
Building on the assumption that identifi ca-Abstract – 
tion of a suffi cient number of isoclines of an environ-
mental fi eld (such as the ocean bottom terrain) allows ef-
fi cient reconstruction of the fi eld, in this paper, a sequel 
to  [1] , we describe a system where a group of robots in a 
spacial arrangement (a regular polygon centred around 
a lead robot) locally construct the fi eld (measured at the 
locations of the robots) inside the polygonal area using 
interpolation by barycentric coordinates. If the error of 
interpolation is small enough, the corresponding iso-
cline of the interpolated fi eld will match the real isocline 
accurately enough. Tracking this isocline in a certain di-
rection will then allow robust traversal of fi eld isoclines. 
We use the measurement at the centre of the formation to 
adjust the size of the polygon to obtain desired accuracy.

Introduction1. 
Natural environments, in general, and the under-
water world, in particular, abound with static or 
dynamic phenomena which can be modelled by 
mappings :f D R" , where D Rn3  ( { , }n 2 3! ) is 
a domain. Examples include ocean bottom terrain, 
chemical concentrations and plumes. Identifi ca-
tion, characterization and reconstruction of these 
fi elds are among the most important tasks defi ned 
for autonomous vehicles. In this paper, we focus on 
computing bathymetric maps of the underwater ter-
rain. One traditional way to do this is to have a sub-
marine sweep an area along parallel lines  [3] . More 
recently, researchers have suggested traversal of a 
suffi cient number of signifi cant isoclines of the fi eld 
(e.g., those with higher slopes [ 4 ,  5 ]). Interpola-
tion can then be used to reconstruct the fi eld  [9] . 
For smooth fi elds, gradient and Hessian informa-
tion is all that is required [ 8 ,  7 ,  6 ]. For real environ-
ments, though, this information comes in the form 
of often unreliable estimates, even when multiple 
vehicles are deployed. In this paper, we employ a 
strategy based on polygonal interpolation and de-

scribe a scenario where a group of Serafi na vehi-
cles  [2]  collectively form a polygon around a speci-
fi ed leader robot. The leader robot, then, tracks an 
isoline of the interpolated fi eld which corresponds 
to the actual one. This strategy is robust because 
the tracked path is smooth even on very rugged 
terrain and noisy measurements. It is also scalable 
as increase in the number of boundary robots does 
not affect the control strategy. On the other hand, 
in principle even only a single vehicle can be de-
ployed (visiting vertices of an imaginary polygon), 
albeit at the expense of increased time and uncer-
tainty. In the previous paper  [1] , the formation is 
only composed of robots on the polygon and they 
collectively move so that the centre of mass of the 
formation tracks the isoline. We also use a slightly 
different formation control strategy. In  [1] , we use 
an interpolation scheme which is only applicable 
to strictly regular polygons whereas here, we em-
ploy a method which works for arbitrary (irregular 
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2 Section: Polygonal Formations

but simple) polygons. This offers more robustness 
in face of uncertain inter-robot position measure-
ments and formation keeping actuation commands. 
Finally, we use measurements from the lead robot 
to adaptively scale the size of the formation to de-
crease interpolation error.
We adopt a very simple model for the vehicles, i. e., 
a unicycle moving on a plane ( fi gure 1 ). We can 
realize this by employing four decoupled control-
lers: a heave controller keeps the vehicle at a desired 
depth, roll and pitch controllers keeps these angles at 
zero, and a surge-sway controller moves the vehicle 
on the horizontal surface. We also assume the am-
bient fl ow to be negligible. For a clearer presenta-
tion, we only consider the purely kinematic case 
where control inputs for the robots are the linear 
and angular velocities (v and ~, respectively).

Polygonal Formations2. 
 Figure 2  shows the formation shape we use in this 
paper. Such a formation is composed of the lead 
robot R0, N boundary robots R1, ..., RN, and a de-
sired radius rP. We denote the planar positions 
by q i (Measured with respect to an inertial frame). 
We use qP to denote the vector of all the positions 
of boundary robots. Such an arrangement can be 
described by a suitable formation function ( [10] ) 

( )G q q,0P P  such that its zero level set gives a polyg-
onal formation which is unique up to translation 
and rotation. (Sepulchre, et al., 2007) describes con-
trol rules for forming a regular polygon around a 
beacon (the lead robot), starting from random posi-
tions. To keep this formations, each vehicle needs 
the distance to the lead robot as well as its two 
neighbours. Here, we parametrize the mission by 
s, arc-length of the path traversed by the lead robot, 
and we design the set of differential equations

 ( )t s s sq q0 02
2 2

=
2

o, ( )t s s sr rP P2
2

2
2

= o,  (1) 

which are the trajectory of the lead robot and the 
rate of change of the size of the formation, respec-
tively. See  [8]  for a discussion of how to choose s.

Field Interpolation3. 

