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Abstract – 

 

In this paper, we present a motion planning scheme
for navigation of a contour-like formation of autonomous un-
derwater vehicles on gradient fields and subsequent conver-
gence to desired isoclines, inspired by evolution of closed
planar curves. The basic evolution behaviour is modified to in-
clude moving boundary points and incorporate safety con-
straints on formation parameters. Also, the whole process is
decomposed into a sequence of well-behaving states. As op-
posed to the basic model, the regularized solution is character-
ized by the maximum allowable curvature rather than balance
of forces determined by fixed coefficients. Nevertheless, the
proposed framework subsumes the original model. Blocking
states and fairness are briefly discussed.

 

I. INTRODUCTION

The need to deploy large numbers of autonomous vehicles
to safely monitor underwater phenomena, which are usually
of considerable spatial extent, is currently a driving impetus
for many research efforts. These monitoring tasks include,
among others, characterizing diffusion processes (e.g., tem-
perature and salinity [2]) through the evolution of their 

 

iso-
clines

 

, monitoring flows of one kind or another over 

 

iso-
baths

 

, identification of 

 

iso-tachs

 

 of flow fields, and delinea-
tion of 

 

boundaries

 

 of plumes or biological concentrations.
Due to inevitable uncertainties associated with measure-
ments, any kind of imposed structure on the shape of vehicle
formations can be of great help. Generally speaking, suita-
ble formations will have to be 

 

deformable

 

 rather than rigid.
They should have the capability to 

 

lose

 

 potential energy to
get into the right 

 

shape

 

 and 

 

gain

 

 potential energy under the
influence of ambient field gradients. Candidate formations
are either dense networks (for area coverage [6],[7]) those
resembling chains (for isocline tracking [5],[1],[8]) or both
[3] (swarms with boundary). We will consider curved for-
mations with open ends. The proposed strategy will ulti-
mately be implemented on Serafina robots developed in our
lab (figure 1). We will only consider the planar case where
the robots are stabilized to navigate on an imaginary plane.
In the following, we will precisely formulate the problem.

 

Definition 1: 

 

A field  is a continuously differentiable map-
ping : , where  denotes the real domain,

 is the domain of definition of , and  is some time
domain. A 

 

static field

 

 is time-invariant in the period of time
, during which the field can be defined as :  (we

have extended  to the whole plane for simplicity). The 

 

gra-
dient

 

 of  at  is denoted by  and defined as the
vector , expressed in some inertial
coordinate frame .

 

Definition 2: 

 

For any fixed value , such that
, a 

 

-level set

 

 (or 

 

isocline

 

) of
 is defined by the equation . A level set is called a

 

level curve

 

 if it is a single closed, simple and smooth ( )
curve : . We simplify the notation to .  is
parametrized by , where  is the parametrization
domain (such as ).

 

For each such curve , at each point represented by , a 

 

Fer-
renet-Serret frame

 

  can be defined,
where  is the unit 

 

tangent vector

 

 and
 the unit 

 

inward normal

 

. As the only informa-
tion available to the robots is the value and local gradient of
the field, the measure of 

 

closeness

 

 to an iso-cline is
 defined over , for ,

rather than Euclidian metric  ,
 denoting the closest point on  to . The -neigh-

borhood of a curve  is denoted  and is defined as

 

Definition 3: 

 

A 

 

planar formation

 

 is defined as a tuple
, where  denotes a collection of
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figure 1: Serafina, the plane of motion on which the robots behave
like non-holonomic devices, as sway is not actuated. Refer to [12]
for more information. 
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 robots (considered as point masses) , ,
with positions (

 

states

 

) , measured with respect to
.  is the 

 

collective state

 

 of the for-
mation.  is the 

 

force

 

 on the forma-
tion with the general form ,
where  is a projection operator. The equations of mo-
tion are , ignoring inertial effects.

 

Problem 1: 

 

Let  be a planar formation and  the
level curve corresponding to the level value  of a
static field . Let  be an 

 

admissible configuration
space

 

 and that . Find forces  such that for
some finite time  and tolerance bound , we have

 

1. , , and

2. ,  is as small as possible, where

 

(1)

 

and  denotes the distance of  to the set .

