
A later version of this paper appears in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, Portugal, October 2012

RobotUI – A Software Architecture for
Modular Robotics User Interface Frameworks

Florian Poppa and Uwe Zimmer
College of Engineering and Computer Science

The Australian National University, Canberra, ACT 0200, Australia
{florian.poppa, uwe.zimmer}@ieee.org

Abstract—Modern robotics frameworks are based on modular
architectures that enable them to cope with the complexity and
diversity of today’s robotics applications. The encapsulation of the
framework modules is the key to their reuse in various robotics
scenarios. Model-driven approaches further simplify the reuse of
already implemented and tested modules by enabling developers to
model their applications on a higher abstraction level incorporating
existing modules [1]. Unfortunately, these features are only present
for the implementation of the robot behavior itself, but not for the
accompanying user interfaces (UIs).

The contributions of this paper are threefold: In a first step we
introduce the idea of dedicated robotics UI frameworks which allow
the reuse of UIs across robotics frameworks. The paper then presents
an architecture for flexible and versatile UI frameworks for robotics
applications by investigating and specifying the necessary features
for such systems on a platform and programming language indepen-
dent basis. The introduced ROBOTUI architecture fosters code reuse
on the level of self-contained UI modules and enables the user to
build new robotics related UIs based on existing UI building blocks.
Finally, we present an implementation of the proposed architecture
that demonstrates the advantages of a dedicated UI framework and
the high level of code reuse achieved by implementing the modular
ROBOTUI architecture.

I. INTRODUCTION AND MOTIVATION

To cope with multi-robot systems with each robot being
equipped with numerous sensors and actuators, most robotics
frameworks1 are based on a module oriented architecture and
allow the distributed execution of their modules2. There is a
large variety of such systems available today (e.g. SMARTSOFT

[2], PLAYER [3], CARMEN [4], ROS [5], MICROSOFT ROBOTICS

DEVELOPER STUDIO [6]). It is therefore not surprising, that one
can save a considerable amount of time by using one of these
frameworks and implementing the robot behavior based on
already existing and tested modules for sensors, actuators and
popular algorithms.

Unfortunately there is no framework available which al-
lows the reuse of robotics related UIs in the same manner
than robotics frameworks allow the reuse of their modules to
implement a certain robot behavior. One might therefore ask
himself: Why is it not possible to reuse the implementation
of an already existing map viewer, waypoint manager or
measurement viewer as a whole and not by copying parts of
its source code? In addition to that, why is it not possible to
simply use the same UI implementation with various robotics
frameworks? And why is it not possible to create new robotics
related UIs based on already available and encapsulated UI
fragments?

1We define a robotics framework to be a robotics software system
that implements robotics specific tools, functionality, drivers and al-
gorithms. The system may also implement its own middleware or it
is built upon an existing middleware solution.

2Due to different naming conventions in various robotics frame-
works, the notion of a module is used in this paper to describe the
fundamental, encapsulated unit which forms the basis for code reuse
inside a robotics framework in a platform and framework independent
manner.

With the increasing complexity of the robot behavior, UIs
grow more and more complex as well, and their implemen-
tation and maintenance times rise. The creation of realistic
3D environments can be seen as the tip of the iceberg where
the implementation often takes a considerable amount of time
and also requires a fair bit of programming expertise. Up
to now, such visualization modules are often implemented
from scratch over and over again. This time consuming and
error prone practice would not be necessary if one could
use an implementation of such a module as an off-the-shelf
component without any source code changes.

The key to allow this to happen in a robotics framework
independent manner is to separate all modules responsible
for the graphical representation and user interaction away
from the robotics frameworks itself and to move them into
a dedicated UI framework. That clearly draws a line between
modules responsible for the robot behavior (model) and mod-
ules for the visualization of it (view). Nevertheless, the design
of the UI framework also has to maintain the separation of
concerns inside the UI framework to allow the usage of UIs
across robotics frameworks. To further foster code reuse inside
the UI framework, the UI implementations have to be split into
reusable modules. The architecture of the UI framework has to
be able to manage these UI modules to allow their reuse in
various robotics scenarios.

