
that such a system should exist and be known to all
the robots. This problem can be remedied by express-
ing the control law in the local coordinates . Even
so, the motions in the  and  directions are not
decoupled. It would have been much better if we
could exploit the nature of a contour formation to de-
fine more natural coordinates in which controllers
cold be designed more intuitively. Such a coordinate
system can be arrived at by modelling the contour
formation as an ideal imaginary continuous curve 
passing through all the robots. For such a curve, mo-
tion of every point  can be decomposed into a
normal and a tangential component. Translating back
to the formation, the tangent direction for  can be
defined by

(9)

which is an approximation of
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(10)

while the normal direction is defined by
. The more robots there are and the

more close they are together, the more accurate these
approximations would be. We will attach the coordi-
nate system  to . A point 
has the representation  in ,
where

(11)

We will design and express the controllers with re-
spect to . The form of motion equations would
be

(12)

which has the representation

(13)

in . Note that this change of coordinates has effec-
tively transformed the problem into two one dimen-
sional problems. This way, stability results for one-
dimensional problems can be applied.

 

4. Controller design

 

In this section, we will design decoupled controllers
for fulfilling each of the above requirements. We will
often make use of the function

(14)

where  and  denotes the standard Carte-
sian metric in .  is bounded between zero and

, and is used to exponentially slow down a process
 (via using ) when  is grown beyond

a certain limit, determined through the parameter .
We will also use the function  to
slow down the process  when in a certain neigh-
borhood of the origin. Finally, the notation

, where , will be used
to simplify formulas. 

 

Adaptation: 

 

To achieve , for a given con-
centration , we can make use of gradient informa-
tion in a control law such as

 (15)

where  slows down the robot in the vicinity
of the iso-cline and stops it when the desired level set
has been reached, and  determines the di-
rection of motion along the field gradient

. More specifically,

 (16)

The  term slows down the motion in areas
with large gradients, preventing the undesired oscil-
lations. In some applications, a bound  on the
gradient of the field may be know. In that case, 
can be normalized by this bound. This can help us to
have more control over the speed. Expressed in , 

 (17)

where 

,

(18)

 

Smoothing: 

 

To achieve , we refer to figure
6. As can be seen from the figure, we just need to set 

(19)

where . 
 acts towards minimization of

the objective function 

(20)

where  denotes the distance of  from the
line passing through  and  (denoted by

) and is given by

T s t,( ) γ R s( )∂ s∂⁄
γ R s( )∂ s∂⁄------------------------------=

Ni t( ) Ti t( )⊥
=

ϒNTi
Ni Ti,{ }= Ri pXY ℜ2∈

pNT R ϑi( ) pXY qi–( )= ϒNTi

ϑi
yi 1+ yi 1––
xi 1+ xi 1––
-------------------------⎝ ⎠

⎛ ⎞atan π
2---

–=

ϒNTi

q̇NTi
t( )

η
Ni

t( )

η
Ti

t( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

q̇i t( ) ηNi
t( )Ni t( ) ηTi

t( )Ti t( )+

ηNi
t( )Rz ϑi( )i ηTi

t( )Rz ϑi( ) j+

=

=

ϒi

G x σ,( ) e
x n

2 σ2⁄–
=

x ℜn∈ x n

ℜn G x( )
1
p x( ) G x σ,( )p x( ) x

σ
H x σ,( ) 1 G x σ,( )–=

p x( )

Hs x σ,( ) sign x( )H x σ,( )= x ℜ∈

F qi( ) Fd=
Fd

q̇i t( ) CFi
t( )

β1s F qi t( )( )( )d F qi t( )( )( ) F qi t( )( )qi t( )∇–

= =

s F qi t( )( )( )

d F qi t( )( )( )

F qi t( )( )qi t( )∇

 
qi

qi+ 1

  
qi− 1

 
Ri

  
Ri− 1

  
Ri+ 1

  N
uvu

i

  T
uv

i

  
∇qi ( t )F(qi (t))

   
∇qi ( t )F(qi (t)) ⋅T

uv
i

   
∇qi ( t )F(qi (t)) ⋅ N

uvu
i

figure 5: Gradient following

q̇i t( ) CFi
t( ) β1H F qi( ) Fd– σ1,( )

G F qi t( )( )qi t( )∇ 1
α1

----------,⎝ ⎠
⎛ ⎞ F qi t( )( )qi t( )∇

–= =

G • •,( )