 

Problem 2: 

 

Let all the assumptions of problem 1 hold
true. Assume that . Find  such that

,
1. , and

2. ,  such that for every i,

(2)

Assuming local omni-directional sensing, one straightfor-
ward way of approaching the first problem is to let every ro-
bot move towards the level set while exerting repulsive (and
attractive) forces on each other for the purposes of avoiding
collisions (maintaining comfortable spacing) and maximal
spreading on the level curve, while maintaining cohesion.
This approach can simply be implemented using the motion
equations 

(3)

where  denotes a neighborhood around  and 
is a suitable repulsive-attractive potential. This is the gradi-
ent descent of the cost function

(4)

The equilibrium state is the result of local interactions and is
a local minimum of

(5)

where  and  is the time the equilibrium
is attained, which may not be the desired final state. Obvi-
ously, we need more elaborate mechanisms, even with com-
plete neighborhood sensing. In this paper, we start from a
formation with a fixed topology, already shaped like an iso-
cline, i.e., a chain, and use ideas from curve evolution. Such
a formation is robust to large variations in gradient sensing
and is suitable for more realistic directional sensors.

II. CONTOUR FORMATIONS

Definition 4: A virtual bi-directional communication
channel is a tuple , where , 
( ) is a function computed by  ( ) and available to 
( ). Availability is realized by sending the value computed
by  ( ) to  ( ) through some physical medium.

Note that this definition of a channel is an abstraction and
can include active sensing, as well as ordinary communica-
tion.

Definition 5: A contour formation is a formation  togeth-
er with virtual channels between each pair of neighboring
robots , , such that

.

The robots  and  are called left, respectively right,
neighbors of .  and  are called end robots. The
pair  is called a link.

In a contour formation, robots are imagined as lying on an
imaginary curve, forming a polyline. Each robot’s position
on the curve is determined by its index. According to the
definition, a contour formation is oriented from left to right.

Let :  be a continuous curve residing in the
plane, parametrized by . Let  de-
fine the boundary condition if  is closed and

 if it is open. At each point on the curve,
fix the Ferrenet-Serret frame , where

 is the unit tangent vector and  the unit inward
normal to the curve at that point. According to curve evolu-
tion theory, the partial differential equation

(6)

gives the steepest descent for the energy functional

(7)

where : , , is a monotonically increasing
function of , i.e.,  as

 and  as 
. Also,  is the curvature at  (see figure 2). Refer

to [4] for details of general curve evolution theory.
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Straightforward translation of the above motion equation to
the case of contour formations would result in the following
form for the forces acting on each robot in the formation:

(8)

Here,  denotes a discrete approximation of the curva-
ture of the polyline defining the formation and is given by

(9)

where . Note that there are
other ways of defining the curvature. The inward normal
vector is defined as  where

 (10)

is the tangent vector at  (see figure 3). Also define

(11)

For the end robots, we define 

(12)

(13)

such that  and . Moreover,
 and . Refer to [8] for justifi-

cation of these definitions. Note that this Lagrangian
scheme (in the case of closed curves) would solve the ren-
dezvous problem, i.e., the robots will eventually converge to
a single point. To distribute the robots along the imaginary
curve representing the formation, we need a non-zero tan-
gential force as well. Accordingly, we propose the general
form

(14)

where :  is some suitable bounding function. Now,
problem 1 reduces to the design of  and . To ad-

dress problems 1 and 2, we propose the following general
forms

(15)

(16)

 is the external force due to the local gradient, pulling
the formation towards the boundary.  is the internal
compensating force which tries to smooth the formation.

 is the distributing force making sure that the robots
are evenly distributed along the imaginary curve, subject to
some constraint on the total length. Finally,  is a force
which makes the formation slide on the boundary. We pro-
pose to decompose these forces into different multiplicative
factors, each defining a particular function. The general
form is  where .

 denotes a basic behaviour which in our case will be as
simple as a direction of motion.  is a fixed proportionality
factor which is a-priori defined by the designer.  de-
notes the magnitude of the corresponding basic behaviour
which reflects the quality of motion.  des-
ignates the target dynamics. Finally, : ,

, represents the solution to the activation dy-
namics, which together with target dynamics, constitute the
dual dynamics approach [10].