II. LEARNING FROM CURRENT APPROACHES

Having a closer look at currently existing robotics related
UIs, one can spot two main ways of dealing with them: One
solution is the implementation of a central UI which is tailored
to the problem to be solved. The other, more common solution,
is to reuse UIs provided by the underlying robotics framework.

Unfortunately, both solutions have major drawbacks. In case
of a specialized central UI, the software interacts with the
underlying modules of the robotics framework to gather in-
formation or to delegate user inputs. Due to the tight coupling
of the robot behavior related modules and the UI modules, this
very often results in a mixture of model and view. A change of
the robot platform (e.g. a sensor change) or the problem itself
(due to new requirements) leads most likely to extensive source
code changes. This also holds true if the underlying robotics
framework changes. The reuse of code between solutions of
this kind is mostly restricted to source code snippets but is not
possible on the level of complete, self-contained UI modules.

While the UIs provided by robotics frameworks are often
very powerful, they come with a problem which is based
on the module oriented architecture of the frameworks: To
make the UIs reusable in many scenarios, each UI is ideally
coupled to only a single robotics framework module. This
results in desktops being cluttered with an increasing amount
of windows (Fig. 1) in which the number of windows increases
with the amount of framework modules being used (and with
the complexity of the implemented scenario). Each restart of

mailto:florian.poppa@ieee.org
mailto:uwe.zimmer@ieee.org


A later version of this paper appears in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, Portugal, October 2012

Fig. 1. Screenshot of a Player/Stage/Gazebo setup [7] (top) and
a Microsoft Robotics Developer Studio setup (bottom) featuring UIs
provided by the robotics framework.

either the robotics framework or the operating system results
in time consuming readjustments of windows on the desktop.
This waste of valuable time applies to robotics application
developers as well as to end users.

Next to the problem of the missing integration of the indi-
vidual UI parts into a central UI instance, robotics framework
provided UIs come with another disadvantage: The reuse of
their UI modules is limited to applications using the same
robotics framework. That means that for example a PLAYER

UI cannot be simply used by a CARMEN module and vice
versa. Therefore, multiple implementations of the same UIs
are available for various robotics frameworks, multiplying the
overall implementation effort.

One solution to overcome this problem is to setup a commu-
nication channel between the modules of the robotics frame-
works. This is hard to realize due to different and sometimes
incompatible approaches of the robotics frameworks. These
differences can come in form of contradicting middleware sys-
tems, programming languages, design ideas and architectures.
Software bridges can solve this problem in special cases even
though they are very specific and hard to maintain.

To increase the code reuse between robotics frameworks,
Makarenko et al. [8] propose to implement drivers and algo-
rithms in libraries. This enforces the clear separation between
robotics framework specific APIs and the implemented logic.
The libraries can then be used in various robotics frameworks,
overcoming the problem of the Software Lock-In (also [8]).

While this library-based software reuse solves the issue for
a wide range of robotics related logic and driver implementa-
tions, it does not overcome the problem for UIs. The strong
coupling between UI implementations and the GUI toolkit
library they are based on as well as the dependency to a specific
programming language prevents the adaption of this idea.

Having a closer look onto the problem one realizes that the
root of the issue is the missing separation of concerns inside the
UI implementations. UIs could easily be used across robotics
frameworks if one could exchange the source code responsible

for the interaction with the robotics framework inside the UI
implementations from one robotics framework to another. If
each UI would have to implement such a transparent exchange
and manage the interfaces to various robotics frameworks
individually, the overhead would be immense. Nevertheless,
if we introduce dedicated UI frameworks and move all UI im-
plementations into it, the interfaces to the robotics frameworks
can be shared among all UIs of the framework.