We can use interpolation by barycentric coordinates 
 [12]  to construct a picture of the fi eld covered by 
the polygonal area ( )s R2

P 1X  defi ned by ( )sqP . 
Denote the boundary by 2X and let p P! X . Con-
sider a set of N functions :R R Ri

N2 "7a +: and the 
vector

( , ) [ , , , ]p q N
T

0 1 1P fa a a a= -  ,   (2) 

where ( , )p qi i P/a a . 

Suppose that the following properties hold: 

(1) ( , )p p q qP P$a=  (linear precision),

(2) 0 ( , )p qi P# a  (convex combination),

(3) ( , ) 1p qi P #a  (bounded-ness), 

(4) ( , )p 1qii Pa =/  (partition of unity), 

(5) ( , )p Cqi P !a 3 (infi nite differentiability),

(6) ( , )q qi j ijPa d= , ijd  the delta function.

Then, ia ’s are called C 0 shape functions associated 
with p, and ( , )p qPa  its generalized barycentric co-
ordinates.

Let :f R R2 "  represent a fi eld defi ned on the plane 
(altitude measurements). We assume that the vehi-
cles can measure the fi eld at their respective posi-
tions, giving the values ( ( )) ( )f t f tq i i= . An interpola-
tion scheme for f, based on polygon P, is a function 
:f RP "Xu  defi ned by

( ) ( , ) ( )f p p f tqp
T

P Pa=u  ,  (3) 

where ( ) [ ( ), , ( )]f t f t f tP N
T

0 1f= - . ( )f pu  is the interpo-
lated value of ( )f p . fu generates a vector of baryc-
entric coordinates and takes the inner product of 
this vector and the vector composed of fi eld values 
at the vertices. According to condition (5) above, 
( ( )) ( )f t f tq i i=u . Conditions (2) and (3) ensure that 

the interpolated values are bounded between 
the minimum and maximum of the nodal values: 

{ } ( ) { }min maxf f p fi i i i# #u . Along the edges of the 
polygon, the interpolant must be piece-wise linear 
(i.e. C 0). This can be stated as

( ) ( )

(1 )

f f f
q

1
q q

i i

i i

1

1

x x x

x x

= + -

= + -

+

+

u
 ,   (4) 

where q 2! X and [ , ]0 1!x .

If ( , ) [ ( , ), , ( , )]w p w p w pq q qN
T

0 1P P Pf= -  is a vector 
of real numbers such that

 ( , ) ( 1 ) 0w p pq q NP P$ - = ,  (5) 

 Figure 2: Polygonal formation with a central lead robot



Section: Field Interpolation 3

then partition of unity coordinates can be found by 
the formula

 ( , )
( , )

( , )
p

w p
w p

q
q

q
i

kk

i
P

P

P

a = / .  (6) 

( , )w p qi P ’s are called (non-normalized) weight func-
tions. 
In this paper, we use weight functions which work 
for arbitrary but otherwise simple polygons  [12] . 
Referring to  fi gure 3 .a and denoting ( )p pr qi i= - , 
it can be seen that

 ( ) ( ) ( ) sinp p p2
1

A r ri i i i1 a= + , and  (7) 

 ( ) ( ) ( ) ( )sinp p p2
1

B r ri i i i i1 1 1a a= +- + - .  (8) 

It is shown in  [12]  that the weights

( ) ( ) ( ) ( ) ( )
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are homogeneous normalized barycentric coordi-
nates of o with respect to the polygon. This inter-

polation scheme has all the desired properties. It 
can be shown that

 ( )
( )

( )tan tanw p
p

2
2 2r

i
i

i i1a a
= +

- .  (11) 

Note that

 
( )

( ) ( ) ( ), ( )
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p
p p p p

2 2A

r r r r
i

i

i i i i1 1a
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-+ +

.  (12) 

This formula is used when ( )p 0A i ! . Otherwise, p 
lies on the link connecting q i and q i 1+ , in which case 
we can use the linearity of the interpolated fi eld. 
Thus, for p on or very close to the boundary, we 
set

 ( ) ( ) ( ) (1 ( )) ( )f p p f p fq qi i 1x x= + - +
u ,  (13) 
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( ) ( )

( ( )) ( ( ) ( ))
p

t t
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To construct the isoline, we need to compute the 
gradient

 ( ) ( ) ( , ) ( )pf p p f p p f tqp
i

N
i i0

1
P2

d
2
2 2

a= =
=

-u u / .  (15) 

The computation is lengthy but tractable.

For a desired isocline value cd, the interpolated iso-
cline ( , )tc o  (o denoting the arc-length parametri-
zation) is the solution of the equation ( )f p cd=u , 
p P! X , which can be easily computed. Referring 
to  fi gure 3 .b, The basic idea is to fi rst fi nd one of the 
end-points on 2X using linearity along the edges 
and then trace the curve using ( )f ppd =u  (we’ve used 
discrete samples of the curve; see  [1]  for more de-
tail). If this solution is not a unique curve, the size 
of the polygon is deemed to be too big locally (see 
section 5).