Definition 6: A formation  is called free if  for
every .Alternatively, we may put . Other-
wise,  is called forced.  is called un-constrained if

 at all times. Otherwise, it is called constrained. 

We define

(17)

(18)

For the internal force, define

(19)

(20)

where  is  if the formation is forces and  otherwise.
 is a balancing factor which gives priority to tangential

motion over normal motion. Regarding the redistribution
force, we proposed the following:

(21)

(22)

where

(23)

(24)

and , . Here,  is a desired pre-
defined inter-robot distance.  can now be defined as a
monotonically decreasing function of . For the
end robots, definefigure 3: Contour formatio
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(25)

(26)

Note that for interior robots,

(27)

which means that these robots can only maintain equal dis-
tances with their neighbours (even distribution). The actual
length constraint has to be enforced via the motions of the
end robots.

As will be seen in the simulation section, the un-constrained
model does not respect some required safety (collision) is-
sues which may jeopardize the mission. Activation dynam-
ics is treated in next section.

III. CONSTRAINTS

Let’s first define some relevant configuration spaces defin-
ing a contour formation.

Definition 7: A contour formation is called simple if it has
no self-intersections. In other words, for every two distinct
segments  and  such that 
and ,the expressions ,

 and  are not zero at the
same time, and either

1. , or
2.  
and  .
We denote the space of all simple formations by .

Definition 8: Formation  is called proper if for

every ,  where denotes
the -component of  where is the inverse ro-
tation around  axis by

(28)

The space of all proper formations is denoted .

Definition 9: The formation  is called -distance
bounded if for every pair  and , we have

.  denotes the space of all such for-
mations.

Definition 10: The formation  is called -curvature
bounded if for every , we have .  denotes the
space of all such formations.

Definition 11: A formation  is called -valid at
time  if , where .  is
called perturbed otherwise.

In this paper, for the sake of simplicity, we assume that the
formation will always stay in .

Definition 12: A perturbed formation  is called -
bounded if  and for every ,

(29)

(30)

 in Problem 1 can now be replaced with  for some giv-
en  and .

Regarding self-intersections, let  be a given open curve on
the plane with fixed length . Imagine  forming a circle
such that the end points are touching. Such a circle is actual-
ly the osculating circle of the curve with radius of curvature
equal to . The curvature is given by

(31)

We denote this curvature by . It is obvious that, while in
this configuration, any curvature greater than this will cause
the curve to self-intersect itself. In other words, a necessary
condition for intersection is that , for some

. For a formation, we can set . This
is, of course, not a sufficient criterion. In principle, to avoid
anomalous situations, a formation should start with lower
values for  and relax to higher allowable values when suf-
ficiently close to the boundary.

Definition 13: Let :  be a continuous mapping. A
constraint  is defined by the inequality  for eve-
ry , where : . Let  be given.  is called -
safe if .  is called -unsafe if . It is
called -critical if . Finally,  is called -
enabled if .

See [11] for similar definitions. Here, we deal with simple
constraints of the form  (type I) and

 (type II). For every , three con-
straints are defined:

1.  with , where 
.

2.  with  and  as above.

3.  with , where 
.

Note that the general form of a constraint is ,
where  is  for type I constraints and is for type II con-
straints. If  denotes the velocity vector of , then it
should be in the direction of satisfaction of the above con-
straints. If a condition  is satisfied by  at time , we de-
note it by . Otherwise, we will use the notation

.