The introduction of dedicated UI frameworks would bring
a number of advantages:

• Easier comparisons: Robots running different robotics
frameworks can be monitored using the same UI. That
simplifies direct comparisons between robotics frame-
works.

• Write once, use often: Instead of implementing a partic-
ular UI for each framework, each UI has only to be
implemented once and can be used by multiple robotics
frameworks. Users profit from faster availability of new
UIs.

• Diversity: Users can choose between UI frameworks the
same way as they choose their favorite window manager
in a Linux environment. They can choose the most robust
implementation or a UI framework which is best suited
for their specific needs. That also increases the competition
between UI frameworks which can result in higher code
quality.

• Higher quality: The amount of people interested in a spe-
cific UI implementation might be higher than it is at the
moment. Problems should be exploited quicker which can
result in faster bug-fixing leading to increased code quality
and overall robustness.

• Developer support: The enforced separation of model and
view in distinct frameworks frees the robotics behavior
developer from any entanglement with the UI.

• Opportunities for members of other communities: The ap-
proach enables UI designers and developers to directly
participate in robotics projects. That might result in more
intuitive and usable UIs than currently available.

• Simulation: With a dedicated UI framework, the imple-
mented UIs can be used both for simulated and real world
scenarios. For the user it is only necessary to be familiar
with one UI for both cases. In addition to that, simulators
can use the UI framework for visualization purposes as
well.

• Central and distributed robot monitoring: It is possible to
either monitor a robot from a single machine or from a
number of machines. If the user decides to monitor the
robot in a distributed fashion, one UI framework instance
would be running on each monitoring node with the same
or different UIs.

• Improved handling: Each UI framework hosts its UIs in a
single window. That makes repeating rearrangements of
UIs on the desktop obsolete.

Of course, the introduction of dedicated UI frameworks
will only work under specific circumstances. We discuss these
requirements in detail in the following section.

III. REQUIREMENTS

A. Compatible with existing robotics frameworks

The proposed UI framework has to be able to work together
with existing robotics frameworks without the necessity to
change any source code in the robotics framework modules.
It solely has to provide an alternative graphical representation
to the existing robotics framework specific UI implementations.



A later version of this paper appears in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, Portugal, October 2012

B. Side-effect free

Our definition of side-effect free means that it does not have
any effects onto the behavior of the robot if the user closes
the UI framework during the monitoring process of a robot.
The only thing which changes is, that the user loses the ability
to monitor the robot and to interact with it through the UI
framework.

C. Support groups and swarms of robots

The scenarios in which robots are used today are getting
more and more complex. Therefore, the trend goes from the
idea of an all-purpose robot towards groups of robots where
each member is specialized for a specific set of tasks. By
collaborating, the group can achieve more goals than it would
be possible with each robot on its own [9].

Due to the possibly heterogeneous software environment
present in a group of robots, the proposed framework has to
be able to cope with multiple robotics frameworks at the same
time. In addition to that, the user should be able to monitor
each robot on its own as well as the group or swarm as a whole.
The framework has to integrate these views into a single, yet
manageable central UI.

D. Modular, reusable and extendable

The content of robotics UIs is highly dependent on the task
of the robot and its hardware configuration. Nevertheless, the
user should not be forced to create each new UI from scratch
or to copy source code snippets of other UI implementations.
Instead, the UI framework has to support the user by providing
robotics related UI building blocks. The user can then create
new UIs based on a collection of these already implemented
and tested UI fragments. It should only be necessary for the
user to write source code in case one of these UI building
blocks is not available yet.

In addition to that, it must be possible to reuse a UI as
a whole, if the robot configurations are very similar (e.g.
same sensor configuration but the parts are from different
vendors) or even the same (e.g. homogeneous swarm). It is
also necessary, that the proposed UI framework supports the
easy integration of new UIs and robotics framework interfaces.