M F∇

F∇

ϒNTi

q̇i t( ) CFi

N t( )Ni t( ) CFi

T t( )Ti t( )+=

CFi

N t( ) CFi
t( ) Ni t( ),〈 〉=

CFi

T t( ) CFi
t( ) Ti t( ),〈 〉=

  
Q(qi ,{qi+ 1 ,qi− 1 })

 
qi

qi+ 1

  
qi− 1

 
Ri

  
Ri− 1

  
Ri+ 1

  N
uvu

i

  T
uv

i

 
ϕ i

  
1

2 (qi+ 1 − qi− 1 )

 
zi

figure 6: Achieving smoothness

ϕi t( ) π→

q̇i t( ) CTi
t( ) β2H zi t( ) σ2,( ) zi t( )

zi t( )---------------= =

zi t( ) 1 2⁄( ) qi 1+ t( ) qi 1– t( )–( ) qi t( )–=

CTi

N t( ) CTi
t( ) Ni t( )⋅=

Δi t( ) 1
2---

Q qi t( ) L qi 1– t( ) qi 1+ t( ),( ),( ) qi t( )– 2=

Q •,•( ) qi t( )
qi 1– t( ) qi 1+ t( )

L qi 1– t( ) qi 1+ t( ),( ) LTi
=



6 Section: Controller design

(21)

Thus, the motion in the direction of the normal can
be achieved by

(22)

Note that  is co-lin-
ear with . Alternatively, the same thing can be
done by the control law  which is
equal to

(23)

Separation: To satisfy the separation constraint, we
can use

(24)

where

(25)

Referring to figure 7, the line  is
the loci of points that satisfy the separation con-
straint, where 

 and (26)

 (27)

 acts towards minimization of
the objective function

(28)

which can be achieved by the control law

(29)

where 
 is co-linear with

, or, alternatively, the law 
which is equal to

Final controller: Collecting all the controllers togeth-
er, grouping normal and tangential components, we
have

(30)

Now, consider the following facts: 
1. (the tangential component of the field
gradient) can in many situations counteract

 (or ) which is vital for main-
taining the integrity of the formation. We should
therefore delete this term. This may, of course, affect
the adaptation. Later on, we will discuss methods of
going around this deficiency. 
2.  and act in the same direc-
tion (pulling  towards , so that just one of them
is needed. In accordance with our adherence to de-
coupling strategy, we reserve . 
3.  and can act in opposite di-
rections. Since, as was mentioned earlier, for separa-
tion purposes, convergence to  suffices,

is not really needed and can be removed. 
4.  and can be at odds with
each other. This presents a trade-off between
smoothness and adaptation and should be balance
by proper values for  and . With these consider-
ations, the final controller would be

(31)

where  denotes a unit vector along the line .
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,( ) qi 1– t( ) ũ qi 1+ t( )( ) qi 1– t( )–+=
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5. Relation to curve evolution

 

The problem formulated in previous sections is in-
deed a discrete version of the general case of continu-
ous curves, i.e., the evolution of curves embedded in

, under the influence of external forces. If
: is a closed curve, the objective is to min-

imize the functional  

where

(32)

Using variational calculus, the steepest descent mo-
tion for the curve is found to be

(33)

where  denotes the curvature of the curve at .
A discrete version would look like

(34)

where

(35)

and 

 is used to maintain the numerical stability of
this Lagrangian scheme. The normal motion, as dic-
tated by (33) has two distinct components, i.e., an 

 

in-
ternal force

 

 for maintaining smoothness and an exter-
nal force. As can be seen, this is very similar to the
controller we designed from scratch. The main dif-
ference is that moving by curvature is provably the
fastest way of shrinking (smoothing) a curve. Also
note that in the continuous version, there are no tan-
gential velocities. This is because this velocity will
only change the parametrization not the geometry of
the curve. In the discrete version, though, it is neces-
sary. The continuous case can serve as a 

 

continuum
model

 

 for contour formations which might be useful
when analyzing very large formations. In the rest of
the paper, we will denote, by  (or, equivalently,

), a general 

 

speed function

 

, which can be a func-
tion of the curvature or be the one we designed pre-
viously. Also,  will denote a general 

 

iso-cline ap-
proach   function, while  is used to denote a
general tangential speed function. See [14] for more
details on curve evolution.

 

6. Simulation results

 

In this section, we present a simulation run demon-
strating the behaviour of chain formations under the
influence of internal and external forces. Figure 8
shows the generic shape of a simulation snapshot to-
gether with various pictorial items. The robots move
according to

(36)

where

(37)

,  and  is defined
by (25). Note that the external force profile is not the
actual level set. The overall performance can be
measured by

 (38)

Figure 9 shows a sequence of snapshots of a forma-
tion decreasing the error area while keeping the
smoothness.

 

7. Conclusions and future research

 

We showed that controllers for deformable forma-
tions can be designed using simple geometrical con-
siderations and that the resultant has the same struc-
ture as differential equations for evolution of plane
curves under the influence of internal forces (based
on curvature) and external forces. In practice, it is re-
quired that certain distance, as well as, smoothness
constraints be enforced. Possible avenues for future
research include designing reliable controllers, based
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on the basic structure, to satisfy connectivity and
smoothness constraints, designing appropriate mo-
tions for the end robots in an open contour forma-
tion, rigorous results for stability and convergence,
interaction with humans, gradient estimation, imple-
mentation, and methods for dealing with the effect of
turbulence. Also of interest would be motion on sur-
faces (motion constrained to a manifold) and obsta-
cle avoidance.
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