Define the Lyapunov function

(32)

such that

(33)

which always in the direction of violation of the constraint.
For , we should either have  or

(34)

If we define

(35)

then we should have .
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Every force ,  is involved in seven con-
straints , , , , ,  and .
The terms , should deactivate  when the corre-
sponding constraint is enabled, in a continuous way. We take

 to be a combination

(36)

where  is responsible for constraint  and the opera-
tor  is simple multiplication or minimum-taking. 
is defined as 

(37)

where 
 being the solution of a differential equation

(38)

We propose the following form for 

:

(39)

 activates inhibition when the constraint is enabled
and is given by

(40)

where the function  (fig-
ure 4) is defined by 

 when
, is zero when

, and  when
. Here, 

.  acti-
vates inhibition only when the direction of motion is to-
wards the violation of the constraint and the angle between
the velocity and the direction of decrease is less than some
threshold and is given by

(41)

IV. SUPERVISORY CONTROL

Figure 5(a) shows the block diagram of the control system
for a single robot. locks  calculate the basic behaviour (as
described in section 2), while blocks  produce con-
strained behaviour. The general structure of  blocks is
shown in figure 5(b). A higher-level supervisor (e.g., hu-
mans) provides the desired values for , ,  and . The
role of blocks ,  and  will be explained
later on. Note that the flow of data is modified at some
points depending on the current state  of a supervisory
controller , modelled as a hybrid state transition diagram

and depicted in figure 6(a). This controller is the core of our
proposed motion planning scheme. Every robot maintains a
copy of this controller. As will be explained in a moment, it
requires some global knowledge about the state of the whole
formation which can be gained through some form of con-
sensus. We will not discuss this synchronization mechanism
in this paper; refer to [9] for possible approaches. It is also
operated by commands from the higher-level supervisor.
For the sake of clarity, it is assumed that all the robots re-
ceive these commands instantaneously. All of the robots are
initially in state  (smoothing). The command
cmd_START initiates formation evolution. In the initial
state, the curvature-based and the tangential distribution
forces are the only active ones and serve to usher the forma-
tion into the safe region (described below) without the influ-
ence of the disruptive gradient field. Now, denote by  the
index of the robot with the largest absolute curvature. When

 falls below some smoothness limit , the control-
ler transitions to state  (marching) which switches the
field force on. After a finite amount of time, the potential en-
ergy  of the formation

(42)

will converge to a very small value  at which point the
field and curvature forces have balanced each other and the
formation is sufficiently close to the iso-cline. The curvature
limit is now, after entering  (adaptation), set to . After
stabilization, it would now be safe to switch to state  (at-
tachment) and weight the curvature force by  which will
effectively drag the formation to the isocline. This may
place the formation at the boundary of the safe region. The
command cmd_DETACH can be used to disentangle the
formation from the isocline. Finally, when cmd_SLIDE is
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along the iso-cline. Figure 6(b) shows graphically the proc-
ess outlined above.

Block  ensures safety but contour formations are an exam-
ple of constrained mechanical multi-body systems and as
such can get stuck in blocking states, depending on the value
of . Mechanisms for escaping these states will make the
system a fair one. We will examine each of the cases. In state

, the formation may initially be so far from the safe region
that it may not even move. One solution to this problem is to
relax the constraint on curvature enough to increase the mo-
bility. This is exactly what  does and will be dis-
cussed in more detail shortly. Another complementary solu-
tion can be arrived at by considering the fact that the robots
at and near the ends are only aware of the local curvature. If
their curvature is artificially defined to encompass a larger
neighborhood, then their motion will help increase the mo-
bility of inner robots with higher curvatures. Such a scheme
should be effected by block  but, due to space limita-
tions, will not be pursued in detail. The particular scheme we
use in the simulations is that  adds to the curvature of
every robot (with ) an additional value  which
is equal to the next  if for every , ,
and similarly for the other direction.

In state , if  is too low, the field force may be hin-
dered altogether. Thus, it should be selected high enough or

 be used to relax it (not exceeding ) if needed.
Likewise, it state , a very low  may hinder  and
can be treated as above.

Another blocking situation while in state  is being stuck in
an undesired local minimum. For good adaptation, it is nec-
essary that the formation be oriented towards the iso-cline.
This means that for all the robots,  should be almost
aligned with .  is responsible for producing a mod-
ified artificial field force to make sure this happens before
entering . We will not discuss it here.