IV. THE ROBOTUI ARCHITECTURE

Instead of only introducing an implementation of a UI frame-
work, we emphasize on the description of an architecture. If
implemented, this architecture will result in a clearly structured
UI framework allowing the user to take full advantage of the
benefits outlined in section II. The platform, operating system,
GUI toolkit and programming language independent nature
of the architecture allows interested parties to implement their
own UI framework based on their favorite combination of
these. Nevertheless, we also provide an open-source imple-
mentation of the ROBOTUI architecture which we briefly in-
troduce in the next section.

A. The bigger picture

As emphasized in section II, the UI framework forms an
additional layer (Fig. 2) on top of robotics frameworks and their
middleware systems (or any other software system deployed
on the robot if no robotics framework is used). While robotics
frameworks abstract the hardware, provide modules for algo-
rithms and implement the robot behavior, the UI framework
is exclusively used for user interaction and the graphical rep-
resentation of the internal and external state of the robot. This
is achieved by communicating with the underlying robotics
framework itself or its individual modules. To maintain the

Hardware

Robotics Framework, Middleware System,
Software system deployed on the robot

UI FrameworkLayer 2

Layer 1

Layer 0

User

Fig. 2. UI frameworks form a new layer upon existing robotics
frameworks.

separation of concerns, UI framework modules are not allowed
to communicate directly with the hardware.

There are two ways a dedicated UI framework can be
implemented: One solution is that the UI framework exploits
a clearly defined interface towards robotics frameworks. These
can then actively push data to be visualized to the UI frame-
work. This solution simplifies the design of the UI framework
due to the fact that the UI framework does not need to know
any information about the robotics frameworks connected to
it. Unfortunately, this approach forces the robotics behavior
developer to include source code into the robotics framework
modules for the communication with the UI framework. Source
code changes in the robotics framework modules would be
necessary each time the interface to the UI framework changes
or another UI framework should be used.

The other solution, which is implemented in the ROBOTUI
architecture, reverses the direction of communication. The UI
framework acts as an optional client to the robotics framework
modules and subscribes to sensor data and user interaction
requests and delegates user triggered commands to the cor-
responding robotics framework modules. Therefore, no UI
framework specific source code is necessary in the robotics
framework modules. That allows the robotics behavior devel-
oper to compose robotics framework modules without any
UI entanglements. Due to the fact, that the presence of a UI
framework cannot be assumed during the runtime of the robot,
the robotics behavior developer is enforced to implement the
robotics framework modules in a way that the safety of the
robot and its environment is always ensured even though no
UI framework might be available or the user does not respond
in a specified amount of time. This solution therefore supports
the developer indirectly by requiring him to think about these
cases during the development time of the robotics framework
modules.

B. The component structure

Due to the design decision to implement the UI framework
as an optional client to robotics frameworks, the UI framework
needs information about how it can interact with the robotics
framework modules. To maintain the separation of concerns
inside the UI framework, the ROBOTUI architecture has to
ensure the separation of the robotics framework specific code
from the UI specific code.

The main purpose of the component structure discussed
here next to maintaining the separation of concerns is to enable
the user to reuse whole UI implementations, UI modules and
UI fragments with various robotics frameworks and under
different robotics scenarios.

User Interface Components
A typical robot UI is composed of multiple individual parts
(e.g. a window showing the current camera stream, a graph



A later version of this paper appears in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, Portugal, October 2012

U
I F

ra
m

ew
o

rk
 C

o
re

Robotics Framework 
Interface Component (RFIC)

User Interface 
Component (UIC)

Robot User Interface Component
(RUIC)

User

Robotics Framework / 
Software System deployed on the robot

1 0..*

1..*

1..*

hosts

Entity
0..*

Fig. 3. The internal structure of the UI framework.

viewer). Most of these parts can be reused in various robot UIs.
We call these fundamental UI parts User Interface Components
(UIC) in the ROBOTUI architecture.