 Figure 3: (a) Interpolation by barycentric coor-
dinates. (b) Construction of the isocline.

a)

b)

 Figure 4: Control of the lead robot.



4 Section: Tracking Control

path tracker ( )L o  and modulate its speed with an ex-
pression such as

 e v1 ( ( ))t
n

To
c

= a t t-o
o , ( ) ( )t q L0t o= - .  (19) 

However, due to the fact that the constructed curve 
changes with each observation, it is not clear how to 
defi ne initial positions for the look-ahead and the 
way it is to jump between two consecutive curves, 
whose parametrizations differ. See  [14]  for a pos-
sible solution. The described system forms a closed 
loop. Boundary robots collectively move in such a 
way that their aggregate centre of mass track the 
lead robot while forming a regular polygon, the 
lead robot tries to track the virtual path tracker 
while regulating its speed based on feedback from 
the rest of the formation, the virtual path tracker 
tracks the path while controlling its speed through 
feedback from the lead robot, and fi nally, the path 
itself is updated as a result of motion of the bound-
ary robots ( fi gure 5 ). 

Scale Adaptation5. 
The accuracy of the proposed method relies on the 
error of interpolation (assuming this error is much 
larger than those of sensory measurements). It 
turns out that this error is bounded by the size of 
the polygon and the second variation of the under-
lying fi eld. For a polygonal formation P with size rP 
and N vehicles, we have that

 4f f C fr
( ) , ( )L L

2

2
p2 2#-

X X

u   (20) 

where the L2-norms are defi ned by

 ( , )u u x y dxdy( )L
2

2 =X
X
# , and  (21) 

 ( )u u u u dxdy, ( )L xx xy yy2
2 2 2

2 = + +X
X
# .  (22) 

This is a straightforward extension of a similar the-
orem for error of interpolation by triangular fi nite 
elements  [15] . If, in a suffi ciently small neighbour-
hood around q0, f

, ( )L2 2 X
 is bounded by some thresh-

old, then interpolation error can be decreased by 
shrinking the size. Note, however, that too small a 
formation may raise safety issues, as well as slower 
operation. We use the fi eld measurement by the 
leader robot to assess the accuracy of interpolation 
by boundary robots. This is a good practical ap-
proximation. We simply keep shrinking the forma-
tion until the error falls below some desired mar-
gin. Note that, we this method, decreasing the size 
of the formation may increase the error if variation 
in the second derivative is not small enough.

Let rPt  and rPs  denote some upper and lower bounds, 
and f * the estimated maximum value of the fi eld 
in normal operating conditions. It is required that 
the formation expand to maximum if the error of 

Tracking Control4. 
To track the constructed isocline, we design con-
trol rules for the lead robot. Let ( ( ))Q tq( )t 0c  denote 
the closest point on ( )tc  to ( )tq0 , corresponding to 
the parameter value Qo . One strategy is to track this 
point directly. A more robust method is to track a 
look-ahead point. Using a look-ahead makes tracking 
more robust to fl uctuations of the path (whose ob-
servation changes over time). Referring to  fi gure 4 , 
we compute the fi xed look-ahead point as

 ( , ( )) ( , )t t DL q Q L0c c o o= + ,  (16) 

where Lo  is the look-ahead length and D deter-
mines direction of traversal. The control laws for 
linear and rotational movements of the lead robot 
are then  [11] 
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where vn is a nominal speed, Tt  is the desired maxi-
mum distance between the look-ahead point and 
q0, d{  is the desired heading towards the look-
ahead, d0{ { {D = - , b and k are positive gains. 
a 1=c  if c exists and is zero otherwise. These com-
mands implicitly defi ne ( )/s sq02 2  and correspond 
to the purely kinematic version of the system 
where dynamic effects are assumed negligible. A 
more elaborate approach  [11]  would be to defi ne 
the look-ahead as an independently moving virtual 

 Figure 5: Closed loop control system
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Concerning the moving look-ahead, we have to 
fi nd methods to relate the position of the tracker 
on the previous observed path to its postulated 
position on the current one. Finally, strategies for 
adaptively tuning the parameters to cope with high 
curvature environments remains a research topic.
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and ( ) ( )t tr r re
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below. The values of the spring constant k and the 
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how the forces are balanced. As a rule of thumb, 
the force trying to expand the formation should 
be weaker than that trying to shrink it. This will 
decrease the chances of missing a high curvature 
area.

Simulations6. 
For the simulations, we have used superimposi-
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Conclusions7. 
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method for tracking fi eld isoclines. We only con-
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in the case of terrains) would be highly desirable. 

 Figure 6: Two sample simulation runs. 
(a) Smooth terrain. (b) Rugged terrain. 

a)

b)
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 Figure 7: Size adjustment. (a) Run. (b) Errors. (c) Sizes. (d) Polygons. 
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