While in ,  gradually adjusts  such that  is
greater than a given mobility level  using

(43)

This will give the formation just enough mobility to pro-
ceed, while bounding the maximum curvature.  is further
constrained to the range .

V. SIMULATION RESULTS

In this section, we present some simulation runs which de-
lineate the similarities and differences of the original and the
constrained model. In all the simulations, the robots move in
an artificially produced force field. At each location, the
force (represented by an arrow) simulates a gradient and is
computed as the output of a Gaussian function of the dis-
tance to the closest point to the iso-cline (represented as a
line cutting the plane into two distinct areas). In all the sim-
ulations, we have set , . The upper and lower
limits for  are, respectively,  and . Also,

, , . Figure 6(c) shows the initial
configuration used for all the runs. Note that .
Figure 7(a) shows the adaptation of the formation to the iso-
cline according to the original model. Figure 7(b) and 7(c)
show the evolution of the curvatures and the distances. Note
the high curvatures and proximities. Figure 8(a) shows the
trace of the un-forced formation moving according to the
original model, while in figure 8(b) and 8(c) are shown the
evolution of the curvature and distance for each robot. While
an improvement in itself, figure 9 shows the performance of
the un-forced constrained formation with relaxation, where

 and . Note that the maximum curvature
attained is much lower and distance bounds are well respect-
ed. Here, we have chosen  and . In
this run,  is saturated at  most of the time. Figure
10(a) and 10(b) show, respectively, the adaptation after
switching the field force on and the evolution of curvature of
the constrained model after attachment. Figure 11 shows the
performance when  is also active. Note the maximum
curvature and, particularly, the increased speed of conver-
gence. Finally, figure 12 shows the evolution of curvature
and  when  and  are both active and

 and . Note that due to a tight bound on
, parts (actually, the ends) of the formation have to go

through a long manoeuvre but the curvatures are kept within
strict bounds. Without relaxation, the curvatures would be
non-increasing, convergence only relying on the motion of
end robots.
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figure 6: a) Supervisory state machine, b) Path planning, c) Initial configuration
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VI. CONCLUSIONS AND 
FUTURE RESEARCH

In this paper, we proposed a
framework for planning the mo-
tion of a group of planar autono-
mous agents in a chain forma-
tion for the purposes of
adaptation to level curves of en-
vironmental fields using local
measurements and communica-
tion. The framework is com-
posed of a hybrid supervisory
automaton, a block generating
the basic behaviour according to
a discrete implementation of the
original curve evolution
scheme, a governor block con-
straining the basic behaviour to
admissible regions (ensuring
formation safety within some
user-determined bounds) and
three blocks modifying the basic
behaviour (to ensure fairness of
the system). The overall strategy
is to make the formation smooth
enough before exposing it to ex-
ternal forces and then decrease
the internal force when safely
close to the iso-cline. Of the
three fairness blocks, the one
which acts by relaxing the cur-
vature constraint was discussed
in detail. The other two will be
explored in future papers to
make the framework complete. Among the topics to be ad-
dressed in subsequent research are distributed gradient esti-
mation, effects of sensor noise, directional sensing, effective
consensus protocols, considering the non-holonomicity of
the vehicles, characterization of the underlying diffusion
process, and more detailed study of mobility of formation in
each state.
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(a) (b) (c)

figure 9:  (a) trace, (b) Curvature evolution, (c) Distance evolution.

figure 8: (a) Final configuration, (b) Curvature evolution, (c) Distance evolution

(a) (b) (c)

(a) (b) (c)

figure 7: Original model. (a) Trace, (b) Curvature evolution, (b) Distance evolution
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figure 10: (a) Force balance after adaptation, (b) The whole cycle

(a) (b)

figure 11: Relaxation plus improved curvature definition

(a) (b)

(a) (b)

figure 12: The evolution of curvatures and  when  and  are both active.κM Θ κM{ } Θ Bκ{ }