Each UIC provides interfaces to receive user inputs or to
visualize information or both. While the granularity of GUI
toolkit elements is very fine to allow them to be reused in
applications of various domains, UICs are tailored to the needs
of applications in the robotics domain. A UIC therefore consists
most likely of a collection of GUI toolkit elements providing
the user with the possibility to reuse comprehensive robotics
domain specific UI modules.

A UIC can be implemented as a graphical UI, but it is not
restricted to that. It is also possible to use other means of
communication to interact with the user: A UIC could for
example alert the user via a sound message about a critical
state or implement a text-based UI.

Complex UICs can be broken down into smaller, itself
reusable UI fragments which we call Entities (e.g. a robot visu-
alization, an image based map, a coordinate system). Entities
are robotics domain specific UI building blocks that are more
comprehensive than GUI toolkit elements and form the lowest
level of code reuse inside the ROBOTUI architecture (Fig. 4).

GUI toolkit element Entity UIC RUIC

domain independent robotics domain specific

Fig. 4. Increasing granularity of code reuse in the ROBOTUI architec-
ture

A UIC is not restricted to view information of only one
robot at a time but can visualize the state of multiple robots
simultaneously.

Robotics Framework Interface Components
In order to make UICs reusable with various robotics frame-
works, we have to decouple the interface to the robotics frame-
work from the UICs into a separate component. We call these
components Robotics Framework Interface Components (RFICs).

Each RFIC is responsible for the interactions with a robotics
framework or with one of its modules (depending on the ar-
chitecture of the software system used on the robot). Therefore,
the component has to implement the communication protocol
required by the software framework deployed on the robot.

Robotics frameworks implement different strategies to en-

sure the decoupling of their modules (for example a buffer
structure protected against concurrent write access). Each RFIC
can also be understood as a client module of the robotics
framework the UI framework connects to. The decoupling of
the RFIC from the other framework modules (and therefore the
decoupling of the UI framework from the underlying Layer 1)
is therefore provided by the robotics framework in use.

RFICs are also responsible for the transformation of the
robotics framework specific structures and messages into UI
framework specific structures whenever such a transformation
is necessary. Each RFIC can be seen as a bridging component
between a robotics framework and the UI framework and
appears transparent to the user.

Robot User Interface Components
Each Robot User Interface Component (RUIC) represents a UI for
an individual robot or for a group of robots and consists of
at least one UIC and one RFIC. The exact number of RFICs
and UICs inside a RUIC varies on the task and visualization
strategy of the RUIC.

A RUIC is responsible for providing a window to host its
UICs, and for connecting its RFICs with the matching UICs.
User inputs from UICs are then forwarded by the RUIC to the
underlying robotics framework module via the corresponding
RFIC. The RUIC is also responsible for managing the robot UI
specific configuration.

RUICs, RFICs and UICs run asynchronously with each other.
That allows different update rates for each component and
maintains the loose coupling of the components.

C. UI framework core, RUIC life cycle
The core of a ROBOTUI framework is very compact. It solely

hosts multiple RUICs simultaneously and is responsible for
their handling: New RUICs can be added during runtime and
existing RUICs can be removed.

Selected Unselected
init()

unselect()

select()
shutdown()

Fig. 5. ROBOTUI component states

The UI framework core also initiates state changes (Fig. 5)
of the RUICs based on user interaction. After a new RUIC
is added by the user, it will be initialized and selected. The
user will only see the selected RUIC. If a different RUIC is
selected, the currently selected RUIC will be unselected. That
allows each RUIC to still exchange data with the robot (via
its RFICs) but without the necessity to update its graphical
representation. If a RUIC is deleted by the user or the program
shuts down, the shutdown method of the RUIC will be called
by the framework allowing the component to clean up its
resources.

D. Component reusability and the importance of clearly defined
interfaces and data structures

To ensure the maximum reusability of the RFICs and UICs,
and to enable their transparent exchange, the following require-
ments must be met:

1) Internal states of both RFICs and UICs must stay en-
capsulated inside the components themselves and should
never be passed on to other components.

2) Data structures used to exchange information between
the components should be generic and use standardized
units (SI units) whenever possible. The amount of data
structures should be kept as small as possible. Only when
the data structure provided by a RFIC is identical, or



A later version of this paper appears in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, Portugal, October 2012

an extended version of the data structure needed by an
UIC (and vice versa), a direct connection between the
components can be setup.

3) Both RFIC and UIC have to clearly define which data
structures they provide and accept. Only if the interfaces
of two components match, or the exchanging compo-
nent has an extended version of the component to be
exchanged, a transparent swap of these components is
possible.

The first two rules can not be enforced by programming
languages or frameworks, but are still essential to maximize
the reusability of the components.

The problem of clearly defining the component interfaces is
also well known in robotics frameworks that are based on mod-
ular architectures. Different ideas are implemented in these to
cope with the problem: To be able to transparently exchange
modules that solve the same task in different ways, PLAYER

uses interfaces (generic specifications of devices) [10]. The data
structures used to exchange information with the various inter-
face implementations are specified in the interface definition.
Thus, the interface creator specifies the data structures, shifting
the responsibility away from the user. Unfortunately, due to the
generic nature of the interface, features and functions unique
to a specific interface implementation are ignored.

SMARTSOFT has a different idea to cope with the problem:
Each component describes its own interface and specifies the
communication objects to be used. Predefined communication
objects are available and used extensively in the components
provided by the framework. Due to the object oriented nature
of the data structures, it is possible to derive and extend
existing communication objects without loosing the generic
compatibility. Unfortunately, users still have the possibility to
create contradicting communication objects (same information
content but different type). Such action prevents the transpar-
ent exchange of otherwise exchangeable components.

Of course commercial software tools run into the same prob-
lem. MICROSOFT ROBOTICS DEVELOPER STUDIO (MSRDS)
services describe their interfaces using contracts. Other ser-
vices can implement the same contract if they wish to be
transparently exchangeable with other implementations of the
contract. It is possible to extend existing contracts if additional
functionality is provided by a service but the compatibility to
the original contract should be kept. Microsoft provides a set of
generic service contracts one can implement and extend. Users
can also define their own, possibly contradicting, contracts for
their services.

While PLAYER and SMARTSOFT use programming language
and middleware specific means to describe the interfaces of
their components, MSRDS introduces a programming lan-
guage independent interface description. That is necessary to
enable the creation of MSRDS services in all available .NET
languages.

The ROBOTUI architecture does not specify an interface
description language for ROBOTUI components on a pro-
gramming language independent basis. Most programming
languages provide means to clearly describe the component
interfaces. An exchange of components of different ROBOTUI
implementations is unlikely due to various incompatible pro-
gramming languages and GUI toolkits. The introduction of
a mandatory interface description language for all ROBOTUI
implementations does therefore not gain any advantages.

V. REFERENCE IMPLEMENTATION

In this section we present the reference implementation of
the ROBOTUI architecture. The open-source project is called

ROBOTUI ECLIPSE RCP and is available under the URL
http://robotui.sourceforge.net/robotui ercp.

A. Technology selection
We decided to realize the reference implementation of the

UI framework using Java in combination with the Eclipse Rich
Client Platform (Eclipse RCP) [11], which is based upon the
Standard Widget Toolkit (SWT). The decision was made based
on following reasons:

• Eclipse RCP is based on Equinox, which is the reference
implementation for the OSGi [12] framework specification.
The standardized OSGi module runtime supports the en-
capsulation of RFICs, UICs and RUICs on multiple levels:
Each component is implemented as an individual OSGi
bundle that is represented by an individual implementa-
tion project. In addition, each OSGi bundle is packed as a
.jar file on the file system. The component structure of the
ROBOTUI architecture is therefore recognizable through-
out the whole development and deployment process.

• The OSGi Framework supports the developer during the
implementation process of the the UI framework compo-
nents: It defines a modularization model for Java (Module
Layer), introducing rules which enable the developer to
select which contents can be seen by other bundles. A
life cycle API for bundles is also provided (Live Cycle
and Service Layer). In addition to that, dependencies
between bundles can be described formally and version
information can be attached to bundles.

• Multi-platform support due to Eclipse RCP and Java.
• Available OSGi modules can be incorporated into

ROBOTUI ECLIPSE RCP.
• The Eclipse IDE offers strong support for the development

of Eclipse RCP projects. The IDE is widespread and avail-
able on many platforms.

• LWJGL (Lightweight Java Game Library) as well as JME
(JMonkeyEngine) can be used in Eclipse RCP plugins
(= OSGi bundles), allowing the implementation of 3D
environments as UICs.

• The plugin model of the Eclipse RCP allows developers
to attach their copyright to individual plugins. No license
model is enforced by the UI framework core, allowing
developers to pick a suitable license for their plugins.

B. Example scenario
Two robots performing various tasks in a simulated environ-

ment should be monitored individually using the ROBOTUI
ECLIPSE RCP framework. The robots are simulated using
different robotics frameworks. The underlying maps, the robot
starting positions as well as the robot configurations are dif-
ferent:

1) Robot Natalie
• Pioneer P3DX base incl. 16 sonar sensors
• Sick LMS200 laser range finder
• Simulated using MSRDS

2) Robot Keira
• Roomba 500 Series
• Hokuyo URG-04LX laser range finder
• Simulated using PLAYER/STAGE

C. Evaluation
Fig. 6 shows a screenshot of the ROBOTUI ECLIPSE RCP

framework for each of the monitored robots. Even though the
robot configurations and the robotics frameworks in use are
different, a number of ROBOTUI components are used by both
UIs (Fig. 7, black components). The robotics framework and

http://robotui.sourceforge.net/robotui_ercp


A later version of this paper appears in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, Portugal, October 2012

Fig. 6. Screenshot of ROBOTUI ECLIPSE RCP monitoring the robots
Natalie (top) and Keira (bottom).

the robot to be used can be selected during the configuration
process of the UI, and the corresponding components are
created and initialized during the same process (for Natalie the
red components are used while the blue components are used
for Keira). Not a single line of source code has to be changed,
only the configuration for both UIs are different. Due to the
generic nature of the components, they can also be reused in
other UIs.

VI. CONCLUSION AND FURTHER WORK

In this paper we introduced an architecture for modular
robotics UI frameworks. Implementations of the ROBOTUI
architecture allow the user to reuse whole UI implementations
with various robotics frameworks. The UIs are composed of
self-contained UI modules which can be reused in different UI
implementations. Encapsulated UI fragments support the user
in building new UI modules. Robotics related UIs can therefore
be created and composed quickly without the necessity to
rewrite source code.

We also presented a reference implementation of the
ROBOTUI architecture and showed the high degree of com-
ponent reuse inside the UI framework, even though dif-
ferent robotics frameworks and robot configurations have
been used in the example scenario. The ROBOTUI ECLIPSE

RCP framework is open source and freely available
(http://robotui.sourceforge.net/robotui ercp).

We are confident that a model-driven approach can be
implemented on top of the ROBOTUI architecture. That would
further support the user creating robotics related UIs by mod-
eling UIs in an abstract way. The models describing UIs could
also be reused between various ROBOTUI implementations.

Generic 2D Robot Monitoring RUIC 
for robots with Position2d, LRF, Sonar

MSRDS Laser

MSRDS Sonar

MSRDS 
Position2d

MSRDS 
Simulation2d

Property Viewer

SWT-XY-Graph

Error Log

Robot User 
Interfaces

Generic 2D Robot Monitoring UIC 
for robots with Position2d, LRF and 

Sonar

Image based map

Coordinate 
system

P3DX Natalie Roomba Keira

Player/Stage 
Laser

Player/Stage 
Position2d

Player/Stage 
Simulation2d

RFIC

RUIC

UIC

Entity

A
b

st
ra

ct
 S

o
n

ar

A
b

st
ra

ct
 L

as
er

A
b

st
ra

ct
 P

o
si

ti
o

n
2

d

A
b

st
ra

ct
 S

im
u

la
ti

o
n

2
d

Abstract 
RobotConfiguration2d

Configuration KeiraConfiguration Natalie

Fig. 7. Component reuse: Black components are used by both
UIs. The colored components are created and initialized during the
configuration process and specify the robotics framework and the robot
to be used.

REFERENCES

[1] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design Abstrac-
tion and Processes in Robotics: From Code-Driven to Model-
Driven Engineering,” in Simulation, Modeling, and Programming
for Autonomous Robots, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2010, vol. 6472, pp. 324–335.

[2] (2012, Jul.) SmartSoft. [Online]. Available: http://smart-robotics.
sourceforge.net/

[3] (2012, Jul.) Player/Stage. [Online]. Available: http://playerstage.
sourceforge.net/

[4] (2012, Jul.) CARMEN. [Online]. Available: http://carmen.
sourceforge.net

[5] (2012, Jul.) Robot Operating System (ROS). [Online]. Available:
http://www.ros.org

[6] (2012, Jul.) Microsoft Robotics Developer Studio. [Online].
Available: http://www.microsoft.com/robotics/

[7] (2012, Jul.) Gazebo Screenshot. [Online]. Available: http://
playerstage.sourceforge.net/gazebo/gazebo.html

[8] A. Makarenko, A. Brooks, and T. Kaupp, “On the Benefits of
Making Robotic Software Frameworks Thin,” in IEEE International
Conference on Intelligent Robots and Systems, Nov. 2007.

[9] A. Ollero, I. Maza, S. Lacroix, R. Alami, T. Lemaire, G. Hatten-
berger, J. Gancet, V. Remu, M. Musial, G. Hommel, L. Merino,
F. Caballero, J. Ferruz, J. Wiklund, P.-E. Forssn, C. Deeg, M. Bjar,
F. Cuesta, L. Solaque, N. Pea, C. Nogales, F. Lpez-Pichaco, J. M.
de Dios, L. M. Ribeiro, and X. Viegas, Multiple Heterogeneous Un-
manned Aerial Vehicles, ser. Springer Tracts in Advanced Robotics,
A. Ollero and I. Maza, Eds. Springer, 2007, vol. 37.

[10] R. T. Vaughan, B. P. Gerkey, and A. Howard, “On device abstrac-
tions for portable, reusable robot code,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct. 2003, pp. 2121–
2127.

[11] (2012, Jul.) Eclipse Rich Client Platform. [Online]. Available:
http://wiki.eclipse.org/index.php/Rich Client Platform

[12] (2012, Jul.) OSGi. [Online]. Available: http://www.osgi.org/

http://robotui.sourceforge.net/robotui_ercp
http://smart-robotics.sourceforge.net/
http://smart-robotics.sourceforge.net/
http://playerstage.sourceforge.net/
http://playerstage.sourceforge.net/
http://carmen.sourceforge.net
http://carmen.sourceforge.net
http://www.ros.org
http://www.microsoft.com/robotics/
http://playerstage.sourceforge.net/gazebo/gazebo.html
http://playerstage.sourceforge.net/gazebo/gazebo.html
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.osgi.org/

	Introduction and Motivation
	Learning from Current Approaches
	Requirements
	Compatible with existing robotics frameworks
	Side-effect free
	Support groups and swarms of robots
	Modular, reusable and extendable

	The RobotUI Architecture
	The bigger picture
	The component structure
	UI framework core, RUIC life cycle
	Component reusability and the importance of clearly defined interfaces and data structures

	Reference Implementation
	Technology selection
	Example scenario
	Evaluation

	Conclusion and Further Work
	References

